Learning Probabilistic Systems from Tree Samples

Anvesh Komuravelli

Computer Science Department Carnegie Mellon University

June 28, 2012

Joint work with Corina S. Păsăreanu and Edmund M. Clarke

L

Implementation

 $\stackrel{?}{\prec} P$

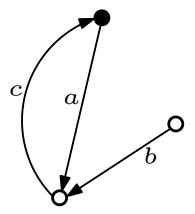
Specification

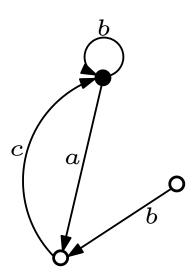
O

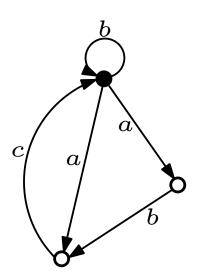
J

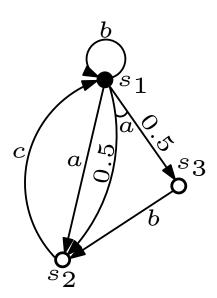
•

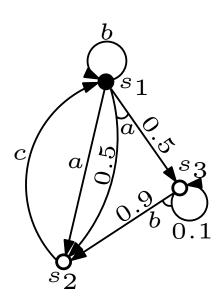
 \cup











L

Implementation

 $\stackrel{?}{\prec} P$

Specification

$$L_1 \parallel L_2 \parallel \cdots \parallel L_n \stackrel{?}{\preceq} P$$
Implementation Specification

$$L_1 \parallel L_2 \parallel \cdots \parallel L_n \stackrel{?}{\preceq} P$$
Implementation Specification

State-space Explosion!

$$\frac{L_2 \preceq A}{L_1 \parallel A \preceq P}$$

$$\frac{L_1 \parallel L_2 \preceq P}{L_1 \parallel L_2 \preceq P}$$

$$\frac{L_2 \preceq A}{L_1 \parallel A \preceq P}$$

$$\frac{L_1 \parallel L_2 \preceq P}{L_1 \parallel L_2 \preceq P}$$

How to automatically infer A?

• If $L \not \succeq P$, a stochastic tree counterexample C can be found such that $C \preceq L$ but $C \not \preceq P$ [Komuravelli et al. CAV 2012].

- If $L \not \leq P$, a stochastic tree counterexample C can be found such that $C \leq L$ but $C \not \leq P$ [Komuravelli et al. CAV 2012].
- For LTSes, Angluin-style active learning algorithm [Angluin 1987] was used to learn Tree Automata [Chaki et al. 2005].

- If $L \not \leq P$, a stochastic tree counterexample C can be found such that $C \leq L$ but $C \not \leq P$ [Komuravelli et al. CAV 2012].
- For LTSes, Angluin-style active learning algorithm [Angluin 1987] was used to learn Tree Automata [Chaki et al. 2005].
- Not aware of probabilistic variant of tree automata.

$$\frac{L_2 \preceq A}{L_1 \parallel A \preceq P}$$

$$\frac{L_1 \parallel L_2 \preceq P}{L_1 \parallel L_2 \preceq P}$$

$$L_{2} \leq A \qquad \xrightarrow{\mathbf{F}} \quad C \leq L_{2}, C \nleq A$$

$$\frac{L_{1} \parallel A \leq P}{L_{1} \parallel L_{2} \leq P}$$

$$L_{2} \leq A \xrightarrow{F} C \leq L_{2}, C \nleq A$$

$$L_{1} \parallel A \leq P$$

$$L_{1} \parallel L_{2} \leq P$$
positive

$$\begin{array}{c|c}
L_2 \leq A \\
L_1 \parallel A \leq P \\
\hline
L_1 \parallel L_2 \leq P
\end{array}
\longrightarrow C \leq L_1 \parallel A, C \not\leq P$$

$$\frac{L_2 \preceq A}{L_1 \parallel A \preceq P} \xrightarrow{\mathbf{F}} C_A \preceq A, C_A \not\preceq P$$

$$\frac{L_1 \parallel L_2 \preceq P}{L_1 \parallel L_2 \preceq P}$$

$$\begin{array}{c|c}
L_2 \leq A \\
L_1 \parallel A \leq P \\
\hline
L_1 \parallel L_2 \leq P
\end{array}$$

The Ca \(\perp A, C_A \pm P) \)

negative

$$\frac{L_2 \preceq A}{L_1 \parallel A \preceq P}$$

$$\frac{L_1 \parallel L_2 \preceq P}{L_1 \parallel L_2 \preceq P}$$

Learning an unknown LPTS using positive and negative counterexamples!

