
Connectivity Preserving Transformations for

Higher Dimensional Binary Images

Anvesh Komuravelli

Computer Science and Engineering Department,
Indian Institute of Technology, Kharagpur, Kharagpur-721302, India.

Arnab Sinha

Dept. of Electrical Engineering, Princeton University,
Princeton, New Jersey, USA-08544.

Arijit Bishnu

Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
203 B. T. Road, Kolkata-700108, India.

Abstract

An N -dimensional digital binary image (I) is a function I : Z
N → {0, 1}. I is

B3N
−1,W3N

−1 connected if and only if its black pixels and white pixels are each
(3N − 1)-connected. I is only B3N

−1 connected if and only if its black pixels are
(3N − 1)-connected. For a 3-D binary image, the respective connectivity models are
B26,W26 and B26. A pair of (3N − 1)-neighboring opposite-valued pixels is called
interchangeable in a N -D binary image I, if reversing their values preserves the orig-
inal connectedness. We call such an interchange to be a (3N − 1)-local interchange.
Under the above connectivity models, we show that given two binary images of n

pixels/voxels each, we can transform one to the other using a sequence of (3N − 1)-
local interchanges. The specific results are as follows. Any two B26-connected 3-
dimensional images I and J each having n black voxels are transformable using
a sequence of O((c1 + c2)n

2) 26-local interchanges. Here, c1 and c2 are the total
number of 8-connected components in all 2-dimensional layers of I and J respec-
tively. We also show bounds on B26 connectivity under a different interchange model
as proposed in [3]. Next, we show that any two simply connected images under the
B26,W26 connectivity model and each having n black voxels are transformable using
a sequence of O(n2) 26-local interchanges. We generalize this result to show that any
two B3N

−1,W3N
−1-connected N -dimensional simply connected images each having

n black pixels are transformable using a sequence of O(Nn2) (3N − 1)-local inter-
changes, where N > 1.

Key words: binary image transformation, connectedness, local interchange,
IP-equivalence

Preprint submitted to Elsevier 26 February 2009

1 Introduction

An N -dimensional digital binary image (I) is a function I : Z
N → {0, 1}. We

will denote any element in Z
N by an N -dimensional pixel (d1, d2, . . . , dN). We

will sometimes refer to it as a high dimensional pixel. Particularly, any element
in Z

3 (Z2) is called a voxel (pixel). Any N -dimensional pixel p is black (white)
if I(p) = 1 (I(p) = 0). We consider finitely many black N -dimensional pixels
from Z

N in I.

1.1 Connectivity and Interchange model

We call two pixels (d1, d2, . . . , dN) and (d′

1, d
′

2, . . . , d
′

N) to be (3N−1)-neighbors
if and only if |di −d′

i| ≤ 1 for all 1 ≤ i ≤ N and not every d′

i is the same as di.
This neighborhood is defined based on the recurrence f(N) = 3f(N − 1) + 2
for N > 2 with the initial condition f(2) = 8, where f(N) denotes the num-
ber of neighbors in the N -th dimension. The above definition induces a graph
G3N

−1 whose vertex set is Z
N and there exist edges between two lattice points

satisfying the above condition of (3N − 1)-neighborhood. In an N -D binary
image I, B3N

−1(I) is a sub-graph of G3N
−1 induced by the N -dimensional

black pixels in I. Similarly, W3N
−1(I) is a sub-graph of G3N

−1 induced by the
N -dimensional white pixels in I. We say that an N -dimensional binary im-
age I is B3N

−1 connected if the graph B3N
−1(I) is connected. We say that an

N -dimensional binary image I is B3N
−1,W3N

−1 connected if both the graphs
B3N

−1(I) and W3N
−1(I) are connected. There can be other neighborhoods

based on some other functions of N capturing the information of the number
of dimensions (coordinates) that are allowed to differ. Note that, in the neigh-
borhood defined above, all the N dimensions can be different (by at most 1).
As an example, we call two pixels (d1, d2, . . . , dN) and (d′

1, d
′

2, . . . , d
′

N) to be
2N -neighbors if and only if |di−d′

i| = 1 for exactly one i such that 1 ≤ i ≤ N .
The recurrence in this case is f(N) = f(N − 1) + 2 with the initial condition
f(1) = 2.

More particularly, in a two dimensional binary image, we call two different
pixels (x1, y1) and (x2, y2) to be 8-neighbors if and only if either or both of
the conditions |x1 − x2| ≤ 1, |y1 − y2| ≤ 1 hold. Also, we call two different
pixels (x1, y1) and (x2, y2) to be 4-neighbors if and only if |x1 − x2| = 1 or |y1

Email addresses: anvesh@cse.iitkgp.ernet.in (Anvesh Komuravelli),
sinha@princeton.edu (Arnab Sinha), arijit@isical.ac.in (Arijit Bishnu).

2

− y2| = 1. Note that these conditions for being 8-neighbors and 4-neighbors
are equivalent to (x1 − x2)

2 + (y1 − y2)
2 ≤ 2 and (x1 − x2)

2 + (y1 − y2)
2

≤ 1, respectively. Similarly, in a three dimensional binary image, we call two
voxels (x1, y1, z1) and (x2, y2, z2) to be 26-neighbors (6-neighbors) if and only
if (x1−x2)

2 + (y1−y2)
2 + (z1−z2)

2 ≤ 3 ((x1−x2)
2 + (y1−y2)

2 + (z1−z2)
2 ≤

1). As a special case for two dimensional images, some other connectednesses
like (B4,W4), (B4,W8) and (B8,W4) can be defined in addition to (B8,W8)
[1]. For a 3-D binary image, the connectedness model we consider is B26,W26.

A pair of (3N − 1)-neighboring opposite-valued pixels 〈p, q〉 is called inter-
changeable in an N -D binary image I, if reversing their values preserves the
topology of the image [6]. We will call such an interchange to be a (3N−1)-local
interchange. For a 2-D binary image I, a pair of 8-neighbor opposite-valued
pixels is called interchangeable if reversing their values preserves the topology
of the image [5,6]. The interchange does not affect the number of 0s and 1s in
I. Two 2-D binary images I and J are called IP-equivalent or transformable
[5,6] if there exists a sequence of binary images I = I0, I1, . . . , Ii, . . . , Ik = J

such that any Ii (1 ≤ i ≤ k) can be obtained from Ii−1 by reversing an
interchangeable pixel pair. This definition of IP-equivalence as given in [5,6]
can be generalized for other connectivity models in 2-D as well as for higher
dimensional images.

Our work in this paper in a way generalizes some of the results of Rosenfeld and
Nakamura [6] and Bose et al.[1] for two dimensional binary images to higher
dimensional binary images. Below, we review these results of two dimensional
connectivity preserving pixel transformation.

1.2 Prior Work

Rosenfeld and Nakamura [6] proved the conjecture made in [5] that if two
binary images I and J have two simply connected sets S and T respectively
of the same number of 1s, then I and J are IP-equivalent. In a recent com-
prehensive work that also deals with the combinatorial bounds on the number
of interchanges, Bose et al. [1] generalized the results in [6]. They showed
that for any (a, b) ∈ {(4, 8), (8, 4), (8, 8)}, any two Ba,Wb-connected images
I and J each with n black pixels differ by a sequence of O(n2) interchanges.
This is optimal within a constant factor as converting a horizontal image (a
horizontal line, to be precise) to a vertical image takes Ω(n2) interchanges.
The interchanges considered are 8-local, i.e. two opposite valued pixels can be
interchanged if they are 8-neighbors and reversing them does not change the
topology of the image. The corresponding result for two B4,W4 connected
images is O(n4) though here also the same horizontal to vertical conversion
takes Ω(n2). The problem of bridging the gap between O(n4) and Ω(n2) is still

3

open. The interchanges considered by Bose et al. [1] and Rosenfeld and Naka-
mura [6] maintain connectivity of both foreground and background. The only
restriction they put on I and J is that both have to be simply connected. Bose
et al. [1] ensured the simply connectedness by pointing out that a 2-D binary
image I is Ba,W8-connected, a ∈ {4, 8}, if and only if Ba(I) is connected and
B4(I) does not contain a cycle C such that there exists a white pixel inside C

in I. Similarly, for Ba,W4-connected model, B8(I) does not contain a cycle
as above.

