Computational Modeling and Verification of Signaling Pathways in Cancer

Haijun Gong*, Paolo Zuliani*, Anvesh Komuravelli*, James R. Faeder[#], Edmund M. Clarke^{*}

*Computer Science Department, Carnegie Mellon University #School of Medicine, University of Pittsburgh

The Hallmarks of Cancer

The Hallmarks of Cancer

- All cancers share the six alterations.
- The way the alterations are acquired varies, both mechanistically and chronologically.
- Can we formalize the acquisition processes?
- Is there an "integrated circuit of the cell"?

D. Hanahan and R. A. Weinberg Cell, Vol. 100, 57–70, January 7, 2000

The Cell Integrated Circuit (?)

This Work

- 2010: the "integrated circuit of the cell" still not in sight ...
- But computational models can compare qualitatively well with experiments.
- We use the BioNetGen language (*http://bionetgen.org*) to describe signaling pathways important in many cancers:
 - We focus on the HMGB1 protein and the p53, NFkB, RAS and Rb signaling pathways
- We use statistical model checking to formally verify behavioral properties expressed in temporal logic:
 - Can express quantitative properties of systems
 - Scalable, can deal with large models

Signaling Pathways

- Rule-based modeling for biochemical systems
- Ordinary Differential Equations and Stochastic simulation (Gillespie's algorithm)
- Example: AKT has a component named d which can be labeled as U (unphosphorylated) or p (phosphorylated)

begin species		begin parameters	
AKT (d~U)	1e5	k	1.2e-7
AKT(d~p)	0	d	1.2e-2
end species		end parameters	

Faeder JR, Blinov ML, Hlavacek WS **Rule-Based Modeling of Biochemical Systems** with **BioNetGen.** In *Methods in Molecular Biology: Systems Biology*, (2009).

PIP3 can phosphorylate AKT, and dephosphorylation of AKT

begin reaction_rules

$$\begin{split} & \text{PIP}(c \sim p) + \text{AKT}(d \sim U) \rightarrow \text{PIP}(c \sim p) + \text{AKT}(d \sim p) & k \\ & \text{AKT}(d \sim p) \rightarrow \text{AKT}(d \sim U) & d \end{split}$$

end reaction_rules

- The corresponding ODE (assuming AKT+AKTp=const) is: AKTp(t)' = k·PIP3(t)·AKT(t) – d·AKTp(t)
- The propensity functions for Gillespie's algorithm are: k·[PIP(c~p)]·[AKT(d~U)] d·[AKT(d~p)]

Verification of BioNetGen Models

- Temporal properties over the model's stochastic evolution
- For example: "does AKTp reach 4,000 within 20 minutes, with probability at least 0.99?"
- In our formalism, we write:

• For a property Φ and a fixed $0 < \theta < 1$, we ask whether

$$\mathsf{P}_{\geq_{\theta}}(\Phi) \quad \text{ or } \quad \mathsf{P}_{<_{\theta}}(\Phi)$$

Equivalently

- A biased coin (Bernoulli random variable):
 - Prob (Head) = p Prob (Tail) = 1-p
 - *p* is unknown
- Question: Is $p \ge \theta$? (for a fixed $0 < \theta < 1$)
- A solution: flip the coin a number of times, collect the outcomes, and use:
 - Statistical hypothesis testing: returns yes/no
 - Statistical estimation: returns "p in (a,b)" (and compare a with θ)

Statistical Model Checking

<u>Key idea</u>

- Suppose system behavior w.r.t. a (fixed) property Φ can be modeled by a Bernoulli random variable of parameter p:
 - System satisfies \$\varPhi\$ with (unknown) probability \$p\$
- Question: $P_{\geq \theta}(\Phi)$? (for a fixed $0 < \theta < 1$)
- Draw a sample of system simulations and use:
 - Statistical hypothesis testing: Null vs. Alternative hypothesis $H_0: \mathcal{M} \models P_{\geqslant \theta}(\phi) \qquad H_1: \mathcal{M} \models P_{<\theta}(\phi)$
 - Statistical estimation: returns "p in (a,b)" (and compare a with θ)

- Pros: Simulation is feasible for many systems
 - Often easier to simulate a complex system than to build the transition relation for it
 - Easier to parallelize
- Cons: answers may be wrong
 - But error probability can be bounded

Our Approach

Statistical Model Checking of biochemical models: $\mathbf{M} \models P_{\geq \theta}(\Phi)$?