Similar to that of an existing work for DFAs and trace counterexamples [Gupta et al. 2007].

That is, how to find H such that

- for every $P \in \mathcal{P}$, $P \leq H$ and
- for every $N \in \mathcal{N}$, $N \not\preceq H$?

That is, how to find H such that

- for every $P \in \mathcal{P}$, $P \leq H$ and
- for every $N \in \mathcal{N}$, $N \not\preceq H$?

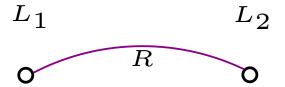
Question 2 Will the sequence of hypotheses converge?

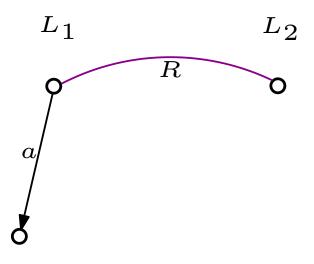
That is, how to find H such that

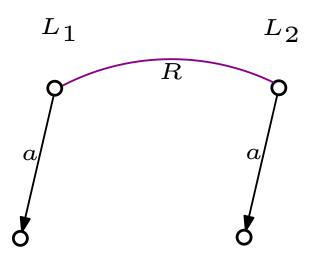
- for every $P \in \mathcal{P}$, $P \leq H$ and
- for every $N \in \mathcal{N}$, $N \not\preceq H$?

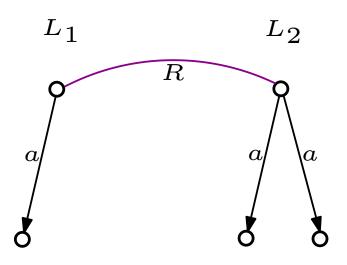
Question 2 Will the sequence of hypotheses converge?

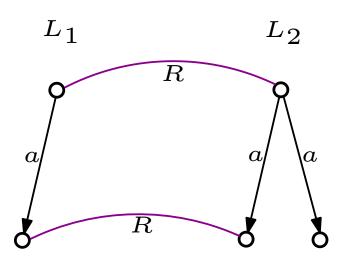
Learning Probabilistic Systems from Tree Samples!

