
Exploring Polygonal Environments by

Simple Robots with Faulty Combinatorial Vision

Anvesh Komuravelli1,⋆ and Matúš Mihalák2

1 Department of Comp. Science and Engineering, Indian Institute of Technology
Kharagpur, India

anvesh@cse.iitkgp.ernet.in
2 Institute of Theoretical Computer Science, ETH Zurich, Switzerland

matus.mihalak@inf.ethz.ch

Abstract. We study robustness issues of basic exploration tasks of simple
robots inside a polygon P when sensors provide possibly faulty information
about the unlabelled environment P . Ideally, the simple robot we consider is
able to sense the number and the order of visible vertices, and can move to
any such visible vertex. Additionally, the robot senses whether two visible
vertices form an edge of P . We call this sensing a combinatorial vision. The
robot can use pebbles to mark vertices. If there is a visible vertex with a
pebble, the robot knows (senses) the index of this vertex in the list of visible
vertices in counterclockwise order. It has been shown [1] that such a simple
robot, using one pebble, can virtually label the visible vertices with their
global indices, and navigate consistently in P . This allows, for example, to
compute the map or a triangulation of P . In this paper we revisit some
of these computational tasks in a faulty environment, in that we model
situations where the sensors “see” two visible vertices as one vertex. In
such a situation, we show that a simple robot with one pebble cannot even
compute the number of vertices of P . We conjecture (and discuss) that this
is neither possible with two pebbles. We then present an algorithm that
uses three pebbles of two types, and allows the simple robot to count the
vertices of P . Using this algorithm as a subroutine, we present algorithms
that reconstruct the map of P , as well as the correct visibility at every vertex
of P .

1 Introduction

Nowadays one of the main research areas in microrobotics is the study of sim-
ple mobile autonomous robots. The recent technological development made it
possible to build small mobile robots with simple sensing and computational
capabilities at a very low cost, which has launched an interest in the study
of distributed robotic systems – computation with swarms of robots, not
unlike the computational paradigm of wireless sensor networks (where a lot
of simple, small and inexpensive devices are spread in the environment, the

⋆ The work was done while the author was an internship student at ETH Zurich.

devices self-deploy in a working wireless network, gather data from the en-
vironment and provide simple computational tasks). Simple robots promise
to bring mobile computational capabilities into areas where previous ap-
proaches (usually of bulky construction) are not feasible or cost-effective.
The main advantages are quick and easy deployment, scalability, and cost-
effectiveness. This new concept raises new research problems, as the classical
schemes designed for centrally operated, or overwhelmingly equipped robots
are inapplicable to the lightweight and/or distributed computational models
of simple robots.

In this paper we consider one particular model of simple robots, the so
called simple combinatorial robot. In this model the robot is modeled as a
moving point inside a simple polygon P , and the sensing provides only “com-
binatorial” information about the surroundings. In particular, the robot does
not sense any metric information (such as angles, distances, coordinates, or
direction). Also, the robot can only move to visible vertices. Study of sim-
ple robots with possibly minimum requirements on the sensed information
is an attractive topic both in theory and practice, as minimalistic assump-
tions provide robots that are less susceptible to failures, they are robust
against sensing uncertainty and can be very inexpensive to build. In theory,
a minimalistic model allows a worst-case computational analysis and pro-
vides insights about complexity of various tasks: the positive results identify
the easy problems, while the negative results identify the difficult problem
for which a richer functionality and sensing is necessary.