Sequential Bayesian Statistical MC - I

- $X = (x_1, \ldots, x_n)$ a sample of Bernoulli random variables
- Prior probabilities $P(H_0)$, $P(H_1)$ strictly positive, sum to 1
- Posterior probability (Bayes Theorem [1763])

$$P(H_0|X) = \frac{P(X|H_0)P(H_0)}{P(X)}$$

for P(X) > 0

Ratio of Posterior Probabilities:

$$\frac{P(H_0|X)}{P(H_1|X)} = \frac{P(X|H_0)}{P(X|H_1)} \cdot \frac{P(H_0)}{P(H_1)}$$

Bayes Factor

Sequential Bayesian Statistical MC - II

- Recall the Bayes factor $B = \frac{P(X|H_0)}{P(X|H_1)}$
- Jeffreys' [1960s] suggested the Bayes factor as a statistic:
 - For fixed sample sizes
 - For example, a Bayes factor greater than 100 "strongly supports" H_o
- We introduce a sequential version of Jeffrey's test
- Fix threshold $T \ge 1$ and prior probability. Continue sampling until
 - Bayes Factor > T: Accept H_o
 - Bayes Factor < 1/T: Reject H_o

Sequential Bayesian Statistical MC - III

<u>Require</u>: Property $P_{\geq \theta}(\Phi)$, Threshold $T \geq 1$, Prior density g

- n := 0 {number of traces drawn so far}
- x := 0 {number of traces satisfying Φ so far}
- repeat
 - $\sigma := draw a sample trace from BioNetGen (iid)$ <math>n := n + 1
 - if $\sigma \models \phi$ then
 - x := x + 1
 - endif
 - B := BayesFactor(n, x, θ, g)
- until ($B > T \vee B < 1/T$)
- if (B > T) then
 - return "H_o accepted"

else

return "H_o rejected"

ondif

<u>Theorem</u> (Termination). The Sequential Bayesian Statistical MC algorithm terminates with probability one.

<u>Theorem</u> (Error bounds). When the Bayesian algorithm – using threshold T – stops, the following holds:

Prob ("accept H_0 " | H_1) $\leq 1/T$

Prob ("reject H_0 " | H_0) $\leq 1/T$

Note: bounds independent from the prior distribution.

[Zuliani, Platzer, Clarke – HSCC 2010]

Bounded Linear Temporal Logic

- Bounded Linear Temporal Logic (BLTL): Extension of LTL with time bounds on temporal operators.
- Let $\sigma = (s_0, t_0), (s_1, t_1), \dots$ be an execution of the model
 - along states s_0, s_1, \ldots
 - the system stays in state *s_i* for time *t_i*
 - divergence of time: Σ_i t_i diverges (i.e., non-zeno)
- σ^i : Execution trace starting at state *i*.
- A model for BioNetGen simulation traces

Semantics of BLTL

The semantics of BLTL for a trace σ^k :

- $\sigma^k \models ap$ iff atomic proposition ap true in state s_k
- $\sigma^k \models \phi_1 \lor \phi_2$

iff
$$\sigma^k \models \Phi_1$$
 or $\sigma^k \models \Phi_2$

- $\sigma^{k} \models \neg \phi$ iff $\sigma^{k} \models \phi$ does not hold
- $\sigma^{k} \models \phi_{1} \cup \phi_{2}$ iff there exists natural *i* such that 1) $\sigma^{k+i} \models \phi_{2}$
 - 2) $\Sigma_{j \le i} t_{k+j} \le t$
 - 3) for each $0 \le j \le i$, $\sigma^{k+j} = \Phi_1$

"within time t, Φ_2 will be true and Φ_1 will hold until then"

 $\blacksquare In particular F^{\dagger} \phi - true I I^{\dagger} \phi = G^{\dagger} \phi - T^{\dagger} \phi$

Simulations

 Oscillations of NFkB and IKK in response to HMGB1 release: ODE vs stochastic simulation

Verification

- Coding oscillations of NFkB in temporal logic
- Let R be the fraction of NFkB molecules in the nucleus
- We model checked the formula

 $P_{\geq 0.9} \mathbf{F}^{t} (R \geq 0.65 \& \mathbf{F}^{t} (R < 0.2 \& \mathbf{F}^{t} (R \geq 0.2 \& \mathbf{F}^{t} (R < 0.2))))$

- The formula codes four changes in the value of R, which must happen in consecutive time intervals of maximum length t
- Note: the intervals need not be of the same length

Verification

- Statistical model checking
- T=1000, uniform prior, Intel Xeon 3.2GHz

 $\mathsf{P}_{\geq 0.9} \; \mathbf{F}^{t} \left(\mathsf{R} \geq 0.65 \; \& \; \mathbf{F}^{t} \; (\mathsf{R} < 0.2 \; \& \; \mathbf{F}^{t} \; (\mathsf{R} \geq 0.2 \; \& \; \mathbf{F}^{t} \; (\mathsf{R} < 0.2)) \right) \right)$