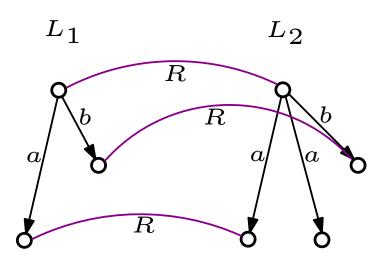


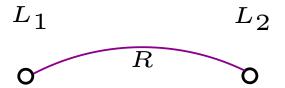


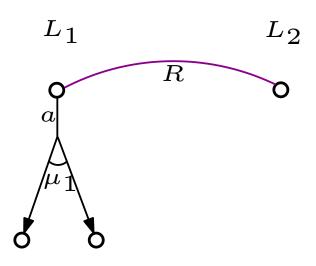


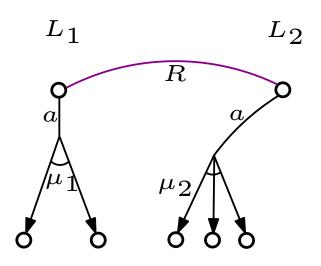


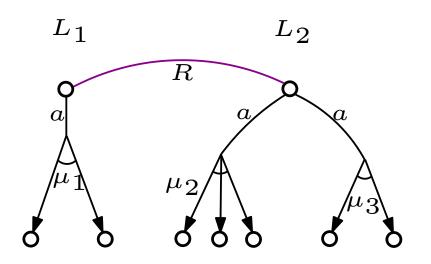


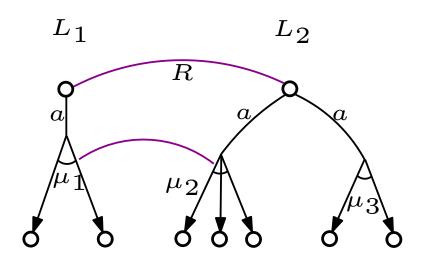


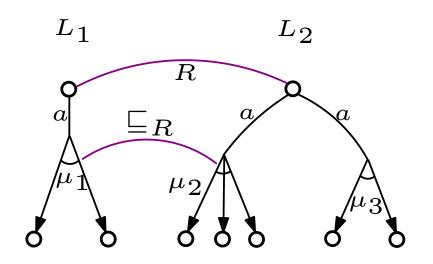


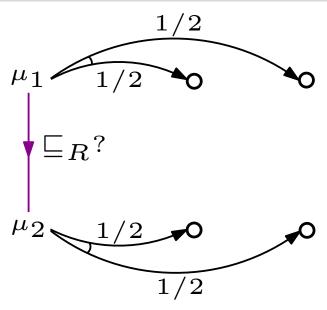




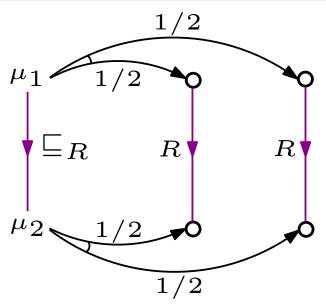


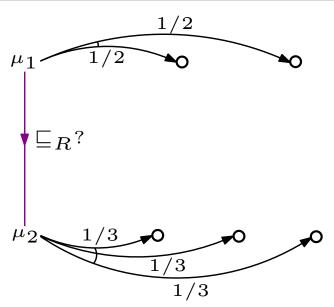




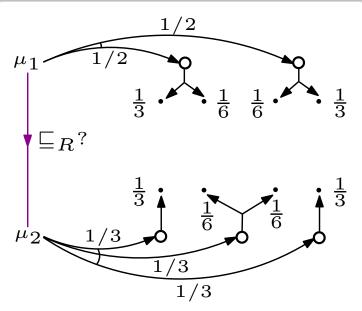


□_R as Matching the Probabilities [Segala and Lynch 1995]

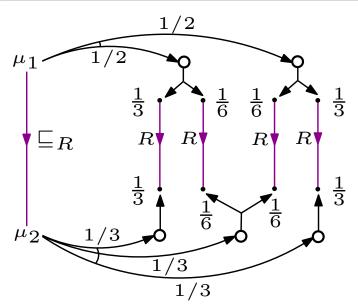




\sqsubseteq_R as Matching the Probabilities [Segala and Lynch 1995]



□_R as Matching the Probabilities [Segala and Lynch 1995]



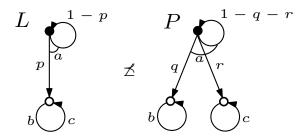
- $s_1 \leq s_2$ iff there is a strong simulation R with s_1Rs_2 .
- ullet is a preorder (reflexive and transitive).

- $s_1 \leq s_2$ iff there is a strong simulation R with s_1Rs_2 .
- $\bullet \ \preceq$ is a preorder (reflexive and transitive).
- $L_1 \leq L_2 \text{ iff } s_1^0 \leq s_2^0.$

- $s_1 \leq s_2$ iff there is a strong simulation R with s_1Rs_2 .
- ullet is a preorder (reflexive and transitive).
- $L_1 \leq L_2 \text{ iff } s_1^0 \leq s_2^0$.
- Decidable in poly-time [Baier et al. 2000, Zhang 2008].

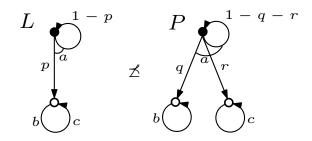
When $L \prec P$ fails...

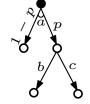
A tree counterexample C can be found such that $C \leq L$ and $C \nleq P$ [Komuravelli et al. CAV 2012].



When $L \leq P$ fails...

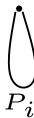
A tree counterexample C can be found such that $C \leq L$ and $C \nleq P$ [Komuravelli et al. CAV 2012].



