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The Hallmarks of Cancer

D. Hanahan and R. A. Weinberg
Cell, Vol. 100, 57–70, January 7, 2000

“Six essential alterations in cell 
physiology that collectively 
dictate malignant growth.”
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The Hallmarks of Cancer

D. Hanahan and R. A. Weinberg
Cell, Vol. 100, 57–70, January 7, 2000

 All cancers share the 
six alterations.

 The way the alterations 
are acquired varies, 
both mechanistically 
and chronologically.

 Can we formalize the 
acquisition processes?

 Is there an “integrated 
circuit of the cell”?
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The Cell Integrated Circuit (?)

D. Hanahan and R. A. Weinberg
Cell, Vol. 100, 57–70, January 7, 2000

Completed by 2020?



 2010: the “integrated circuit of the cell” still not in sight …

 But computational models can compare qualitatively well 
with experiments.

 We use the BioNetGen language (http://bionetgen.org) to 
describe signaling pathways important in many cancers:

 We focus on the HMGB1 protein and the p53, NFkB, RAS and Rb 
signaling pathways

 We use statistical model checking to formally verify 
behavioral properties expressed in temporal logic:

 Can express quantitative properties of systems

 Scalable, can deal with large models
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This Work



Signaling Pathways

p53-MDM2 and 
PI3K-AKT pathways

RAS-ERK pathway

Rb-E2F pathway

NFkB pathway

HMGB1





 In resting cells IkB is 
found only in the 
cytoplasm, bound to 
NFkB

 HMGB1 can break the 
complex and liberate 
NFkB

 NFkB enters the 
nucleus …



 The Rb-E2F pathway is 
important in the cell cycle

 It regulates the G1-S transition

 Rb keeps E2F in a complex

 HMGB1 can break it and 
liberate E2F

 E2F activates the transcription 
of CyclinE …



44 molecular species
82 reactions



BioNetGen.org

 Rule-based modeling for biochemical systems

 Ordinary Differential Equations and Stochastic simulation 
(Gillespie’s algorithm)

 Example: AKT has a component named d which can be 
labeled as U (unphosphorylated) or p (phosphorylated)

begin species begin parameters

AKT(d~U) 1e5      k 1.2e-7

AKT(d~p) 0 d 1.2e-2

end species end parameters

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems 
with BioNetGen. In Methods in Molecular Biology: Systems Biology, (2009).



BioNetGen.org

 PIP3 can phosphorylate AKT, and dephosphorylation of AKT

begin reaction_rules

PIP(c~p) + AKT(d~U) → PIP(c~p) + AKT(d~p) k

AKT(d~p) → AKT(d~U) d

end reaction_rules

 The corresponding ODE (assuming AKT+AKTp=const) is:

AKTp(t)' =  k∙PIP3(t)∙AKT(t) – d∙AKTp(t)

 The propensity functions for Gillespie’s algorithm are:

k∙[PIP(c~p)]∙[AKT(d~U)]

d∙[AKT(d~p)]



Verification of BioNetGen Models

 Temporal properties over the model’s stochastic evolution

 For example: “does AKTp reach 4,000 within 20 minutes, 
with probability at least 0.99?”

 In our formalism, we write:

P≥0.99 (F20 (AKTp ≥ 4,000))

 For a property Ф and a fixed 0<θ<1, we ask whether

P≥θ (Ф) or   P<θ (Ф)



 A biased coin (Bernoulli random variable):

 Prob (Head) = p Prob (Tail) = 1-p

 p is unknown

 Question: Is p ≥ θ ? (for a fixed 0<θ<1)

 A solution: flip the coin a number of times, collect the 
outcomes, and use:
 Statistical hypothesis testing: returns yes/no
 Statistical estimation: returns “p in (a,b)” (and compare a with θ)

Equivalently



Statistical Model Checking

Key idea
 Suppose system behavior w.r.t. a (fixed) property Ф can be 

modeled by a Bernoulli random variable of parameter p:

 System satisfies Ф with (unknown) probability p

 Question: P≥θ (Ф)? (for a fixed 0<θ<1) 

 Draw a sample of system simulations and use:
 Statistical hypothesis testing: Null vs. Alternative hypothesis

 Statistical estimation: returns “p in (a,b)” (and compare a with θ)



Motivation

 Pros: Simulation is feasible for many systems

 Often easier to simulate a complex system than to build the 
transition relation for it

 Easier to parallelize

 Cons: answers may be wrong

 But error probability can be bounded



Statistical Model Checking of biochemical models: M╞═ P≥θ(Φ)?

Model M
Stochastic 
simulation

BioNetGen
Statistical Model Checker

Temporal 
property Φ

Formula 
monitor

M╞═ P≥θ (Φ)

Statistical 
    Test

M╞═ P≥θ (Φ)

Our Approach

Error 
probability



                            a sample of Bernoulli random variables

 Prior probabilities P(H0), P(H1) strictly positive, sum to 1

 Posterior probability (Bayes Theorem [1763])

for P(X) > 0

 Ratio of Posterior Probabilities:

Bayes Factor

Sequential Bayesian Statistical MC - I



 Recall the Bayes factor

 Jeffreys’ [1960s] suggested the Bayes factor as a statistic:
 For fixed sample sizes 

 For example, a Bayes factor greater than 100 “strongly supports” H0

 We introduce a sequential version of Jeffrey’s test

 Fix threshold T ≥ 1 and prior probability.                   
Continue sampling until

 Bayes Factor > T: Accept H0

 Bayes Factor < 1/T: Reject H0

Sequential Bayesian Statistical MC - II



Require: Property P≥θ(Φ), Threshold T ≥ 1, Prior density g
n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying Φ so far}
repeat

σ := draw a sample trace from BioNetGen (iid)
n := n + 1
if  σ     Φ  then

x := x + 1
endif
B := BayesFactor(n, x, θ, g)

until (B > T  v B < 1/T )
if (B > T ) then

return “H0 accepted”
else

return “H0 rejected”
endif

Sequential Bayesian Statistical MC - III



Correctness

Theorem (Termination). The Sequential Bayesian Statistical MC 
algorithm terminates with probability one.