This sort of transformation problems has motivation in robotics [2] where
researchers are interested in the number of moves needed in going from a
configuration to another under some restrictions in the movement patterns.
Under a more restricted and thus easier connectivity model but a complex
and difficult interchange rule, Dumitrescu and Pach [3] show that any two
B4 connected images are apart by O(n2) interchanges where an interchange
takes place between two 8-neighbor pixels such that the image obtained after
the interchange is still B4 connected. Though Dumitrescu and Pach consider
modular metamorphic systems in terms of motion planning in [3], similarity
to pixels is straightforward.

1.3 Our Work

For issues related to connectedness in digital topology [4], a hole, which is a
set of connected component (a maximal connected subgraph) of white pixels
“completely enclosed” by a connected set of black pixels, cannot have connec-
tion to any white pixel not in its connected component. The connectedness
model should ensure this. The work of Rosenfeld and Nakamura [6] and Bose
et al. [1] rule out the existence of holes because they require the images to be
simply connected. Motivated by this and the model of Dumitrescu and Pach
[3], we first consider a simplistic model of connectedness namely B26 whose
definition, only involving black pixels/voxels, is impervious to the existence
or non-existence of holes. We show that a 3-D binary image consisting of n

voxels can be transformed to another 3-D binary image consisting of n voxels
using 26-local interchanges under the B26-connectivity model. We also show
that two such 3-D binary images are transformable under B26-connectivity us-
ing a different interchange model called single backbone condition. This single
backbone condition has been defined in [3] for 2-D. The above two works were
reported by us in an earlier version [7]. Next, to generalize the results of [1]
and [6], we focus on B26,W26-connected model and further discuss results on
B3N

−1,W3N
−1-connected model for an N -dimensional binary image. The in-

terchange model used is (3N−1)-local interchange. For the B26,W26-connected
and B3N

−1,W3N
−1-connected models, we stick to the assumption as in [1,6]

that the images under consideration are simply connected. To the best of our

4

knowledge, connectivity preserving high dimensional pixel transformation has
not been considered earlier.

Section 2 discusses preliminaries. As mentioned already, we consider two types
of connectivity models - B26 and (B3N

−1,W3N
−1) (B26,W26 for 3-D). The in-

terchange model is (3N − 1)-local interchange (26-local for 3-D) for the dis-
cussions in Sections 3, 5 and 6. The interchange model of single backbone
condition for Section 4 is a bit stricter than the 26-local interchange and
would be discussed in Section 4. In Section 6, we generalize the result of Sec-
tion 5 to connectivity preserving high dimensional pixel transformation for
the B3N

−1,W3N
−1-connected model. Sections 5 and 6 assume that the images

under consideration are simply connected. Section 7 sums up the findings of
our work. Below is a section-wise listing of the connectivity and interchange
models used.

Section Connectivity model Interchange model

3 B26 26-local

4 B26 26-local+single backbone condition

5 B26,W26 26-local

6 B3N
−1,W3N

−1 (3N − 1)-local

2 Preliminaries

Under the above connectivity and interchange models, we say that two binary
images I and J of the same number of black pixels are called transformable if
there exists a sequence of binary images I = I0, I1, . . . , Ii, . . . , Ik = J such that
any Ii (1 ≤ i ≤ k) can be obtained from Ii−1 by reversing an interchangeable
pixel pair. We do this by transforming I to a linear chain of black pixels. So,
it follows that J can also be transformed to a linear chain of black pixels; and
the transformation of I to J can be obtained by transforming I to a linear
chain of black pixels and then retracing the transformation (of J) from the
linear chain of black pixels back to J . Complexity analysis, wherever used,
denotes the number of interchanges between black and white pixels required
for the particular algorithm.

2.1 Definitions and Notations

Let G = (VG, EG) be a graph where VG is the set of vertices and EG is the set
of edges. The subgraph of G induced by a set of vertices S ⊆ VG is denoted

5

as G[S] and G[S] = (S,E(S)) where E(S) = {(u, v) ∈ EG|u, v ∈ S}. A non-
empty graph G is connected if there is a path between any pair of vertices
in G. A component is a maximal connected subgraph of G. A cut vertex is a
vertex of VG whose removal disconnects G, otherwise, the vertex is non-cut.
For a graph G and a vertex u ∈ VG, let AG(u) denote the set of all vertices in
VG \ {u} such that there exists an edge (u, v) ∈ EG where v ∈ VG \ {u}. Also,
AG[u] = AG(u) ∪ {u}. The following observations [1] will also be useful. The
first one is a simple observation from graph theory and the second one gives
a sufficient condition for an interchange to preserve connectivity.

Observation 1 For a graph G, a vertex v ∈ VG and a set of vertices S ⊆
VG \ {v}, if G[AG(v) ∪ S] is connected then v is not a cut vertex of G.

Observation 2 For a B3N
−1,W3N

−1-connected image I, let p be a black pixel
that is not a cut vertex in B3N

−1(I) and q a white pixel that is not a cut vertex
in W3N

−1(I). If p has a white (3N − 1)-neighbor in I other than q and q has
a black (3N − 1)-neighbor in I other than p, then the interchange of p and q

preserves the original B3N
−1,W3N

−1-connectivity.

2.2 Definitions, Notations and Solution Strategy specific to B26

See Fig. 1 for this discussion. When a voxel moves because of the interchanges
such that its z-coordinate remains unaffected, we use the term pixel also. In
the body of the text, we interchangeably use the term voxel and pixel.

Layer: A 3-D image spans over some layers, where each layer contains a 2D
structure.

Connectivity-sensitive pixel: Consider the topmost layer (let it be Layer 1)
of Fig. 1(a). As the image (the black component) is connected, there must
exist at least one black pixel Player1 which has a 26-neighbor in the layer
just below it. We denote such pixels as connectivity-sensitive pixels. For
the preservation of connectivity, one of these connectivity-sensitive pixels is
not interchanged during the first part of the transformation, as the layers
present below are hanging from that particular pixel of the top-layer.

Merge Axis: Merge axis (M(P)) is a coordinate axis lying on a layer and
passing through a connectivity-sensitive pixel. The pixels lying on the merge
axis are defined to be non-interchangeable throughout the first part of the
transformation. Figure 1(a) shows M(Player1), M(Player2) and M(Player3)
in Layer 1, Layer 2 and Layer 3 respectively. All the black pixels of the
given 2D component are finally brought onto or merged on this axis using
connectivity preserving interchanges. Where P is obvious, we use just M.

Level: In a given layer and in a given connected component in that layer, a
level is the shortest distance of a pixel of that component, from the Merge

6

Axis of the corresponding connected component.
Coordinate Axes: For any black pixel on a 2D layer, its four coordinate axes
determine the direction in which the adjacent black pixels are located. The
coordinate axes through pixel P in Fig. 1(b) are the following (i) A(P)v

(vertical axis), (ii) A(P)h (horizontal axis), (iii) A(P)45 (making 45◦ with
A(P)h) and (iv) A(P)−45 (making -45◦ with A(P)h).

Player3

Player1

Merge axis

Merge axis

P’layer2 Player2

Merge axis

Layer 1

Layer 2

Layer 3

(a)

P

A(P)v

A(P)-45

A(P)45

A(P)h

(b)

Fig. 1. (a) The 3D image in different layers. The adjacency between Player1 and
Player2 (P ′

layer2 and Player3) maintains the connectivity across Layer 1 and Layer 2
(Layer 2 and Layer 3). (b) The coordinate axes through a black pixel P .

Merge Path: Extending the concept of Merge Axis, a Merge Path is a path
(not necessarily a straight line) on which we finally merge all the pixels.

