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The Hallmarks of Cancer

D. Hanahan and R. A. Weinberg
Cell, Vol. 100, 57–70, January 7, 2000

“Six essential alterations in cell 
physiology that collectively 
dictate malignant growth.”
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The Hallmarks of Cancer

D. Hanahan and R. A. Weinberg
Cell, Vol. 100, 57–70, January 7, 2000

 All cancers share the 
six alterations.

 The way the alterations 
are acquired varies, 
both mechanistically 
and chronologically.

 Can we formalize the 
acquisition processes?

 Is there an “integrated 
circuit of the cell”?
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The Cell Integrated Circuit (?)

D. Hanahan and R. A. Weinberg
Cell, Vol. 100, 57–70, January 7, 2000

Completed by 2020?



 2010: the “integrated circuit of the cell” still not in sight …

 But computational models can compare qualitatively well 
with experiments.

 We use the BioNetGen language (http://bionetgen.org) to 
describe signaling pathways important in many cancers:

 We focus on the HMGB1 protein and the p53, NFkB, RAS and Rb 
signaling pathways

 We use statistical model checking to formally verify 
behavioral properties expressed in temporal logic:

 Can express quantitative properties of systems

 Scalable, can deal with large models
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This Work



Signaling Pathways

p53-MDM2 and 
PI3K-AKT pathways

RAS-ERK pathway

Rb-E2F pathway

NFkB pathway

HMGB1





 In resting cells IkB is 
found only in the 
cytoplasm, bound to 
NFkB

 HMGB1 can break the 
complex and liberate 
NFkB

 NFkB enters the 
nucleus …



 The Rb-E2F pathway is 
important in the cell cycle

 It regulates the G1-S transition

 Rb keeps E2F in a complex

 HMGB1 can break it and 
liberate E2F

 E2F activates the transcription 
of CyclinE …



44 molecular species
82 reactions



BioNetGen.org

 Rule-based modeling for biochemical systems

 Ordinary Differential Equations and Stochastic simulation 
(Gillespie’s algorithm)

 Example: AKT has a component named d which can be 
labeled as U (unphosphorylated) or p (phosphorylated)

begin species begin parameters

AKT(d~U) 1e5      k 1.2e-7

AKT(d~p) 0 d 1.2e-2

end species end parameters

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems 
with BioNetGen. In Methods in Molecular Biology: Systems Biology, (2009).



BioNetGen.org

 PIP3 can phosphorylate AKT, and dephosphorylation of AKT

begin reaction_rules

PIP(c~p) + AKT(d~U) → PIP(c~p) + AKT(d~p) k

AKT(d~p) → AKT(d~U) d

end reaction_rules

 The corresponding ODE (assuming AKT+AKTp=const) is:

AKTp(t)' =  k∙PIP3(t)∙AKT(t) – d∙AKTp(t)

 The propensity functions for Gillespie’s algorithm are:

k∙[PIP(c~p)]∙[AKT(d~U)]

d∙[AKT(d~p)]



Verification of BioNetGen Models

 Temporal properties over the model’s stochastic evolution

 For example: “does AKTp reach 4,000 within 20 minutes, 
with probability at least 0.99?”

 In our formalism, we write:

P≥0.99 (F20 (AKTp ≥ 4,000))

 For a property Ф and a fixed 0<θ<1, we ask whether

P≥θ (Ф) or   P<θ (Ф)



 A biased coin (Bernoulli random variable):

 Prob (Head) = p Prob (Tail) = 1-p

 p is unknown

 Question: Is p ≥ θ ? (for a fixed 0<θ<1)

 A solution: flip the coin a number of times, collect the 
outcomes, and use:
 Statistical hypothesis testing: returns yes/no
 Statistical estimation: returns “p in (a,b)” (and compare a with θ)

Equivalently



Statistical Model Checking

Key idea
 Suppose system behavior w.r.t. a (fixed) property Ф can be 

modeled by a Bernoulli random variable of parameter p:

 System satisfies Ф with (unknown) probability p

 Question: P≥θ (Ф)? (for a fixed 0<θ<1) 

 Draw a sample of system simulations and use:
 Statistical hypothesis testing: Null vs. Alternative hypothesis

 Statistical estimation: returns “p in (a,b)” (and compare a with θ)



Motivation

 Pros: Simulation is feasible for many systems

 Often easier to simulate a complex system than to build the 
transition relation for it

 Easier to parallelize

 Cons: answers may be wrong

 But error probability can be bounded



Statistical Model Checking of biochemical models: M╞═ P≥θ(Φ)?

Model M
Stochastic 
simulation

BioNetGen
Statistical Model Checker

Temporal 
property Φ

Formula 
monitor

M╞═ P≥θ (Φ)

Statistical 
    Test

M╞═ P≥θ (Φ)

Our Approach

Error 
probability



                            a sample of Bernoulli random variables

 Prior probabilities P(H0), P(H1) strictly positive, sum to 1

 Posterior probability (Bayes Theorem [1763])

for P(X) > 0

 Ratio of Posterior Probabilities:

Bayes Factor

Sequential Bayesian Statistical MC - I



 Recall the Bayes factor

 Jeffreys’ [1960s] suggested the Bayes factor as a statistic:
 For fixed sample sizes 

 For example, a Bayes factor greater than 100 “strongly supports” H0

 We introduce a sequential version of Jeffrey’s test

 Fix threshold T ≥ 1 and prior probability.                   
Continue sampling until

 Bayes Factor > T: Accept H0

 Bayes Factor < 1/T: Reject H0

Sequential Bayesian Statistical MC - II



Require: Property P≥θ(Φ), Threshold T ≥ 1, Prior density g
n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying Φ so far}
repeat

σ := draw a sample trace from BioNetGen (iid)
n := n + 1
if  σ     Φ  then

x := x + 1
endif
B := BayesFactor(n, x, θ, g)

until (B > T  v B < 1/T )
if (B > T ) then

return “H0 accepted”
else

return “H0 rejected”
endif

Sequential Bayesian Statistical MC - III



Correctness

Theorem (Termination). The Sequential Bayesian Statistical MC 
algorithm terminates with probability one.