HMGB1	t (min)	Samples	Result	Time (s)
10 ²	45	13	False	76.77
10 ²	60	22	True	111.76
10 ²	75	104	True	728.65
10 ⁵	30	4	False	5.76

Verification

- HMGB1 can activate PI3K, RAS and AKT in large quantities
- Let PI3Kr, RASr, and IKKr be the fraction of activated molecules of PI3K, RAS, and IKK, respectively
- We model checked the formula:

 $P_{\geq 0.9}$ F^t G¹⁸⁰ (PI3Kr > 0.9 & RASr > 0.8 & IKKr > 0.6)

t (min)	samples	result	time (s)
90	9	False	21.27
110	38	True	362.19
120	22	True	214.38

- Computational modeling is feasible for large models
- Temporal logic can be used to express behavioral properties
- Statistical Model Checking allows efficient and automatic verification of behavioral properties
- Modeling compares qualitatively well with experiments
- Further work:
 - parameter estimation
 - importance sampling
 - multi-scale systems

Acknowledgments

- This work supported by the NSF Expeditions in Computing program
- Thanks to Michael T. Lotze (University of Pittsburgh) for calling our attention to HMGB1
- Thanks to Marco E. Bianchi (Università San Raffaele) for discussions on HMGB1

The Cell Cycle

- G₀: resting, non-proliferating state
- G₁: cell is active and continuously growing, but no DNA replication
- S (synthesis): DNA replication
- G₂: continue cell growth and synthesize proteins
- M (mitosis): cell divides into two cells

The Biology of Cancer. R. A. Weinberg, 2006.

Bayesian Statistics

Three ingredients:

- 1. Prior probability
 - Models our initial (a priori) uncertainty/belief about parameters (what is $Prob(p \ge \theta)$?)
- 1. Likelihood function
 - Describes the distribution of data (*e.g.*, a sequence of heads/tails), given a specific parameter value

1. Bayes Theorem

 Revises uncertainty upon experimental data - compute Prob(*p* ≥ θ | data)

Sequential Bayesian Statistical MC

- Model Checking $H_0: \mathcal{M} \models P_{\geqslant \theta}(\phi)$ $H_1: \mathcal{M} \models P_{<\theta}(\phi)$
- Suppose \mathcal{M} satisfies ϕ with (unknown) probability p
 - *p* is given by a random variable (defined on [0,1]) with density *g*
 - g represents the prior belief that ${\mathcal M}$ satisfies ϕ
- Generate independent and identically distributed (iid) sample traces.
- x_i : the *i*th sample trace σ satisfies ϕ
 - $x_i = 1$ iff $\sigma_i \models \phi$
 - $x_i = 0$ iff $\sigma_i \not\models \phi$
- Then, x_i will be a Bernoulli trial with conditional density (likelihood function)

$$f(x_i|u) = u^{x_i}(1-u)^{1-x_i}$$

Computing the Bayes Factor - I

Definition: Bayes Factor of sample X and hypotheses H_0 , H_1 is joint (conditional) density of independent samples $\frac{P(H_0|X)}{P(H_1|X)} \cdot \frac{P(H_1)}{P(H_0)} = \frac{\int_{\theta}^{1} f(x_1|u) \cdots f(x_n|u) \cdot g(u) \ du}{\int_{0}^{\theta} f(x_1|u) \cdots f(x_n|u) \cdot g(u) \ du} \cdot \frac{1-\pi_0}{\pi_0}$

• $\pi_0 = P(H_0) = \int_{\theta}^{1} g(u) du$ prior g is Beta of parameters $\alpha > 0$, $\beta > 0$ $g(u) = \frac{1}{B(\alpha,\beta)} u^{\alpha-1} (1-u)^{\beta-1}$ $B(\alpha,\beta) = \int_{0}^{1} t^{\alpha-1} (1-t)^{\beta-1} dt$

Computing the Bayes Factor - II

Proposition

The Bayes factor of $H_0: \mathbb{M} \models P_{\geq \theta}(\Phi)$ vs $H_1: \mathbb{M} \models P_{<\theta}(\Phi)$ for *n* Bernoulli samples (with $x \leq n$ successes) and prior Beta(α, β)

$$B = \frac{1 - \pi_0}{\pi_0} \cdot \left(\frac{1}{F_{(x+\alpha, n-x+\beta)}(\theta)} - 1\right)$$

where $F_{(\cdot,\cdot)}(\cdot)$ is the Beta distribution function.

$$F_{(x+\alpha,n-x+\beta)}(\theta) = \frac{1}{B(x+\alpha,n-x+\beta)} \int_0^\theta u^{x+\alpha-1} (1-u)^{n-x+\beta-1} du$$

No need of integration when computing the Bayes factor