In this problem, our fundamental strategy is to attack the 2D layers of a B8-
connected finite binary image found in a B26-connected 3D object. In a given
2D layer, a black pixel can have at most 8 neighbors. Hence, we borrow from
Bose et al. [1] the idea of transforming any 2D binary image into a vertical
image, ensuring that the image preserves connectivity during the transforma-
tion. However, we cannot directly adopt the strategy in [1] since the vertical
image produced in the 2D plane is unique and in our case might snap the
connectivity between two layers. A general case of the problem may have the
images I and J such that, each layer has more than one connected component
of black pixels.

2.3 Definitions, Notations and Solution Strategy specific to B3N
−1,W3N

−1

The main idea of Bose et al. [1] is to reduce any 2D image to a vertical image
which is a one dimensional structure. Any two binary images with n black
pixels each are now equivalent via this vertical image of n black pixels. This
they do with the help of a potential function which reduces at each step of
interchange by at least one. Thus, the potential function helps in reducing the

7

dimension of the black pixels in the binary image from two to one. We carry
this idea forward. Given an N -D binary image, we can successively reduce its
dimension till we reach the base case of a two dimensional image from where
the method of Bose et al. [1] works.

Consider any high dimensional pixel (d1, d2, . . . , dN) in the image I. Without
loss of generality, assume that the minimum value of d1 for any black pixel is 0
and that of all black pixels with d1 = 0, the minimum value of d2 is 0. To every
black pixel (d1, d2, . . . , dN) we assign a potential function, φ(p) = d1+2(n−d2)
and define the potential of the image as φ(I) which is the sum of the potentials
of all the black pixels in I. We show that using (3N − 1)-local interchanges
we can bring down φ(I) by at least one in each iteration. Let Ii be the image
formed after i iterations. As the maximum possible absolute values of d1 and
d2 are n each (there are only n black pixels in I), we have φ(p) ≤ 5n for any
black pixel, p. So, φ(I) ≤ 5n2. Thus, in i (= O(n2)) iterations, φ(Ii) crosses
zero towards the negative side. Now, φ(Ii) can be negative only if d1 < 0
for some black pixel. Given that d1 ≥ 0 for every black pixel in I, this can
only happen if there is an interchange involving a black pixel with d1 = 0 in
Ii−1. But the algorithm we present ensures that this does not happen and it
exits when every black pixel has d1 = 0, giving an (N −1)-dimensional image.
We repeat the algorithm until we get a 2-dimensional image from which the
method in [1] works. This is the main idea behind our generalizations.

As an example, consider the following for a 3-D binary image. As we are going
from 3D to 2D, we take two (x and z) of the three coordinates (x, y and z).
We make the assumption that the minimum x-coordinate of any black voxel
is 0 and out of all such black voxels, the minimum z-coordinate is 0. Now,
define the potential of a voxel v ∈ I as φ(v) = x + 2(n − z) and from that
define φ(I). We would show that using 26-local interchanges, we can at each
step of our iteration bring down φ(I) by at least one. We stop when we get
x = 0 for all black voxels. Thus, we get a 2-D binary image from which the
method in [1] works.

3 The Strategy for Voxel Transformation in B26 model

Define a graph G = (VG, EG), such that (i) each connected component in any
layer corresponds to a node in VG, and (ii) for any two connected components,
C1 and C2, if there is at least one pair of voxels (u, v) which are B26 adjacent,
with u ∈ C1 and v ∈ C2, then we have an edge. It is easy to see that, as
the black pixels in the original image I are connected, G is connected. Let
G′ = (VG, E ′

G) be any spanning tree of G. We know from the definition of a
spanning tree that, as long as G remains connected G′ also remains connected,
thus satisfying the principal constraint behind the transformation. So, it is

8

sufficient to consider G′, instead of G. Also, we know that every spanning
tree has at least one node whose degree is equal to one. Before we discuss the
actual algorithm we discuss below a construction which is frequently used in
the algorithm.

3.1 Construction of 2D Linear Chains

Given a node in G′ with degree one, we need to consider only one connectivity-
sensitive pixel in the component represented by the node to preserve the con-
nectivity. So, a Merge Axis can be any coordinate axis passing through that
pixel. Now, the rest of the black pixels (which do not originally lie on the
merge axis) are interchanged preserving the connectivity such that they fi-
nally appear as a linearly connected chain along the merge-axis.

The strategy can be outlined as follows. We compress the 2D region, step by
step, from the boundary, simultaneously expanding on the merge axis, M.
Here, boundary refers to the outer boundary of the B8-connected 2D region
under consideration. Ultimately, we have the linear connected chain on M of
all the pixels originally in the 2D plane. Now, we describe our algorithm.

Take a non-cut pixel (if any) on the boundary, other than those on M. Clearly,
its removal doesn’t disconnect the rest of the black region. Hence, we move
it along the boundary until we first reach M, interchanging with the white
pixels that come in the way. This clearly maintains connectivity of the black
pixels. Place it on M, by interchanging with the white pixel already present.

We repeat the above process till all the non-cut pixels are exhausted. Now, we
are left with only cut pixels on the boundary (if any).

Figure 2(a) shows the part of the original image, which is of concern (one
layer). The movement of the non-cut pixel P along the boundary to the merge
axis M is shown in Fig. 2(b) to Fig. 2(d).

Lemma 1 Consider the situation when all the black pixels on the boundary,
not on M, are cut pixels. Also consider a part of the boundary which starts
and ends on M and let ma and mb be a pair of black pixels on M through
which the cut pixels on this part of the boundary are connected to M. Now,
ma and mb are connected only through this part of the boundary. Moreover,
this is true for every such part of the boundary.

Proof. Let us suppose that we have another path connecting ma and mb.
This clearly implies that there is a non-cut pixel on the part of the boundary
contradicting the hypothesis. The same argument follows for all such parts of
the boundary. ⊓⊔

9

M

P

(a)

M

P

Q

(b)

M

Q

P

(c)

M

R S T

Q

P

(d)

Fig. 2. (a) This shows a connected component in a layer. P is a non-cut pixel and
M , the Merge Axis. (b) This shows P in its new position after the interchange with
its adjacent white pixel. (c) P is interchanged with white pixels twice more. (d) P

is finally placed on M . This leaves all other pixels on the boundary to be cut pixels.
Q is one such pixel. The oval region shows the disconnectivity on the Merge Axis
before collapsing the cut pixels.

For an illustration, Fig. 2(d) shows a discontinuity on M with all the black
pixels on the boundary and not on M being cut pixels. The pixels S and T

are connected only through this boundary.

So, our goal is to fill the gaps between the two ends on M. Consider the
leftmost pixel in the topmost level, say P . As this is the topmost level, this
pixel has no B8 neighbors in the level above or to the left of it. Now, considering
the remaining possibilities the only two situations where there are no non-cut
pixels on the boundary are illustrated in Fig. 3. As it is clear from the figure,
filling up of the gaps on M can be clearly done by collapsing P to the level
below it.

Figure 3(c) shows the collapsing of Q for example. Q is interchanged with
the pixel right below it. This is formed from Fig. 2(d). It is easy to see that
collapsing preserves connectivity.

P

(a)

P

(b)

MP

QR

(c)

Fig. 3. (a) One possible location of P , the leftmost pixel on the topmost level. (b)
The other possible location of P . (c) The cut pixel Q is collapsed onto the previous
level, exposing a non-cut pixel R.

We continue collapsing. If this results in a new non-cut pixel, we go for the
next iteration.

10

Fig. 4. Here P1 and P2 needed to be displaced. In this illustration, the transformation
of P1 is shown. P1 is moved along the chain (for preserving the connectivity) and
brought back to the chain whenever the first white pixel is found. The displacement
of P2 can be similarly done.

Complexity Analysis: Assume that the total number of black pixels in the
2D region is n. Any pixel can be a cut or a non-cut pixel at any point of time
during the transformation. If it is a non-cut pixel, and if it is chosen to be
moved along the boundary to M, it takes O(n) interchanges to reach M, as
the boundary contains at most n pixels. If it is a cut pixel, all pixels other
than those on M are cut pixels and this particular pixel has been chosen to be
collapsed to a level below it, then it takes one interchange to do so. There can
be at most n such interchanges for any particular pixel. Hence, for any pixel,
it takes at most O(n) interchanges and therefore, the complexity is O(n2).