Theorem (Error bounds). When the Bayesian algorithm – using 
threshold T – stops, the following holds:

Prob (“accept H0” | H1)  ≤ 1/T

Prob (“reject H0” | H0)  ≤ 1/T

Note: bounds independent from the prior distribution.

 [Zuliani, Platzer, Clarke – HSCC 2010]



 Bounded Linear Temporal Logic (BLTL): Extension of LTL 
with time bounds on temporal operators.

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

 along states s0, s1, . . .

 the system stays in state si for time ti

 divergence of time: Σi ti  diverges (i.e., non-zeno)

 σi: Execution trace starting at state i.

 A model for BioNetGen simulation traces

Bounded Linear Temporal Logic



The semantics of BLTL for a trace σk:

 σk     ap  iff atomic proposition ap true in state sk

 σk     Φ1 v Φ2  iff  σk    Φ1 or σk    Φ2

 σk    ¬Φ  iff  σk    Φ does not hold

 σk     Φ1 Ut Φ2  iff  there exists natural i such that

1)  σk+i     Φ2 

2)  Σj<i tk+j ≤ t

3)  for each 0 ≤ j < i, σk+j     Φ1

“within time t, Φ2  will be true and Φ1 will hold until then”

 In particular, Ft Φ = true Ut Φ,  Gt Φ = ¬Ft ¬Φ

Semantics of BLTL



Simulations

 Oscillations of NFkB and IKK in response to HMGB1 
release: ODE vs stochastic simulation



Verification

 Coding oscillations of NFkB in temporal logic

 Let R be the fraction of NFkB molecules in the nucleus

 We model checked the formula

P≥0.9 Ft (R ≥ 0.65 & Ft (R < 0.2 & Ft (R ≥ 0.2 & Ft (R <0.2))))

 The formula codes four changes in the value of R, which 
must happen in consecutive time intervals of maximum 
length t

 Note: the intervals need not be of the same length



Verification

 Statistical model checking

 T=1000, uniform prior, Intel Xeon 3.2GHz

P≥0.9 Ft (R ≥ 0.65 & Ft (R < 0.2 & Ft (R ≥ 0.2 & Ft (R <0.2))))

HMGB1 t (min) Samples Result Time (s)

102 45 13 False 76.77

102 60 22 True 111.76

102 75 104 True 728.65

105 30 4 False 5.76



Verification

 HMGB1 can activate PI3K, RAS and AKT in large 
quantities

 Let PI3Kr, RASr, and IKKr be the fraction of activated 
molecules of PI3K, RAS, and IKK, respectively

 We model checked the formula:

P≥0.9 Ft G180 (PI3Kr > 0.9 & RASr > 0.8 &  IKKr > 0.6 )

t (min) samples result time (s)

90 9 False 21.27

110 38 True 362.19

120 22 True 214.38



Conclusions

 Computational modeling is feasible for large models

 Temporal logic can be used to express behavioral properties

 Statistical Model Checking allows efficient and automatic 
verification of behavioral properties

 Modeling compares qualitatively well with experiments

 Further work: 
 parameter estimation
 importance sampling
 multi-scale systems
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The Cell Cycle

 G0: resting, non-proliferating state

 G1: cell is active and continuously 
growing, but no DNA replication

 S (synthesis): DNA replication

 G2: continue cell growth and 
synthesize proteins

 M (mitosis): cell divides into two 
cells

The Biology of Cancer. R. A. Weinberg, 2006.



Bayesian Statistics

Three ingredients:

1. Prior probability
 Models our initial (a priori) uncertainty/belief about 

parameters (what is Prob(p ≥ θ) ?)

1. Likelihood function
 Describes the distribution of data (e.g., a sequence of 

heads/tails), given a specific parameter value

1. Bayes Theorem
 Revises uncertainty upon experimental data - compute 

Prob(p ≥ θ | data) 



Sequential Bayesian Statistical MC

 Model Checking

 Suppose      satisfies     with (unknown) probability p
 p is given by a random variable (defined on [0,1]) with density g

 g represents the prior belief that       satisfies    

 Generate independent and identically distributed (iid) 
sample traces.

 xi: the ith sample trace    satisfies    

 xi = 1 iff 

 xi = 0 iff

 Then, xi will be a Bernoulli trial with conditional density 
(likelihood function)

f(xi|u) = uxi(1 − u)1-xi



Definition: Bayes Factor of sample X and hypotheses H0, H1 is

                                    prior g is Beta of parameters α>0, β>0

joint (conditional) density of 
independent samples

Computing the Bayes Factor - I



Proposition 

The Bayes factor of  H0:M╞═ P≥θ (Φ)  vs  H1:M╞═ P<θ (Φ)  for n 
Bernoulli samples (with x≤n successes) and prior Beta(α,β)

where F(∙,∙)(∙) is the Beta distribution function.

 No need of integration when computing the Bayes factor

Computing the Bayes Factor - II
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