The simple combinatorial robot was first defined and studied by Suri
et al. [1]. The robot operates inside a polygon P . We denote the set of
vertices of the polygon P by V = {v0, v1, . . . , vn−1}, where two vertices
vi and vi+1, i ≥ 0, form an edge ei = vi, vi+1 of P .1 The robot, initially
placed at vertex v0, can only move to a visible vertex, and while moving,
the robot does not sense anything about the environment. When the robot
lands at a vertex of P , it senses all visible vertices, but only the presence of
vertices – the vertices are unlabelled. The robot senses the vertices in a cyclic
order, which is the only way the robot can distinguish the vertices from each
other. Thus, a movement operation of the robot is simply of the form “move
to the i-th visible vertex”. The order of visible vertices is assumed to be
counterclockwise (ccw). Additionally, the robot senses whether two visible
vertices form a boundary edge of P . Positioned at vertex v, this is modelled
by a combinatorial visibility vector cvv(v) = (c0, . . . , ck), which is a binary
vector that encodes, given there are k + 1 visible vertices, whether the i-th
and (i + 1)-th visible vertex, i = 0, 1, . . . , form an edge of P (ci = 1) or not

1 To avoid notational overhead, we assume all operations on the indices to be modulo the
corresponding number (n in this case).

2

(ci = 0). The convention is that the vertex v is visible to itself, and v is the
0-th visible vertex of v. Figure 1 illustrates the concept of cvv’s. The robot
can use pebbles to mark vertices. If there is a visible vertex with a pebble,
the robot also senses the index of this vertex in the list of visible vertices
in ccw order. In case the robot uses pebbles of different types, the robot
also senses the type of the pebble. Naturally, the goal of computation with
pebbles is to use few pebbles and few different types of pebbles.

P

v0

v1 v2

v3

v4

v5

v6

P

R

1

2

3

0

Fig. 1. The left figure depicts a polygon P on vertices v0, . . . , v6. On the right figure, a
robot R is placed on vertex v0 of the same polygon. The visible region of the polygon
is shaded. The visible vertices (ordered ccw from the robot’s position) have only local
identifiers 0, 1, 2, and 3 (no global information) stating their position in the ccw order, and
the combinatorial visibility vector of v0 is cvv(v0) = (1, 0, 0, 1), as the visible vertices 0, 1
form an edge, vertices 1, 2 form a diagonal, vertices 2, 3 form a diagonal, and vertices 3, 0
form an edge of P

To understand capabilities of minimalistic robots, one studies what prob-
lems are solvable and which not, i.e., one is interested in the possibility only,
and does not primarily aim for the best running time of algorithms. Learning
and exploring the environment is a prime problem for any robotic system.
The results of Suri et al. [1] show that a simple combinatorial robot without
a pebble can decide whether the polygon P is convex. On the other hand,
without a pebble the robot cannot count the number of vertices, as shows
the result of [2]. Allowing the robot to use one pebble, the robot can virtually
label the vertices of P and construct a map of P , i.e., the visibility graph
G = (Vvis, Evis) of P , a graph with Vvis = V and with an edge between every
two vertices that are visible to each other in P . This then allows the robot to
consistently navigate inside the polygon, and, for example, compute a trian-
gulation of P . Computing the visibility graph of P is essentially everything
the simple combinatorial robot can do with one pebble, as was shown in [2].

In this paper we study the robustness issues of the simple combinatorial
robot in scenarios where the sensing does not provide accurate information.

3

In practice, two vertices visible from vertex v can be “seen” as being very
close to each other (e.g., they span a very tiny angle with v). If a very “sim-
ple” sensory device is used, these two vertices may wrongly be recognized
as a single vertex. This creates a faulty sensing for the robot. In this sec-
tion we model such situations formally and study conditions in which the
simple combinatorial robot can reconstruct the visibility graph of a simply-
connected polygon P (the visibility graph of P is often called the map of
the environment). We show in Section 2 that even counting the number of
vertices of P is not possible with one pebble. We conjecture that this is still
not possible with two pebbles. We then show that using three pebbles of two
different types allows the simple combinatorial robot to count the number of
vertices of P . In Section 3 we present an algorithm that allows a simple robot
with three pebbles of two different types to compute the visibility graph of
P , using the algorithm for counting as the main part. We conclude the paper
and outline some future work in Section 4.