3.2 Algorithm-Part I

Let u be a node with degree one in G′ and also let (u, v) be the edge emerging
from u. In other words, the components represented by u and v, say U and
V respectively, have at least one B26 adjacent voxel pair (vu, vv), with vu ∈ U

and vv ∈ V . As the degree of u in G′ is one, we develop a strategy to merge
U with V .

To make the merging easier, we first form a single straight chain of all the
black pixels on U . The merge axis M for U can be in any direction. So, let us
fix it to be horizontal. We merge all the black pixels in U on M.

Let us suppose that U and V are in a layers i and i + 1 (i − 1), respectively.
Again, to make merging easier we take M to such a location on layer i that
the top view of these two components U and V looks like, M protruding out
from the boundary of V . So, we translate M horizontally, in the layer in which
U is present, say i, till any further move removes the connectivity between U

and V , using the procedure described below.

Translation: The idea behind translation is simple. We move pixel by pixel.

11

Figure 4 shows an example of how we do it. The extreme pixel is moved first
followed by the next farthest pixel. A given pixel gets displaced O(n) times.
There are O(n) pixels to be moved. Hence, the complexity for translation is
O(n2).

If U intersects with any other connected component in the layer i either during
the process of merging on M or during the process of translation, we do the
following.

(1) We stop the process.
(2) We consider the compound component formed by U and the component

with which it intersects instead of the original components.
(3) We build a new G and form the new spanning tree, G′.
(4) We go for the next iteration.

Note that, U might have established new links with other components in layers
i − 1 and i + 1. Figure 5 shows an illustration of this part.

U

V

(a)

U

V

(b)

U

V

(c)

Fig. 5. (a) The pixels in U have been merged on to its Merge Axis. This shows
all the adjacencies. (b) Two of the pixels have been translated by the procedure
described above. (c) The situation after the entire translation.

Complexity (Part I): Let nu and nv be the number of black pixels in U and
V respectively. From our earlier discussions, merging all nu pixels on M
takes O(n2

u) interchanges. As translating M horizontally by one pixel takes
O(nu) interchanges, the entire translation phase takes O(nunv) interchanges.
If any process has to be stopped in the middle, then a new iteration has to
be started after making some changes, mentioned above.

3.3 Algorithm-Part II

Now, we merge the chain in U with the layer containing V . The pixels can be
merged in any order but we restrict to one particular order, namely, from the
end of the Merge Axis on U which is B26 adjacent to a pixel on V to the other
end. There are two possibilities.

Case I: U has developed new B26 adjacencies with some voxels of other com-
ponents in the layer containing V .

12

Case II: No such adjacency has been developed.

It is very well possible that some other edge between U and any other com-
ponent W in G got snapped. Case II is the easiest of the two. All we need
to do is, keep interchanging the voxels on M in U , with the white voxels in
the layer containing V starting from either end of M. Figure 6 shows an ex-
ample. It is easy to see that the complexity in this case is O(nu). Now, let us

U

V

(a)

V

(b)

Fig. 6. (a) Starting from the situation in Fig. 5(c) a pixel has been merged with V .
(b) All pixels on U have been merged onto V .

consider Case I. Then, there is a possibility that, if we follow the same steps
as suggested above for Case II, after certain number of steps, we encounter
another connected component. Figure 7 shows an example. If we encounter
such a component, we adopt a sequence of steps, similar to those considered
in Part I.

1. We stop the process. This may be the end of the process.
2. We consider the compound component formed by V and the other com-

ponent in the same layer which we encountered, along with the pixels in-
terchanged between U and this layer by now, instead of V and that other
component.

3. We update U. U now contains fewer pixels on the chain M.
4. We rebuild G and form the new spanning tree, G′.
5. We start a new iteration.

U

V W

Fig. 7. U develops new adjacencies with W , during translation.

13

3.4 Proof of Correctness and Overall Complexity

Lemma 2 The algorithm suggested above, eventually leads us to the interme-
diate structure, a single chain containing all the black voxels in the original
image I.

Proof. In one pass through Part I of the algorithm, we either merge U with
another connected component in the same layer, i, or move the chain, M to a
new location, again in the same layer, i. So, decrease in |VG| in Part I is less
than or equal to one. In one pass through Part II of the algorithm, we merge
either U with V or V with some other connected component in its layer or
both. So, decrease in |VG| is either one or two.

Now, if any pass through Part I merges two connected components, we don’t
touch Part II until again we pass through Part I, as a new iteration is started.
If the pass through Part I doesn’t merge but, simply translates U to a new
location, we definitely pass through Part II and this guarantees that at least
two components will be merged. Hence, each iteration through the algorithm
reduces |VG| by at least one and therefore, after at most |VG| − 1 iterations,
we are left with a single component. Now, we can form M for this single
component in any direction starting from anywhere and form the single chain.

⊓⊔

Let us find the complexity of an iteration. Assume that component i has ni

number of black pixels and that there are c components in total. Note that,
components in a particular layer may be disconnected but they can be con-
nected using voxels of layers above and below. Let

∑c
i=1 ni = n. We divide the

complexity calculation into two parts as follows.

(1) Merging of all the pixels in a single component.
(2) Merging of different components.

Merging a component of ni black pixels onto its Merge Axis takes O(n2
i) inter-

changes. Now, during the process, if this intersects with another component
with nj number of black pixels, we simply start a new iteration. Let nk be
the total number of pixels of the component on which this Merge Axis has
to be merged. Translation of the Merge Axis takes O(nink) interchanges if
it doesn’t intersect with any other component. Else, we simply start a new
iteration. Once translation is done, merging takes O(ni) interchanges if it’s
Case II. In Case I, we have to start a new iteration somewhere in the middle.

So, the worst case complexity of an iteration is

O(n2
i) + O(nink) + O(ni) = O(n2

i + nink)

14

And the overall worst case complexity is simply a summation of the above
complexity over all the iterations. From Lemma 2 it is clear that the number
of iterations is at most c−1. Note that ni, nk may change after every iteration
due to merging of components. In any case, ni and nk are O(n). So, an upper
bound of the complexity is

Σc−1
i,k=1O(n2

i + nink) = Σc−1
1 O(n2) = O(cn2)

Theorem 1 Let I and J be two B26-connected 3-dimensional images each
having n black voxels with the total number of 8-connected components in all
2-dimensional layers of I and J being c1 and c2 respectively. I and J are
transformable and I can be converted to J using a sequence of O((c1 + c2)n

2)
26-local interchanges.

Proof. The theorem follows from Lemma 2 and the above discussion. ⊓⊔

4 Voxel Transformation in B26 model under Single Backbone Con-

dition

In the model presented till now, a valid interchange is taken as such an inter-
change between any two B26 adjacent black and white voxels, which preserves
the connectivity of the image before and after the interchange. A slightly dif-
ferent model can be obtained if we impose a single backbone condition [2] along
with our original connectivity model. Dumitrescu and Pach [3] also consider
this as an alternative model. In our case, a backbone is defined as the set of all
black voxels except the one which we currently interchange. The condition is
that the backbone must be B26 connected during and after each interchange.
In order to adopt this model, we only need to make small changes in our
algorithm.

First, note that, in the algorithm we described, there are only two situations
where the single backbone condition fails.

(1) While collapsing the pixels on the boundary when all the non-cut pixels
not on Merge Axis are exhausted to form the 2D linearly connected chains.

(2) While merging the translated Merge Axis with a component in an adja-
cent layer.

First Situation: While forming the 2D linearly connected chains, instead of
collapsing the pixels to the level below when all the pixels on the boundary are
cut, we can move the black pixels between ma and mb on the Merge Axis (refer
Lemma 1) to one of the extreme ends of the axis (through interchanges). This
is similar to the Translation, mentioned in Part I in section 3.2. So, ultimately
what we have is a Merge Path which is the union of two parts of the original

15

Merge Axis and the cut black pixels on the boundary. For example, consider
Fig. 2(d). The pixels R, S and T have to be translated to the ends of M .