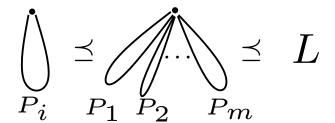


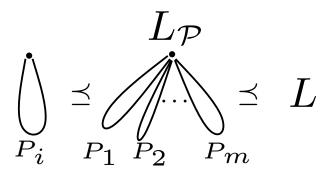
Question 1 How to automatically infer a *H* consistent with all the counterexamples?

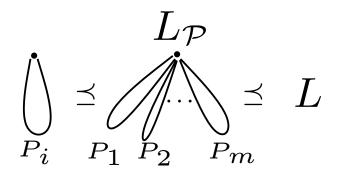
Question 2 Will the sequence of hypotheses converge?



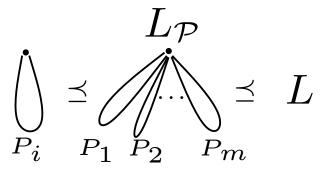
$$\preceq$$
 L



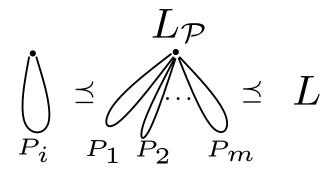




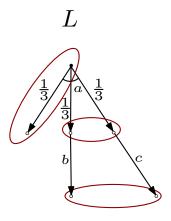
$$N \not \leq L \Longrightarrow N \not \leq L_{\mathcal{P}}$$

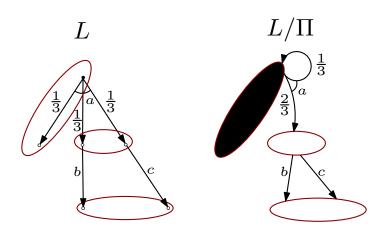


 $H = L_{\mathcal{P}}$?

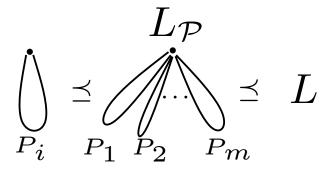


 $H = L_{\mathcal{P}}$? NO!





Recall...



• $L_{\mathcal{P}} \leq L$.

• $L_P \leq L$. Let *R* be a strong simulation between them.

- $L_P \leq L$. Let R be a strong simulation between them.
- Consider $s_1 T s_2$ iff $R(s_1) = R(s_2)$.
- T induces a partition Π.

- $L_P \leq L$. Let *R* be a strong simulation between them.
- Consider $s_1 T s_2$ iff $R(s_1) = R(s_2)$.
- T induces a partition Π.
- $L_P \leq L_P/\Pi \leq L$.

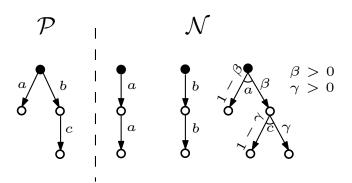
- $L_P \leq L$. Let R be a strong simulation between them.
- Consider $s_1 T s_2$ iff $R(s_1) = R(s_2)$.
- T induces a partition Π.
- $L_P \leq L_P/\Pi \leq L$.
- Exponentially many equivalence classes.

The Algorithm Find the *least-sized* partition Π such that L_P/Π is consistent!

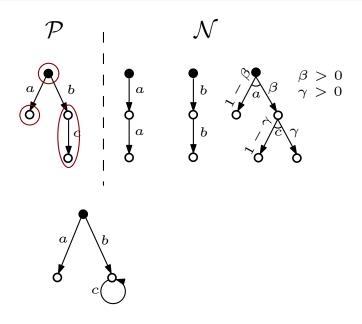
The Algorithm Find the *least-sized* partition Π such that L_P/Π is consistent!

Can be exponentially worse than the best.

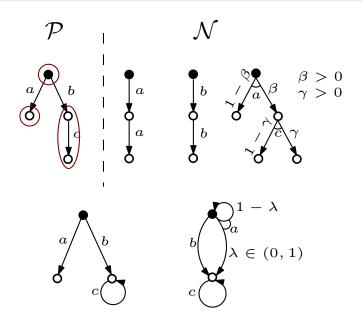
How good are Partitions?