Modeling Vertex Faults

For a given simply-connected polygon P on vertices V , a vertex fault is a set
F (V , |F | = 2. We will sometimes refer to a vertex fault simply as a fault.
A vertex that belongs to a vertex fault is called a faulty vertex. We denote
by F a collection of vertex faults, i.e., a set F = {F1, F2, . . . , Fm}, where
every Fi, i = 1, 2, . . . , m, is a vertex fault. We assume that the vertex faults
in F are mutually disjoint, i.e., no vertex belongs to more than one vertex
fault.

We define and study the simple combinatorial robot with vertex faults
(faulty robot for short) – a model derived from the simple combinatorial
robot that reflects our discussion on unreliable sensing. For a given polygon
P and a given set of vertex faults F , a faulty robot sitting at some vertex
v ∈ V senses its surrounding in P via the faulty combinatorial visibility vector
fcvv(v) which is defined from the cvv in the following way (consult Fig. 2
for illustration). Let cvv(v) be the combinatorial visibility vector of vertex
v in polygon P . For any two visible vertices x and y, x, y 6= v, that belong
to the same vertex fault F and that appear consecutively in the “vision” of
vertex v (recall that the visible vertices of v are considered in ccw order),
we remove from the cvv the information about x and y (i.e., we remove the
bit that encodes whether they form an edge or a diagonal in P). Doing so
for any such pair of vertices defines the faulty combinatorial visibility vector
fcvv of vertex v.

Thus, if vertex v does not see any vertex from a vertex fault, the cvv
and the fcvv are the same. Notice also that according to the definition, the
robot at vertex v cannot distinguish between vertices x and y from F only

4

if they lie consecutively next to each other (as observed from vertex v). The
reason for this is that from different positions the vertices x and y may cause
sensing problems, and from others not. Especially, if from some position the
vertices x and y do not appear consecutively, i.e., there is at least one vertex
w between them, then the robot’s sensing can distinguish between x and
y. The concept of the fcvv can also be seen as treating the two vertices of
a vertex fault as one “virtual” vertex (as observed by a robot), and then
defining the fcvv as the cvv with the virtual vertices. In this understanding,
the robot thus senses less vertices (than there really are). We will assume
that every vertex fault F = {uF , vF } is visible from a vertex of P , i.e., there
is a vertex v in P which sees both uF and uF with the correct vision (as
otherwise such a vertex fault does not give any faulty vision).

P

v

y

x

v′

w

F = {x, y}

cvv(v) = (1, 0, 1, 0, 1, 1)
fcvv(v) = (1, 0, 1, 1, 1)

v

v′

vF

Fig. 2. Illustration of a faulty combinatorial visibility vector. The left figure depicts a
polygon P with one vertex fault F = {x, y}. The vertices x and y appear consecutively in
the ccw order as seen from v (the dotted lines are the “vision” lines) and therefore fcvv(v)
differs from cvv(v) – the 0 encoding that x and y form a diagonal in P is removed. The
right figure depicts an alternative view on fcvv’s. The vertex fault {x, y} is seen by a robot
at v as one virtual vertex vF , and fcvv(v) is then the cvv of this new (faulty) vision with
vF in it

It remains to specify what happens if a robot decides to move to a
virtual vertex vF . In our model we assume that the robot can land non-
deterministically at either vertex of F . We study the worst-case behavior
of algorithms, and thus assume an adversary that decides where the robot
lands.

Finally, if a pebble is left at a faulty vertex of a vertex fault F , a robot
that sees the virtual vertex vF also sees the pebble as being placed at the
virtual vertex vF .

Related Work

The concept of simple, deterministic robots that sense no metric information
(distances, angles, coordinates, etc.) is a relatively new research area. The
simple combinatorial robot, the model we consider in this paper, was defined
and studied in [1]. The robot was shown be able to compute the visibility

5

graph of P using one pebble. A similar approach to minimalism was studied
for example by Yershova et al [3]. They study pursuit-evasion problems with
a robot that can only sense the type of the current vertex (reflex or convex
angle) and can only move along the boundary edges, but can continue in
the same direction after reaching a vertex with reflex angle. In these and
similar models (see e.g. [4] or [5] for other examples of similar models) the
considered sensing is very simple, yet the reliability of such sensing is crucial
for the solutions of the studied problems.