This can be easily adopted to the algorithm discussed. We need to consider
only one connectivity-sensitive pixel for each 2D connected component. So, we
can easily decide which part of the Merge Axis is to be extended and which
part should be left untouched (depending on which part the connectivity-
sensitive pixel lies on). For example, suppose that in Fig. 2(d), the pixel R is
the connectivity-sensitive pixel. We should not move R during the translation
mentioned above. So, a possible and easy solution is to translate all the pixels
starting from the rightmost end of M till T to the left end of M . Then,
translate S. And we end up with the Merge Path.

Now, we are left with bending the Merge Path to a straight line. The only
curvy portion is that of the chain of black pixels. Again, in a similar manner,
considering the above example, translate each pixel on the chain, starting from
the right end to the left end of M .

Second Situation: We only need to change the order in which the pixels
on the Merge Axis are merged with the component in the other layer. Note
that the end of the Merge Axis other than the one whose removal disconnects
the components, is a non-cut pixel. So, we can merge starting from that end,
just the opposite way we mentioned in Section 3.3. Now, clearly, interchanging
with a non-cut pixel maintains the backbone’s connectivity. The only problem
is with Case I of the Section 3.3. The new adjacencies are at the very end
where we have non-cut pixels. One possible solution is starting from this end,
find the first pixel which is not B26 adjacent with any of the pixels in the
new component which the Case I refers to. So, starting from this pixel (which
is clearly non-cut) keep merging till the other end. The rest of the algorithm
follows.

The changes mentioned in both the above mentioned situations do not change
the complexity.

5 B26,W26-Connectivity Preserving Transformation

Consider a right hand Cartesian system. Let v = (x, y, z) be a voxel such that

(1) v is black.
(2) (x, y − 1, z − 1), (x, y, z − 1), (x, y + 1, z − 1) are all white.
(3) There exists an integer k ≥ 0 such that for every integer δ with 1 ≤ δ ≤ k,

(x, Y, z + δ) is black for some Y (may be different for different values of
δ) with the condition that every such (x, Y, z + δ) has (x, Y ′, z + δ− 1) as

16

its B26 neighbor with Y ′ = y for δ = 1 and all voxels (x, Y, z +k′), k′ > k

for any Y are white.
(4) All voxels (X,Y, Z) with X ≥ x + 1, Z ≥ z − 1 are white.
(5) z is maximum (of all the voxels satisfying the above conditions).
(6) x > 0

Given that the last condition is satisfied by some voxel, a voxel satisfying the
remaining conditions always exists. Consider the Y -Z plane passing through
the maximum x-coordinate of any black voxel. Take a black voxel v′ with
the maximum z-coordinate in this plane. Consider a maximal B8 connected
monotonically descending path (descending in z direction) in this plane. Let
the path be v′

; v′′. As the path is maximal, the second condition is satisfied
by v′′. As this plane has the maximum x-coordinate the fourth condition is
also satisfied. The third condition is obviously satisfied because we started off
with the voxel with maximum z-coordinate. Now, there can be many such v′′

(for many such v′ or otherwise). Take the one with maximum z-coordinate
as v (the fifth condition). The algorithm exits when such a voxel cannot be
found, which implies that every voxel has the same first coordinate (which is
0) and we have a 2-D image.

In the following, the B26,W26-connectivity preserving transformation is de-
veloped using two exhaustive cases. Note that in any interchange we describe
below the white voxel with which v is interchanged never belongs to the set
of white voxels {(x, y − 1, z − 1), (x, y, z − 1), (x, y + 1, z − 1)} and hence, is
not isolated after the interchange as (x, y, z) is a 26-neighbor of the voxels in
the above set. Thus, whenever we discuss about the connectivity of the white
in any image resulting after an interchange, we concentrate only on the white
voxels other than the one with which v is interchanged.

Case 1: v is not a cut vertex of B26(I). Consider the five voxels (x, y + 1, z),
(x, y + 1, z + 1), (x, y, z + 1), (x, y − 1, z + 1) and (x, y − 1, z). If any of
them is black and y′ is the y-coordinate of that voxel, it is easy to see that
(x + 1, y′, z + 1) is not a cut vertex of W26(I) (G[AW26

((x + 1, y′, z + 1))]
is connected by the choice of v) and hence, the interchange 〈(x, y, z), (x +
1, y′, z + 1)〉 preserves the connectivity by Observation 2. Figure 8(a) shows
the situation where all the above five voxels are black.

����
����
����

����
����
�����
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����Y

X

Z

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

X = x
v

X = x + 1

(a)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

X = x
v

X = x + 1X = x − 1

(b)

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
����
��
��

��
��
��

X = x
v

X = x + 1X = x − 1

(c)

Fig. 8. Illustration of the possible situations in Case 1 of the algorithm for B26,W26

transformation.

If all the above five voxels are white, consider the six voxels (x−1, y+1, z),

17

(x − 1, y, z), (x − 1, y − 1, z), (x − 1, y + 1, z + 1), (x − 1, y, z + 1) and
(x− 1, y − 1, z + 1). Now, by the choice of v, all voxels (x, Y, z + k) for any
integer k > 0 and for any value of Y are white. If any of the above six voxels
is black and y′ is the y-coordinate of that voxel we have that (x, y′, z + 1) is
not a cut vertex of W26(I) as again G[AW26

((x, y′, z + 1))] is connected (by
Observation 1). So, by Observation 2 the interchange 〈(x, y, z), (x, y′, z+1)〉
preserves the connectivity. Figure 8(b) shows the situation where all the
above six voxels are black.

In the case that all the above six voxels are also white, then at least one
of the three voxels (x − 1, y + 1, z − 1), (x − 1, y, z − 1) and (x − 1, y −
1, z − 1) must be black for the image is connected all other B26 neighbors
of v are white. Then, we have that G[AW26

((x − 1, y, z))] is connected and
by Observation 1 (x − 1, y, z) is not a cut vertex of W26(I). Hence, the
interchange 〈(x, y, z), (x − 1, y, z)〉 preserves the connectivity. Figure 8(c)
shows the situation where all the above three voxels are black.

Case 2: v is a cut vertex of B26(I). In this case, (x− 1, y, z) has to be white
otherwise AB26

(v) ⊆ AB26
[(x − 1, y, z)] and by Observation 1, v will not be

a cut vertex of B26(I) (Figure 9(a)). Consider the three voxels (x, y, z + 1),
(x − 1, y, z + 1) and (x − 1, y, z − 1) (shown as all black in Figure 9(b)).
Depending on whether each of these voxels is black or white, we have several
sub-cases.

��
��
��

��
��
��

X = x
v

X = x + 1X = x − 1

(a)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

X = x
v

X = x + 1X = x − 1

(b)

Fig. 9. Illustration of Case 2 of the algorithm for B26,W26 transformation.

Let (x − 1, y, z − 1) and (x − 1, y, z + 1) both be black (Figure 10(a)).
(x, y, z +1) can be either black or white. Observe that AB26

(v) ⊆ AB26
((x−

1, y, z−1))∪AB26
((x−1, y, z+1)). If (x−2, y, z) is black, it is also the black

neighbor of (x−1, y, z−1) and (x−1, y, z+1) and hence, G[AB26
(v)∪{(x−

2, y, z)}] is connected and v is non-cut (Observation 1). So, (x − 2, y, z) is
white. Now, the interchange 〈(x, y, z), (x−1, y, z)〉 preserves the connectivity
of the black in the resulting image as AB26

(v) ⊆ AB26
[(x − 1, y, z)]. If (x −

1, y, z) is not a cut vertex of W26(I), then we can do the above interchange.
Else, still consider the above interchange and the resulting image I ′. If the
white is disconnected in I ′, that is only because we have a closed black
surface through (x−1, y, z) enclosing a white component. This implies that
there is a B4 cycle in all 2-D planes through (x − 1, y, z), in particular in
the planes, X −Y , Y −Z and X −Z. But in the plane X −Z, such a cycle
implies an alternative path between (x− 1, y, z− 1) and (x− 1, y, z +1) not

18

through v (in I) making v non-cut. Thus, white is also connected in I ′ and
the interchange preserves the connectivity.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

X = x
v

X = x + 1X = x − 1

(a)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

X = x
v

X = x + 1X = x − 1

(b)

Fig. 10. Two of the possible sub-cases in Case 2 of the algorithm for B26,W26

transformation.