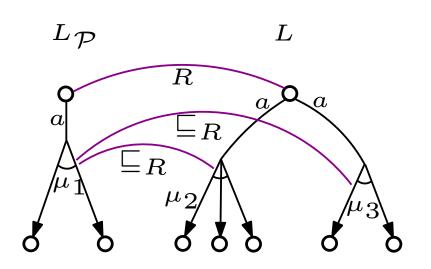
How good are Partitions?

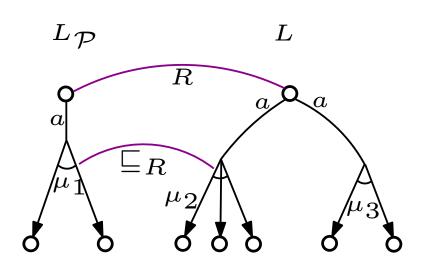


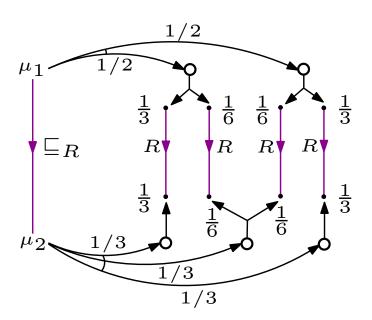
How good are Partitions?

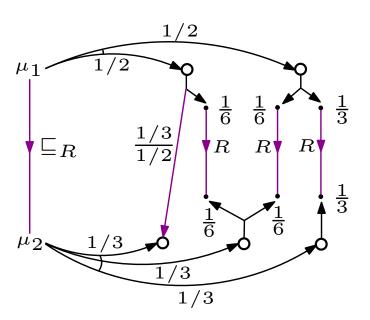


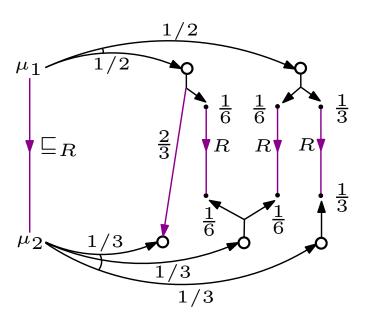
$$L_{\mathcal{P}} \leq H \leq L$$
.



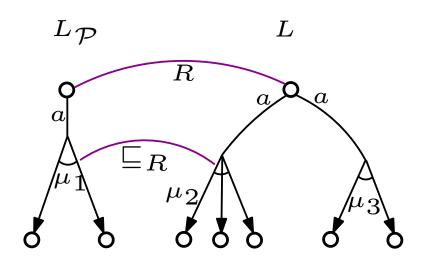


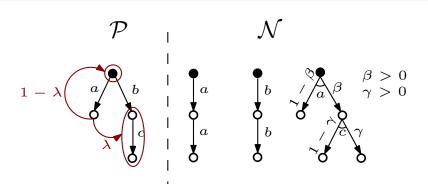


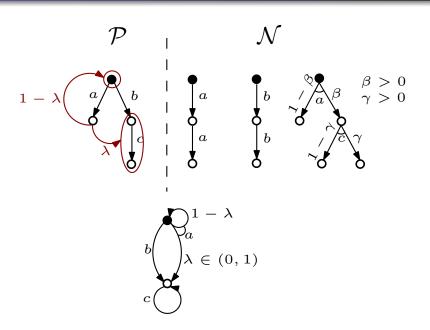












The Algorithm Find the *least-sized* stochastic partition Π such that L_P/Π is consistent!

The Algorithm Find the *least-sized* stochastic partition Π such that $L_{\mathcal{P}}/\Pi$ is consistent!

Optimal algorithm!

Learning a Consistent LPTS

Is there a consistent (stochastic) partition of L_P of size at most k?

Learning a Consistent LPTS

Is there a consistent (stochastic) partition of $L_{\mathcal{P}}$ of size at most k?

Reduction to Satisfiability over Linear Rational Arithmetic.

Question 1 How to automatically infer a *H* consistent with all the counterexamples? ✓

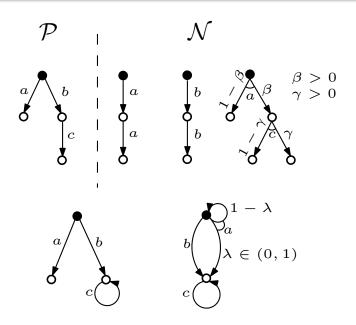
Question 1 How to automatically infer a *H* consistent with all the counterexamples? ✓

Question 2 Will the sequence of hypotheses converge?

