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“Six essential alterations in cell

physiology that collectively
dictate malignant growth.”

D. Hanahan and R. A. Weinberg
Cell, Vol. 100, 57-70, January 7, 2000
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The Hallmarks of Cancer
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The Cell Integrated Circuit (?)
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This Work

2010: the “integrated circuit of the cell” still not in sight ...

But computational models can compare qualitatively well
with experiments.

We use the BioNetGen language (http.//bionetgen.org) to
describe signaling pathways important in many cancers:

* We focus on the HMGB1 protein and the p53, NFkB, RAS and Rb
signaling pathways
We use statistical model checking to formally verify
behavioral properties expressed in temporal logic:
= Can express quantitative properties of systems

= Scalable, can deal with large models
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" Inresting cells kB is
found only in the
cytoplasm, bound to
NFkB

* HMGB1 can break the
complex and liberate
NFkB

= NFkB enters the
nucleus ...
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The Rb-E2F pathway is
important in the cell cycle

It requlates the G1-S transition
Rb keeps E2F in a complex

HMGB1 can break it and
liberate E2F

E2F activates the transcription
of CyclinE ...
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44 molecular species
82 reactions
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BioNetGen.org

* Rule-based modeling for biochemical systems

* Ordinary Differential Equations and Stochastic simulation
(Gillespie’s algorithm)

= Example: AKT has a component named d which can be
labeled as U (unphosphorylated) or p (phosphorylated)

begin species begin parameters
AKT (d~U) leb k 1.2e-7
AKT (d~p) 0 d 1.2e-2

end species end parameters

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems
with BioNetGen. In Methods in Molecular Biology: Systems Biology, (2009).



BioNetGen.org

* PIP3 can phosphorylate AKT, and dephosphorylation of AKT

begin reaction_rules
PIP(c~p) + AKT (d~U) — PIP(c~p) + AKT (d~p) k
AKT (d~p) — AKT (d~U) d
end reaction _rules

* The corresponding ODE (assuming AKT+AKTp=const) is:
AKTp(t) = k-PIP3(t)-AKT(t) — d-AKTp(t)
* The propensity functions for Gillespie’s algorithm are:

K-[PIP(c~p)]:[AKT(d~U)]
d-[AKT(d~p)]



Verification of BioNetGen Models

Temporal properties over the model’s stochastic evolution

For example: “does AKTp reach 4,000 within 20 minutes,
with probability at least 0.997"

In our formalism, we write:
P.oq0 (F? (AKTp 2 4,000))

For a property @ and a fixed 0<6<7, we ask whether
P,,(®) or P_(®)



Equivalently

= A biased coin (Bernoulli random variable):
* Prob (Head) =p Prob (Tail) = 1-p

" pis unknown

= Question: Is p =2 6 ? (for a fixed 0<6<17)

= A solution: flip the coin a number of times, collect the
outcomes, and use:

= Statistical hypothesis testing: returns yes/no
= Statistical estimation: returns “p in (a,b)” (and compare a with 6)



Statistical Model Checking

Key idea

" Suppose system behavior w.r.t. a (fixed) property @ can be
modeled by a Bernoulli random variable of parameter p:

» System satisfies @ with (unknown) probability p

= Question: P, (®)? (for a fixed 0<6<7)

* Draw a sample of system simulations and use:
= Statistical hypothesis testing: Null vs. Alternative hypothesis

Hy: M= Pso(¢) Hi: M Pey(9)

= Statistical estimation: returns “p in (a,b)” (and compare a with 6)



Motivation

* Pros: Simulation is feasible for many systems

= Often easier to simulate a complex system than to build the
transition relation for it

= Easier to parallelize

= Cons: answers may be wrong

= But error probability can be bounded



Our Approach

Statistical Model Checking of biochemical models: M = P, (®)?

Statistical Model Checker

BioNetGen
Model M = P,,(P) 4
Stochastic : Statistical
simulation J Test
AP, (@)
e 1 Error
probability
Formula

monitor ——— Temporal
property @




Sequential Bayesian Statistical MC - |

X = (z1,...,%,) a sample of Bernoulli random variables

Prior probabilities P(H,), P(H.) strictly positive, sum to 1
Posterior probability (Bayes Theorem [1763])

P(X|Hy)P(Hy)
P(X)

P(Ho|X) =

for P(X) >0
Ratio of Posterior Probabilities:
P(Hy|X) P(X|Hy) P(Hp)

P(H,|X) ~ P(X|H,) P(H)

Bayes Factor




Sequential Bayesian Statistical MC - |l

B — P(X|Hop)

Recall the Bayes factor P(X[H:)

Jeffreys’ [1960s] suggested the Bayes factor as a statistic:
* For fixed sample sizes
= For example, a Bayes factor greater than 100 “strongly supports” H,

* We introduce a sequential version of Jeffrey’s test

Fix threshold T = 1 and prior probability.
Continue sampling until

» Bayes Factor > T: Accept H,
= Bayes Factor < 1/T: Reject H,



Sequential Bayesian Statistical MC - lli

Require: Property P.,(®), Threshold T = 1, Prior density g

n:=0 {number of traces drawn so far}
x:=0 {number of traces satisfying ®@ so far}
repeat

o .= draw a sample trace from BioNetGen (iid)

n:=n+1

if oF @ then

xX:=x+1
endif

B := BayesFactor(n, x, 6, g)
until (B>T vB< 1/T)
if (B> T)then
return “H, accepted”
else

return “H, rejected”
ancdvf



Correctness

Theorem (Termination). The Sequential Bayesian Statistical MC
algorithm terminates with probability one.