Theorem (Error bounds). When the Bayesian algorithm – using 
threshold T – stops, the following holds:

Prob (“accept H0” | H1)  ≤ 1/T

Prob (“reject H0” | H0)  ≤ 1/T

Note: bounds independent from the prior distribution.

 [Zuliani, Platzer, Clarke – HSCC 2010]



 Bounded Linear Temporal Logic (BLTL): Extension of LTL 
with time bounds on temporal operators.

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

 along states s0, s1, . . .

 the system stays in state si for time ti

 divergence of time: Σi ti  diverges (i.e., non-zeno)

 σi: Execution trace starting at state i.

 A model for BioNetGen simulation traces

Bounded Linear Temporal Logic



The semantics of BLTL for a trace σk:

 σk     ap  iff atomic proposition ap true in state sk

 σk     Φ1 v Φ2  iff  σk    Φ1 or σk    Φ2

 σk    ¬Φ  iff  σk    Φ does not hold

 σk     Φ1 Ut Φ2  iff  there exists natural i such that

1)  σk+i     Φ2 

2)  Σj<i tk+j ≤ t

3)  for each 0 ≤ j < i, σk+j     Φ1

“within time t, Φ2  will be true and Φ1 will hold until then”

 In particular, Ft Φ = true Ut Φ,  Gt Φ = ¬Ft ¬Φ

Semantics of BLTL



Simulations

 Oscillations of NFkB and IKK in response to HMGB1 
release: ODE vs stochastic simulation



Verification

 Coding oscillations of NFkB in temporal logic

 Let R be the fraction of NFkB molecules in the nucleus

 We model checked the formula

P≥0.9 Ft (R ≥ 0.65 & Ft (R < 0.2 & Ft (R ≥ 0.2 & Ft (R <0.2))))

 The formula codes four changes in the value of R, which 
must happen in consecutive time intervals of maximum 
length t

 Note: the intervals need not be of the same length



Verification

 Statistical model checking

 T=1000, uniform prior, Intel Xeon 3.2GHz

P≥0.9 Ft (R ≥ 0.65 & Ft (R < 0.2 & Ft (R ≥ 0.2 & Ft (R <0.2))))

HMGB1 t (min) Samples Result Time (s)

102 45 13 False 76.77

102 60 22 True 111.76

102 75 104 True 728.65

105 30 4 False 5.76



Verification

 HMGB1 can activate PI3K, RAS and AKT in large 
quantities

 Let PI3Kr, RASr, and IKKr be the fraction of activated 
molecules of PI3K, RAS, and IKK, respectively

 We model checked the formula:

P≥0.9 Ft G180 (PI3Kr > 0.9 & RASr > 0.8 &  IKKr > 0.6 )

t (min) samples result time (s)

90 9 False 21.27

110 38 True 362.19

120 22 True 214.38



Conclusions

 Computational modeling is feasible for large models

 Temporal logic can be used to express behavioral properties

 Statistical Model Checking allows efficient and automatic 
verification of behavioral properties

 Modeling compares qualitatively well with experiments

 Further work: 
 parameter estimation
 importance sampling
 multi-scale systems
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The Cell Cycle

 G0: resting, non-proliferating state

 G1: cell is active and continuously 
growing, but no DNA replication

 S (synthesis): DNA replication

 G2: continue cell growth and 
synthesize proteins

 M (mitosis): cell divides into two 
cells

The Biology of Cancer. R. A. Weinberg, 2006.



Bayesian Statistics

Three ingredients:

1. Prior probability
 Models our initial (a priori) uncertainty/belief about 

parameters (what is Prob(p ≥ θ) ?)

1. Likelihood function
 Describes the distribution of data (e.g., a sequence of 

heads/tails), given a specific parameter value

1. Bayes Theorem
 Revises uncertainty upon experimental data - compute 

Prob(p ≥ θ | data) 



Sequential Bayesian Statistical MC

 Model Checking

 Suppose      satisfies     with (unknown) probability p
 p is given by a random variable (defined on [0,1]) with density g

 g represents the prior belief that       satisfies    

 Generate independent and identically distributed (iid) 
sample traces.

 xi: the ith sample trace    satisfies    

 xi = 1 iff 

 xi = 0 iff

 Then, xi will be a Bernoulli trial with conditional density 
(likelihood function)

f(xi|u) = uxi(1 − u)1-xi



Definition: Bayes Factor of sample X and hypotheses H0, H1 is

                                    prior g is Beta of parameters α>0, β>0

joint (conditional) density of 
independent samples

Computing the Bayes Factor - I



Proposition 

The Bayes factor of  H0:M╞═ P≥θ (Φ)  vs  H1:M╞═ P<θ (Φ)  for n 
Bernoulli samples (with x≤n successes) and prior Beta(α,β)

where F(∙,∙)(∙) is the Beta distribution function.

 No need of integration when computing the Bayes factor

Computing the Bayes Factor - II
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