Partition-based approach guarantees termination.

Partition-based approach guarantees termination.

If every conjecture should be of the least number of states, learning \boldsymbol{U} is undecidable.



Partition-based approach guarantees termination.

When stochastic partitions are used, the sequence of hypotheses need not converge.

Stochastic Partitions give a semi-algorithm for learning an LPTS.

Question 1 How to automatically infer a *H* consistent with all the counterexamples? ✓

Question 2 Will the sequence of hypotheses converge? ✓

- Two algorithms for learning consistent LPTSes from stochastic tree samples - using Partitions and Stochastic Partitions.
- Decidability results for learning an unknown LPTS.
- Applications to Assume-Guarantee Reasoning.

Future Directions

 Alternatives for the teacher? More than tree counterexamples?

- Alternatives for the teacher? More than tree counterexamples?
- How useful is minimum number of states? Perhaps, one should also consider the transitions and probabilities in the size?

- Alternatives for the teacher? More than tree counterexamples?
- How useful is minimum number of states? Perhaps, one should also consider the transitions and probabilities in the size?
- Weak Simulation, instead of Strong Simulation.

- Alternatives for the teacher? More than tree counterexamples?
- How useful is minimum number of states? Perhaps, one should also consider the transitions and probabilities in the size?
- Weak Simulation, instead of Strong Simulation.
 No known algorithm for LPTSes yet to decide Weak Simulation!

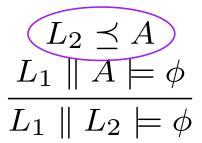
- Alternatives for the teacher? More than tree counterexamples?
- How useful is minimum number of states? Perhaps, one should also consider the transitions and probabilities in the size?
- Weak Simulation, instead of Strong Simulation.
 No known algorithm for LPTSes yet to decide Weak Simulation!
- New applications?

Preserved by Strong Simulation [Chadha and Viswanathan 2010].

 $L_1 \leq L_2$ implies for all weak-safe ϕ , $L_2 \models \phi$ implies $L_1 \models \phi$.

$$\frac{L_2 \preceq A}{L_1 \parallel A \models \phi}$$

$$\frac{L_1 \parallel L_2 \models \phi}{L_1 \parallel L_2 \models \phi}$$



$$\frac{\langle \top \rangle L_2 \langle A \rangle_{\geq p_A}}{\langle A \rangle_{\geq p_A} L_1 \langle G \rangle_{\geq p_G}}$$
$$\frac{\langle A \rangle_{\geq p_A} L_1 \langle G \rangle_{\geq p_G}}{\langle \top \rangle L_1 \parallel L_2 \langle G \rangle_{\geq p_G}}$$

$$\frac{\langle \top \rangle L_2 \langle A \rangle_{\geq p_A}}{\langle A \rangle_{\geq p_A} L_1 \langle G \rangle_{\geq p_G}}$$
$$\frac{\langle A \rangle_{\geq p_A} L_1 \langle G \rangle_{\geq p_G}}{\langle \top \rangle L_1 \parallel L_2 \langle G \rangle_{\geq p_G}}$$

Incomplete!

$$\frac{\langle \top \rangle L_2 \langle A \rangle}{\langle A \rangle L_1 \langle G \rangle_{\geq p_G}}$$
$$\frac{\langle A \rangle L_1 \langle G \rangle_{\geq p_G}}{\langle \top \rangle L_1 \parallel L_2 \langle G \rangle_{> p_G}}$$

$$\frac{L_2 \preceq A}{\langle A \rangle L_1 \langle G \rangle_{\geq p_G}}$$
$$\frac{\langle A \rangle L_1 \| L_2 \langle G \rangle_{\geq p_G}}{\langle \top \rangle L_1 \| L_2 \langle G \rangle_{\geq p_G}}$$

$$\frac{(L_2 \preceq A)}{\langle A \rangle L_1 \langle G \rangle_{\geq p_G}}$$

$$\frac{\langle T \rangle L_1 \parallel L_2 \langle G \rangle_{\geq p_G}}{\langle T \rangle L_1 \parallel L_2 \langle G \rangle_{\geq p_G}}$$