A recent, not directly related, but well studied area of fault-tolerance
with mobile robots addresses the computation issues with imprecise com-
passes. In this model, a set of asynchronous autonomous robots are placed
in a plane (i.e., not in a polygon) equipped with a sense of direction (and
distance) and capability to move an arbitrary distance in an arbitrary direc-
tion. An imprecise compass delivers a direction that can deviate from the
actual value, but the error is bounded. In this model, mainly the gather-
ing problem was studied [6,7]. Also for the gathering problem, the issue of
not obtaining perfectly accurate sensory input, and not having a perfectly
accurate movement was studied in [8] for asynchronous robots.

2 Counting the Number of Vertices

In this section we consider the elementary problem of inferring the number
of vertices of a polygon P by a faulty robot. We shall see that this problem,
being trivial in the fault-free case using one pebble, becomes non-trivial in
the presence of faults even with two pebbles. We will show, however, that a
robot with three pebbles of two types can compute the number of vertices
of P .

2.1 Counting with 1 Pebble

It is illustrative to consider first the case when there are no vertex faults.
In such a case the robot simply leaves a pebble on the current vertex and
moves around the boundary, always moving to its first visible vertex (which
is its “right” neighbor), counting the number of visited vertices, until the
robot comes back to a vertex with the pebble. In case of vertex faults this
simple strategy does obviously not work. Consider for example a convex
polygon on four vertices v0, v1, v2, v3 and one vertex fault F = {v1, v2}.
Assume that the robot initially sits at vertex v0. The robot drops the pebble
to mark v0 and moves to its right neighbor, which is a virtual vertex vF . The
adversary makes the robot land on v2. The robot then continues to v3 and
v0, visiting only three vertices in total. One could probably easily derive a

6

correct algorithm for this simple case, nonetheless we show that in general,
using only one pebble, there is no algorithm for the problem of counting the
number of vertices in the presence of vertex faults.

Theorem 1. Any simple robot with one pebble cannot count the number of
vertices of a polygon P with vertex faults.

Proof. Let A be an arbitrary (deterministic) algorithm for the simple robot
with one pebble. We will show that A cannot count the number of vertices
in every polygon P .

Consider polygons P1 and P2 in Fig. 3 with a different number of vertices.
The left polygon P1 is a square and the right polygon P2 is a convex polygon
on six vertices. P1 has no vertex fault, and P2 has three vertex faults F1 =
{v0, v1}, F2 = {v2, v3} and F3 = {v4, v5}. Thus, if we consider a robot placed
at a vertex of the vertex fault {v0, v1} for example, it can visually distinguish
between the vertices v0 and v1, but from either of these vertices the robot
sees v2, v3 as a single virtual vertex, and v4, v5 as another virtual vertex.
Let us denote by vF1

, vF2
, and vF3

the virtual vertices that correspond to
the vertex faults F1, F2, and F3, respectively.

v0

v1

v2

v3

v0

v1

v2v3

v4

v5

vF2

vF1

vF3

P1

P2

Fig. 3. Polygons used for the proof of Theorem 1

Observe first that a robot has the same view in both polygons, i.e.,
fcvv(v) = (1, 1, 1, 1) for any vertex v in both polygons. Thus, if the robot
does not use the pebble, it cannot count the number of vertices because if
after ℓ moves and observations in P1 it determines that polygon has four
vertices, then the same movements and observations can be made in the
second polygon, and thus the deterministic robot has to claim P2 has four
vertices, which is obviously wrong.