Now, let (x − 1, y, z − 1) and (x, y, z + 1) be black while (x − 1, y, z + 1)
is white (Figure 10(b)). Observe that AB26

(v) ⊆ AB26
((x − 1, y, z − 1)) ∪

AB26
((x, y, z + 1)). Consider the interchange 〈(x, y, z), (x − 1, y, z)〉. This

preserves the connectivity of the black in the resulting image. If the white
in the resulting image I ′ is disconnected (otherwise, we do the above in-
terchange), there is a B4 cycle through (x − 1, y, z) in the plane X − Z

which implies (x − 2, y, z) is black. Moreover, there is a path between
(x−2, y, z) and (x−1, y, z−1) in I (not through v). Now, if (x−1, y, z +1)
is non-cut, the interchange 〈(x, y, z), (x − 1, y, z + 1)〉 preserves the con-
nectivity as (x − 1, y, z − 1) and (x, y, z + 1) are connected in I ′ through
(x − 1, y, z + 1) and (x − 2, y, z). So, assume it is cut. If (x − 2, y, z + 1) is
white, G[AW26

((x−1, y, z+1))∪{(x, y, z−1), (x+1, y, z), (x+1, y, z+1)}] is
connected and (x−1, y, z+1) is not cut (Observation 1). So, (x−2, y, z+1)
is black. If (x − 1, y, z + 2) is black, G[AB26

(v) ∪ {(x − 1, y, z + 2), (x −
2, y, z), (x− 2, y, z + 1)}] is connected and v is non-cut (Observation 1). So,
(x−1, y, z +2) is white and after the interchange 〈(x, y, z), (x−1, y, z +1)〉,
the resulting image I ′ has a disconnected white only if there is a B4 cycle
through (x−1, y, z+1) in the plane X−Z. This implies that there is a path
between (x, y, z + 1) and (x − 2, y, z + 1) in I ′ and hence, a path between
them and between (x, y, z +1) and (x− 1, y, z− 1) in I not through v again
implying v is non-cut in I. Thus, the white is also connected in I ′ and the
interchange preserves the connectivity.

Consider the case where (x − 1, y, z − 1) is black and both (x, y, z + 1)
and (x − 1, y, z + 1) are white. If the interchange 〈(x, y, z), (x − 1, y, z)〉
does not disconnect the white in the resulting image, it also preserves the
connectivity. Else, we should have a B4 cycle in each of the X−Y , Y −Z and
X−Z planes through (x−1, y, z) in the resulting image. In the Y −Z plane
with x-coordinate ‘x−1’, this implies that at least one of (x−1, y+1, z) and
(x − 1, y − 1, z) is black. Let (x − 1, y − 1, z) be black. (The other case can
be argued for similarly.) This situation is shown in Figure 11(a). As shown
in the figure, we cannot have (x, y + 1, z) or (x − 1, y + 1, z) to be black as
otherwise, G[AB26

(v)] will be connected and by Observation 1 v will not be

19

a cut vertex of B26(I). Consider the interchange 〈(x, y, z), (x, y, z + 1)〉 and
the W26-neighbors of the voxel (x, y, z +1). All the nine 26-neighbors in the
plane X = x + 1 are white and hence belong to W26. Also, (x− 1, y, z + 1)
is white (as argued in the beginning of this paragraph). This is sufficient to
conclude that G[AW26

((x, y, z + 1))] is connected and hence, (x, y, z + 1) is
not a cut vertex of W26 (Observation 1). Also, AB26

(v) ⊆ AB26
((x−1, y, z−

1)) ∪ AB26
((x, y, z + 1)) and in the resulting image after this interchange,

(x, y, z + 1) and (x − 1, y, z − 1) are connected through (x − 1, y − 1, z)
making the black connected too. Thus, the above interchange preserves the
connectivity.

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

X = x
v

X = x + 1X = x − 1

(a)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

X = x
v

X = x + 1X = x − 1

(b)

Fig. 11. Two more possible sub-cases in Case 2 of the algorithm for B26,W26 trans-
formation.

Now, consider that (x − 1, y, z − 1) is white. If (x − 1, y, z + 1) is white,
there can be no B4 cycle through (x − 1, y, z) (after an interchange of v

with that white voxel) in the plane Y = y and hence, the interchange
〈(x, y, z), (x − 1, y, z)〉 preserves the connectivity (it is easy to see that the
black is also connected). So, we assume that (x − 1, y, z + 1) is black and
that the interchange 〈(x, y, z), (x − 1, y, z)〉 makes the white disconnected
in the resulting image (otherwise, we do this interchange). So, there have
to be three B4 cycles in the three 2-D planes passing through (x − 1, y, z)
(after interchanging it with v) and hence, at least one of (x − 1, y − 1, z)
and (x−1, y +1, z) is black. Assume that (x−1, y−1, z) is black (the other
case can be similarly argued for). This implies that both (x − 1, y + 1, z)
and (x, y + 1, z) are white as otherwise G[AB26

(v)] will be connected and
by Observation 1 v will not be a cut vertex of B26(I). For the same reason,
(x− 1, y +1, z− 1) has to be black. This situation is shown in Figure 11(b).
If (x− 2, y, z) is black, it is easy to see that G[AB26

(v)∪ {(x− 2, y, z)}] will
be connected and by Observation 1 v will not be a cut vertex of B26(I). If it
is white, there can be no B4 cycle through (x−1, y, z) after the interchange
〈(x, y, z), (x− 1, y, z)〉 in the plane Y = y making the white in the resulting
image connected contradicting the assumption. Thus, the above interchange
preserves the connectivity.

In all the above cases, φ(I) decreases after every interchange.

20

From the development of the previous transformation, we obtain as a conclu-
sion the following theorem.

Theorem 2 Any two B26,W26-connected images I and J each having n black
voxels are transformable and I can be converted to J using a sequence of O(n2)
26-local interchanges.

6 The General Case: B3N
−1,W3N

−1 Connectivity Preserving Trans-

formation

Lemma 3 Any B3N
−1,W3N

−1-connected N -dimensional image I of n black
pixels can be converted to some B3N−1

−1,W3N−1
−1-connected (N−1)-dimensional

image J also of n black pixels such that every intermediate image resulting af-
ter an interchange is B3N

−1,W3N
−1-connected and the conversion can be done

using a sequence of O(n2) (3N − 1)-local interchanges, where N > 1. (Note
that an B3N−1

−1,W3N−1
−1-connected image is also B3N

−1,W3N
−1-connected.)

Proof. Consider the image I. We define a boolean function, next : Z
N →

{true, false} as next(α = (α1, α2, . . . , αN)) is true iff α is black and there
exists a black pixel β = (β1, β2, . . . , βN) such that β1 = α1, β2 = α2 + 1 and
βi ∈ {αi − 1, αi, αi + 1} for i ≥ 3. Also define succ : Z

N → Z
N as succ(α) = β

if α is black and next(α) = true with β as in the definition of next() (succ()
is undefined otherwise).

Let p = (δ1, δ2, . . . , δN) be a pixel such that

(1) p is black.
(2) All pixels (d1, d2, . . . , dN) with d1 = δ1, d2 = δ2−1 and di ∈ {δi−1, δi, δi+

1}, i ≥ 3 are white.
(3) There exists a sequence of black pixels (p = p1, p2, . . . , pk) with next(pi) =

true, succ(pi) = pi+1 for every 1 ≤ i < k and next(pk) = false such that
every pixel (d1, d2, . . . , dN) with d1 = δ1, d2 > δ2 + k is white.

(4) All pixels (d1, d2, . . . , dN) with d1 ≥ δ1 + 1 and d2 ≥ δ2 − 1 are white.
(5) δ2 is maximum.
(6) δ1 > 0.

Given that the last condition is satisfied by some pixel, a pixel satisfying
conditions 1 through 4 can always be found among the set of all black pixels
with the maximum value of the first coordinate. The fifth condition is to select
one among many such pixels. The sixth condition ensures that φ never crosses
zero as we use this particular pixel for the interchange. The algorithm exits
when such a pixel cannot be found, which implies every pixel has the same
first coordinate (which is 0).