Theorem (Error bounds). When the Bayesian algorithm — using
threshold T — stops, the following holds:

Prob ("accept H,” | H,) <1/T
Prob (“reject H," | H,)) = 1/T

Note: bounds independent from the prior distribution.

[Zuliani, Platzer, Clarke — HSCC 2010]



Bounded Linear Temporal Logic

Bounded Linear Temporal Logic (BLTL): Extension of LTL
with time bounds on temporal operators.

Leto= (s, t), (s, t,), . .. be an execution of the model

= along states s, s, . ..
= the system stays in state s, for time t,

= divergence of time: Z. ¢, diverges (i.e., non-zeno)

o'. Execution trace starting at state .

A model for BioNetGen simulation traces



Semantics of BLTL

The semantics of BLTL for a trace o*:

= OF ap iIff atomic proposition ap true in state s,
» OFFE P, v P, iff ok @, or o,
= g iff 0% @® does not hold
= ok @, Ut @, iff there exists natural j such that
1) ok = D,
2) 2t st

3) foreachO<j<i o0 @,

“within time ¢, @, will be true and @, will hold until then”

m s AnAartiAaiilar Lt 7N — $09:.A~ 1 It 7D M N — [ —r



Simulations

Oscillations of NFkB and IKK in response to HMGB1
release: ODE vs stochastic simulation
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Verification

* Coding oscillations of NFkB in temporal logic
" et R be the fraction of NFkB molecules in the nucleus

= \WWe model checked the formula
P..o FI(R20.65&F (R<0.2&F!'(R=20.2 &F!(R <0.2))))

* The formula codes four changes in the value of R, which
must happen in consecutive time intervals of maximum
length t

* Note: the intervals need not be of the same length



Verification

= Statistical model checking
* T=1000, uniform prior, Intel Xeon 3.2GHz
P..o FI(R20.65&F (R<0.2&F!'(R=20.2&F!(R <0.2))))

Result Time (s)

102 45 13 False 76.77
102 60 22 True 111.76
102 75 104 True 728.65

10° 30 4 False 5.76




Verification

= HMGB1 can activate PI3K, RAS and AKT in large
guantities

= | et PI3Kr, RASr, and IKKr be the fraction of activated
molecules of PI3K, RAS, and IKK, respectively

= \We model checked the formula:

P.,o F1G'" (PI3Kr > 0.9 & RASr> 0.8 & IKKr> 0.6 )

t (min) samples result time (s)
90 9 False 21.27
110 38 True 362.19

120 22 True 214.38



Conclusions

Computational modeling is feasible for large models
Temporal logic can be used to express behavioral properties

Statistical Model Checking allows efficient and automatic
verification of behavioral properties

Modeling compares qualitatively well with experiments

Further work:
" parameter estimation
" importance sampling
" multi-scale systems
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The Cell Cycle

G,: resting, non-proliferating state

G,: cell is active and continuously
growing, but no DNA replication

S (synthesis): DNA replication

G,: continue cell growth and
synthesize proteins

M (mitosis): cell divides into two
cells

The Biology of Cancer. R. A. Weinberg, 2006.



Bayesian Statistics

Three ingredients:

1. Prior probability

= Models our initial (a priori) uncertainty/belief about
parameters (what is Prob(p = 6) ?)

1. Likelihood function

= Describes the distribution of data (e.g., a sequence of
heads/tails), given a specific parameter value

1. Bayes Theorem

= Revises uncertainty upon experimental data - compute
Prob(p = 6 | data)



Sequential Bayesian Statistical MC

Model Checking Hp : M

— P>9(¢) Hl : M

= P<g(9)

Suppose M satisfies @ with (unknown) probability p
= pis given by a random variable (defined on [0,1]) with density g
* g represents the prior belief that M satisfies @

Generate independent and identically distributed (iid)

sample traces.

x: the i sample trace O satisfies ¢

= x,=1iff O3 = ¢

. x=0iff Oi =@

Then, x; will be a Bernoulli trial with conditional density

(likelihood function)

fixlu) = uv(1 — y)1-x



Computing the Bayes Factor - |

Definition: Bayes Factor of sample X and hypotheses H,, H, is
joint (conditional) density of
independent samples

P(Ho|X) P(H1) _ [y flei]u)f(znlu)g(u) du  1-xg
P(H1|X)  P(Ho) — [7 f(zi|u)f(zn|u)-g(u) du 70

« m = P(Hy) = [, g(w)du prior g is Beta of parameters a>0, 8>0

g(u) = B(olé,g) ua_l(l — u)ﬁ_l

B(a, 8) = fol ta_l(l - t)ﬂ_l dt



Computing the Bayes Factor - I

Proposition
The Bayes factor of H M= P,,(®) vs H:M = P_,(®) forn
Bernoulli samples (with x<n successes) and prior Beta(a,8)

1 — 70 < 1 >
B = : —1
7o Flaota,n—a+8) (0)

where F_(-) is the Beta distribution function.

0 zta— n—x+0—
F(a:—l—oz,n—zc—l—ﬁ) <0) — B(ac—l—oz,}z—:c—l—ﬁ) fO '™ 1(1 - U) L du

* No need of integration when computing the Bayes factor
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