Let us consider the situation when a robot executing A (in both poly-
gons) drops a pebble. As P1 and P2 are symmetric we can, without loss of
generality, assume the robot drops the pebble at vertex v0 when run on any
of the two polygons. We now show that any movement of a robot execut-
ing A in P1 can be mimicked in P2 as well, by appropriate choices (by the

7

adversary) of a vertex the robot lands at, when moving to a virtual vertex
vFi

, i = 1, 2, 3, such that the observed fcvv’s remain the same, together with
the position of the pebble therein. If a robot in P1 moves to its first visible
vertex (i.e., to vertex v1 in our case), then robot in P2 attempts to move to
v1 as well, and thus the robot in P2 lands at v1 as well. Hence, the position
of the pebble in both cases is the same – the pebble is on the vertex which
is the robot’s left neighbor. Similarly, if the robot in P1 moves to its last vis-
ible vertex (i.e., to vertex v3), then robot in P2 attempts to move to vertex
vF3

and lands at vertex v5. If the robot in P1 moves to the second visible
vertex (vertex v2), then the robot in P2 lands at vertex v3. It is easy to check
that the position of the pebble is the same in both cases. Now (assuming
the pebble is still at vertex v0) for any position of the robot in P1 and any
movement of the robot to a visible vertex, the adversary can make the robot
in P2 mimic the movement by an appropriate choice of landings in P2. We
do not list all possible movements here, but give one more example only.
Assume the robot in P1 at vertex v2 moves to vertex v1 and then to vertex
v3. If the robot in P2 is at vertex v3, the algorithm A moves the robot first
to vertex v2, and then attempts to move the robot to vertex vF3

, and lands
at vertex v5 (by the choice of the adversary).

If the robot picks up the pebble in P1 so can the robot in P2, as we have
maintained the same vision and the position of the pebble is the same for
the robots in both polygons.

Thus, as the adversary can force the algorithm A to produce the same
vision sequence in both polygons, the algorithm cannot compute the number
of vertices in both polygons. ⊓⊔

2.2 Counting with 2 Pebbles

A natural question is to study the problem using two pebbles. While we do
not know whether two pebbles suffice to compute the number of vertices of
any polygon P , we outline the difficulties in designing such an algorithm.

Consider a (big) polygon which consists of “triangular cells” as depicted
in Fig. 4. The triangular cell can be seen as a triangle whose tips were cut
off. For the construction we cut off just a tiny bit so that the resulting two
vertices of a loose end have distance ε (ε as small as needed). Also, the
two vertices of every end of the cell form a vertex fault. We can glue the
triangular cells together as depicted in the figure. Starting from a central
triangular cell, we can grow the polygon to an arbitrary size by making the
newly glued cells smaller and smaller. To make the construction finite, we
just use triangular cells with no open ends. We make the construction such
that the two vertices of every vertex fault F appear consecutively in ccw
order as seen from any visible vertex, and thus the two vertices will be seen

8

by the robot as a single virtual vertex vF . For this to achieve, one has to
set an appropriate ε and an appropriate angle at which the new cells are
glued. For brevity we omit the precise description of the construction. We
note that the depiction in Fig. 4 is only schematic. We call the resulting
polygon triangular. For the moment we assume the polygon is big enough
for “anything which follows”, while the exact size will naturally become clear
at the end of the section.

vertex
fault

Fig. 4. Left: A “triangular cell” is a triangle with endpoints split into open ends. The two
vertices of each open end form a vertex fault. Right: The whole polygon is build from these
“triangular cells” by an appropriate rotation and scaling

We first prove a useful lemma that highlights the main technique for the
proof of the main result of this subsection.

Lemma 1. A simple robot with no pebbles can be made to stay within two
neighboring cells in any triangular polygon P . Furthermore, if the initial
vertex can be chosen by the adversary, the robot can be made to stay within
one cell.