21

We now define two useful functions. Consider the set of all sequences of length
between 1 and N (inclusive) of the integers −1, 0 and 1, S. Define s : Z

N ×
S → Z

N as s(((α1,α2,. . .,αN),(S1,S2,. . .,Sk))) = (α1 + S1,α2 + S2,. . .,αk +
Sk,αk+1,αk+2,. . .,αN). Also, define g : Z

N × S → P(ZN) as
g(((α1,α2,. . .,αN),(S1,S2,. . .,Sk))) = {(β1,β2,. . .,βN) | βi = αi + Si for 1 ≤ i ≤
k and βi ∈ {αi − 1,αi,αi + 1} for i > k} (P(A) is the power set of A). We
use the notation sα(S1,S2,. . .,Sk) and gα(S1,S2,. . .,Sk) for brevity. Clearly, for
a pixel α, sα(t1, t2, . . . , tl) ∈ AG

3N
−1

[α] and gα(t1, t2, . . . , tl) ⊂ AG
3N

−1
[α] for

some (t = (t1, t2, . . . , tl)) ∈ S. Also, it is easy to see that gα(t1, t2, . . . , tm,−1)∪
gα(t1, t2, . . . , tm, 0)∪gα(t1, t2, . . . , tm, 1) = gα(t1, t2, . . . , tm) for any (t = (t1, t2,
. . ., tm)) ∈ S with 0 < m < N and gα(−1) ∪ gα(0) ∪ gα(1) = AG

3N
−1

[α].

We do the following case analysis. We use (d1, d2, . . . , dN) to mean an arbitrary
pixel in Z

N and di(α) to mean the value of the ith coordinate of a pixel α

(we could have as well defined N functions for the same). Note that in any
interchange we describe below the white pixel with which p is interchanged
never belongs to the set of white pixels gp(0,−1) and hence, is not isolated
after the interchange as p is a (3N − 1)-neighbor of the pixels in the above set.
Thus, whenever we discuss about the connectivity of the white in any image
resulting after an interchange, we concentrate only on the white pixels other
than the one with which p is interchanged.

Case 1 : p is a non-cut vertex of B3N
−1(I) We know from the choice of

p that all the pixels in gp(1) and gp(0,−1) are white. If at least one pixel
q ∈ gp(0, 0) ∪ gp(0, 1) other than p is black, then consider the interchange
〈p, r〉 where r = (δ1 + 1, δ2 + 1, d3(q), . . . , dN(q)). It is easy to see that
r ∈ gq(1, 0) ∪ gq(1, 1) (to be specific, r is either sq(1, 0) or sq(1, 1)) and
hence, the black is connected in the resulting image. Also, AW

3N
−1

(r) ⊆

AW
3N

−1
(sr(0, 1)) ∪ AW

3N
−1

(sr(0,−1)) and sr(0,−1) is connected to sr(0, 1)

through sr(1) which imply G[AW
3N

−1
(r)] is connected and hence, r is non-

cut in W3N
−1(I). Thus, the interchange preserves the connectivity.

Else, if at least one pixel q ∈ gp(−1, 0)∪gp(−1, 1) is black, consider the in-
terchange 〈p, r〉 where r = (δ1, δ2 +1, d3(q), . . . , dN(q)). Now that next(p) =
false in the original image, we have that G[AW

3N
−1

(r)∪{sp(0,−1)}] is con-

nected and hence, r is non-cut in W3N
−1(I). Also, the black is connected in

the resulting image. Thus, the interchange preserves the connectivity.
Else, at least one pixel q ∈ gp(−1,−1) has to be black as otherwise p will

be isolated. Consider the interchange 〈p, r〉 where r = sp(−1, 1). For N > 2,
it is easy to see that AW

3N
−1

(r) ⊆ AW
3N

−1
(sr(0, 0, 1))∪AW

3N
−1

(sr(0, 0,−1))

and sr(0, 0, 1) and sr(0, 0,−1) are connected through sr(1) which imply
G[AW

3N
−1

(r)] is connected and hence, r is non-cut in W3N
−1(I). For N = 2,

by the choice of p (especially the condition 5), sr(0, 1) has to be white. Note
that sr(0, 1) satisfies all the first four conditions for the selection of p. Also,
this need not be the case for N > 2. (We cannot make this deduction if

22

δ1 = 1, but in that case r is an obvious non-cut vertex in W3N
−1(I).) So,

following similar arguments as in the previous paragraphs, r is again non-
cut. So, as long as the black is connected in the resulting image, we can do
this interchange. Now, consider the pixel q′ = ssp(−1)(−1). If this is black
in the original image, this is also the neighbor of r in the resulting image
due to the above interchange and hence the black is connected. Thus, if the
black is not connected in the resulting image, we conclude that q′ is white
in the original image. Now, G[AW

3N
−1

(sp(−1)) ∪ {sp(1)}] is connected and

hence, sp(−1) is non-cut. Thus, the interchange 〈p, sp(−1)〉 preserves the
connectivity.

Case 2 : p is a cut-vertex of B3N
−1(I) sp(−1) has to be white as otherwise

AB
3N

−1
(p) ⊆ AB

3N
−1

(sp(−1)) and hence, p will not be cut. Consider the

three pixels p1 = sp(−1,−1), p2 = sp(−1, 1) and p3 = sp(0, 1). We have
eight cases depending on whether each of these pixels is white or black. We
cover all these eight cases in the following.
Case 2(a) : p1 and p2 are black Note that p3 can be white or black. So,
we aim to cover two of the eight cases here. Observe that AB

3N
−1

(p) ⊆

AB
3N

−1
(p1)∪AB

3N
−1

(p2). If p4 = ssp(−1)(−1) is black, this is also a neigh-

bor to p1 and p2 and hence, G[AB
3N

−1
(p)∪{p4}] is connected and p is not

cut. So, p4 is white. Let p5 = sp(−1). Now, the interchange 〈p, p5〉 pre-
serves the connectivity of the black in the resulting image as AB

3N
−1

(p) ⊆

AB
3N

−1
(p5). Assume p5 is a cut vertex of W3N

−1(I) (otherwise, we have

the above interchange). Consider the above interchange. If the white gets
disconnected after the interchange, it is only because there is a closed
black surface through p5 (p5 is now black) enclosing a white component.
This implies there is a B4 cycle through p5 in every 2D plane passing
through p5. (If we split a closed ball along any 2D plane, we get a cycle
in that plane. The smallest cycle possible is a single point in the case
where the plane is tangential. In our case, p5 would be that single point
(or pixel). But this implies that p5 being black is redundant for the ball
to exist which contradicts the assumption that the white is connected in
the original image.) In the 2D plane D1 −D2 through p5 in the resulting
image, p5 has only two B4 neighbors, p1 and p2 (the other two are white).
So, a B4 cycle through p5 implies the existence of an alternative path
between p1 and p2, not through p, in the original image which makes p

non-cut. So, the white is also connected in the resulting image and the
interchange preserves the connectivity.

Case 2(b) : p1 and p3 are black, p2 is white We aim to cover another
case of the eight here. Observe that AB

3N
−1

(p) ⊆ AB
3N

−1
(p1)∪AB

3N
−1

(p3).

Assume p5 (sp(−1)) is cut (otherwise, we do the interchange 〈p, p5〉 which
preserves the connectivity of the black in the resulting image). If the in-
terchange 〈p, p5〉 disconnects the white in the resulting image, we have
a B4 cycle in the plane D1 − D2 through p5 (as argued in the previous
sub-case). Of the four possible B4 neighbors we know that p1 is black

23

and two are white (p in the resulting image and p2). So, p4 (ssp(−1)(−1))
has to be black. This implies there is a path between p4 and p1, not
through p, in the original image. Assume p2 is cut (otherwise, we do the
interchange 〈p, p2〉 which preserves the connectivity of the black in the
resulting image as p1 and p3 are connected through p4 and p2). If p6 =
sp4

(0, 1) is white, it is easy to see that all white pixels in gp2
(−1)∪ gp2

(0)
are also neighbors of p6 and all white pixels in gp2

(1) are neighbors
of sp(1, 1). Moreover, there is the path p6,p5,sp(0,−1),sp(1),sp(1, 1) and
hence, G[AW

3N
−1

(p2)∪{sp(0,−1), sp(1), sp(1, 1)}] is connected making p2

non-cut. So, p6 is black. If sp2
(0, 1) is also black, there is a path between

p3 and p1 (p3,sp2
(0, 1),p6,p4,p1) making p non-cut. Thus, sp2

(0, 1) is white.
Consider the interchange 〈p, p2〉. If this disconnects the white in the re-
sulting image, we again have a B4 cycle through p2 in the plane D1 −D2

in the resulting image which implies there is a path between p6 and p3 in
the resulting image not through p2 which implies there is a path between
p6 and p3 and hence a path between p1 and p3 in the original image not
through p which again implies the neighborhood of p is connected and
p is non-cut. So, the interchange does not disconnect the white in the
resulting image and hence, preserves the connectivity.

Note : All the cases considered till now are sufficient for N = 2 just as
discussed in Bose et al. [1].

Case 2(c) : p1 is black, p2 and p3 are white We aim to cover the fourth
case here. Assume that p5 is cut (otherwise, 〈p, p5〉). If the interchange
〈p, p5〉 disconnects the white in the resulting image, we have a B4 cycle
in the plane D2 − D3 through p5. We know two of the four possible B4

neighbors, namely p1 which is black and p2 which is white. So, at least
one of the other two is black for the cycle to exist, say p7 = sp5

(0, 0,−1)
(the other one is sp5

(0, 0, 1); that can be taken up similarly and is not dis-
cussed). Thus, we assume the cycle goes through p7. Now, if at least one
of sp(0, 0, 1) and sp(−1, 0, 1) is black, the neighborhood of p is connected
and p is non-cut. So, both these pixels are white. This readily implies
G[AW

3N
−1

(p3)] is connected. Also, AB
3N

−1
(p) ⊆ AB

3N
−1

(p1) ∪ AB
3N

−1
(p3)

and after the interchange 〈p, p3〉, p3 is connected to p1 through p7 mak-
ing the black connected too. Thus, the above interchange preserves the
connectivity.

Case 2(d) : p1 is white We aim to cover the remaining four cases here.
Considering the interchange 〈p, p5〉, if p2 is white, there can be no B4

cycle in the plane D1 −D2 through p5 (it has exactly one B4 neighbor) in
the resulting image and hence, the interchange preserves the connectivity
irrespective of p5 being cut in the original image (it is easy to see that
the black is also connected in the resulting image). So, assume that p2

is black. Also, assume that p5 is cut (otherwise, we do the above inter-
change) and that the white is disconnected in the resulting image after
the above interchange. Now, there is a B4 cycle through p5 in the plane

24

D2 − D3. As described in the above sub-case, assume that p7 is black
which again implies the two pixels sp(0, 0, 1) and sp(−1, 0, 1) are white.
If every pixel in gp(−1,−1, 1) is white, the black neighborhood of p is
connected making it non-cut. So, at least one pixel in the above set is
black. Consider the pixel p4. If this is black, we have p2, p7 and any black
pixel in gp(−1,−1, 1) as neighbors of p4 implying G[AB

3N
−1

(p) ∪ {p4}] is
connected again making p non-cut. So, p4 is white. This implies there is no
B4 cycle through p5 in the plane D1 −D2 after the interchange 〈p, p5〉 (it
has exactly one B4 neighbor) making the white connected in the resulting
image contradicting the assumption. Thus, the interchange preserves the
connectivity irrespective of p5 being cut in the original image.

In all the above cases, φ(I) decreases after every interchange. ⊓⊔

Theorem 3 Any two B3N
−1,W3N

−1-connected N -dimensional images I and
J each having n black pixels are transformable and I can be converted to J

using a sequence of O(Nn2) (3N − 1)-local interchanges, where N > 1.

Proof. Using a simple induction on N and Lemma 3, we can show that I can
be converted to a 1-dimensional image, i.e., a straight line of n black pixels.
We repeat this for J and do the steps in reverse from the straight line back
to J . Every time a dimension is reduced, we need O(n2) interchanges. Thus,
the total number of interchanges becomes O(Nn2). It is easy to see that every
(3k−1 − 1)-local interchange is also an (3k − 1)-local interchange for any k and
hence, the theorem. ⊓⊔

7 Conclusions and Discussions

We show that two N -dimensional images are transformable under different
connectivity and interchange models. For any two B26-connected 3-dimensional
images I and J each having n black voxels with the total number of 8-
connected components in all 2-dimensional layers of I and J being c1 and
c2 respectively, are transformable using a sequence of O((c1 + c2)n

2) 26-local
interchanges. We also show B26-connectivity of two images under a more diffi-
cult interchange model. The general result shows that any two B3N

−1,W3N
−1-

connected N -dimensional images each having n black pixels are transformable
using a sequence of O(Nn2) (3N − 1)-local interchanges, where N > 1. A
B3N

−1,W3N
−1-connected model seems to be the easiest model to consider as

the options of (3N − 1)-local interchanges are more. The proofs presented
in this work are based on case analysis. Connectivity preserving transforma-
tions on other models of connectivity is turning out to be difficult to han-
dle in our current proof framework. This we think would require a rigorous
proof. More general neighborhoods that are based on distance functions (e.g.

25

hyper-rectangular neighborhood) also need to be considered. We leave these
for future exploration.

Acknowledgement

A preliminary version of the paper was presented at the 12th International
Workshop on Combinatorial Image Analysis, Buffalo, NY, USA, April 2008
[7]. We would also like to thank the anonymous reviewers for their critical
comments and constructive suggestions which have helped us in improving
the quality of the paper.

References

[1] P. Bose, V. Dujmovic, F. Hurtado, and P. Morin, “Connectivity-
Preserving Transformations of Binary Images”, Computer Vision and Image
Understanding, Elsevier, accepted 2007.
doi:10.1016/j.cviu.2007.06.003

[2] A. Dumitrescu, I. Suzuki, and M. Yamashita, “Motion planning for
metamorphic systems: feasibility, decidability and distributed reconfiguration”,
IEEE Transactions on Robotics and Automation, vol. 20, no. 3, 409-418, 2004.

[3] A. Dumitrescu, and J. Pach, “Pushing squares around”, Graphs and
Combinatorics, vol. 22, no. 1, 37-50, 2006.

[4] R. Klette, and A. Rosenfeld, Digital Geometry: Geometric Methods for Digital
Picture Analysis, Morgan Kaufman, Elsevier, New Delhi, India, 2005.

[5] A. Rosenfeld, P. K. Saha and A. Nakamura, “Interchangeable pairs of pixels in
digital images”, Pattern Recognition, vol. 35. no. 9, 1853-1865, 2001.

[6] A. Rosenfeld and A. Nakamura, “Two simply connected sets that have the same
area are IP-equivalent”, Pattern Recognition, vol. 34. no. 2, 537-541, 2002.

[7] A. Komuravelli, A. Sinha and A. Bishnu, “Connectivity Preserving Voxel
Transformation”, in: V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.),
Combinatorial Image Analysis, Lecture Notes in Computer Science, Vol. 4958,
Springer, Berlin, 2008, pp. 1-12.

26

	Introduction
	Connectivity and Interchange model
	Prior Work
	Our Work

	Preliminaries
	Definitions and Notations
	Definitions, Notations and Solution Strategy specific to B26
	Definitions, Notations and Solution Strategy specific to B3N-1,W3N-1

	The Strategy for Voxel Transformation in B26 model
	Construction of 2D Linear Chains
	Algorithm-Part I
	Algorithm-Part II
	Proof of Correctness and Overall Complexity

	Voxel Transformation in B26 model under Single Backbone Condition
	B26,W26-Connectivity Preserving Transformation
	The General Case: B3N-1,W3N-1 Connectivity Preserving Transformation
	Conclusions and Discussions
	References