Proof. The main trick is to choose the proper vertex v ∈ F where the robot
lands when it attempts to move to a virtual vertex vF . We (the adversary)
can choose this vertex arbitrarily (i.e., the robot does not notice the differ-
ence) as long as the vision from these two vertices is the same. Observe that
if the robot is not at the ending triangular cell, the vision is everywhere the
same, fcvv = (1, 1, 1, 1, 1, 1). Our choice of the landing vertex will depend on
what the robot wants to do after landing in vF . For the following discussion,
consult Fig. 5. Let s denote the vertex where the robot starts. Let e be the
vertex for which {s, e} is a vertex fault in P . Vertex s is a “gateway” to
two neighboring triangular cells A and B, with vertices as depicted in the
figure. We show how to make the robot stay in the cells A and B. Assume for
example the robot wants to move to its right neighbor (which is the virtual
vertex of the vertex fault {a, b}). The robot may land at a or b. We have

9

the freedom to choose. Depending on the robot’s next move we choose a or
b such that after the next move the robot stays in A or B. The important
observation is that a robot at a or b has the same sensing (the same fcvv)
and thus, as the robot is deterministic, has to do the same movement, re-
gardless of whether it lands at a or b. If the next move is “go to the i-th
visible vertex in ccw order”, where i is 1 or 2, then we make the robot land
at b (as if it landed at a, the next movement would bring the robot out of
A and B). Similarly, if the next move is “go to the i-th visible vertex in ccw
order”, where i is 4 or 5, then we make the robot land at a. Clearly, if the
next move is “go to the 3rd visible vertex”, the robot stays within the cells A

and B regardless of us choosing a or b as the landing vertex. Thus, we only
choose a or b according to the robot’s first movement that is different from
“go to the 3rd visible vertex”. After we have chosen the proper vertex a or b

for the robot to land, we can similarly argue for all subsequent movements.

s

b
a

c
d

e

f
g

h
i

AB

Fig. 5. A robot that does not use a pebble never leaves cells A and B

From the aforementioned arguments it is now an easy observation that if
the adversary can choose the initial vertex (i.e., either s or e) then the robot
can be made to stay within one cell (say, cell A in our case). ⊓⊔

Using the ideas of the previous lemma we show the following theorem

Theorem 2. If a faulty robot with two pebbles can count the number of
vertices of a triangular polygon P , then at any time of the computation the
two pebbles are at most two moves (of the robot) apart.

Proof. Let us consider the situation where the two pebbles B1 and B2 are
more than two moves apart. Thus, the pebbles are in two cells A and B

which do not share a single vertex. Let us consider the moment when the
robot places the second pebble B2 in cell B. We will show that the robot
cannot count the number of vertices of P . We will argue that the adversary
can choose landings in such a way that the robot will never come back to
cell A (where the first pebble B1 is placed). Thus, effectively, this will lead

10

into a situation of a robot with one pebble only. In this situation, however,
the robot cannot lose sight of the second pebble B2, as otherwise the robot
would end up in a situation of Lemma 1, according to which the adversary
can make the robot stay in one cell (forever). Clearly, if the robot cannot
lose the sight of the second pebble B2, it cannot visit all vertices of P (as
picking up the pebble B2 results into the situation of Lemma 1, and thus we
can make the robot to stay in one cell, never coming back to cell A), and
thus it cannot count the number of vertices of P .

Consider the situation in Fig. 6, where B1 denotes the first pebble, and
B2 denotes the second pebble. B1 lies in cell A, B2 lies in cell B, and there
is at least one more cell X between the two cells (and B1 and B2 do not
lie in X). We want to avoid the robot coming to a vertex of vertex fault
F1, the “gateway” to cell A. For this, we first argue about the position of
pebble B2 in cell B. It is placed at a vertex of a vertex fault F4 = {g, h}.
From the geometry of the setting and from our assumptions it follows that
the robot had to came to F4 from a vertex of P that did not see the pebble
B1. Hence, we (the adversary) can choose whether the robot lands at g or
h – the visibility will be the same, so the robot decides to place a pebble in
either case.

b

a

c d

e

f

B1

B2

F3

F1 F2
A B

X

g h

Fx

F4

Fig. 6. Pebbles B1 and B2 are separated by at least 3 moves

This effectively means that we (the adversary) can decide the location
of the pebble B2 to be g or h. Our decision depends on the next step(s) of
the robot. We may assume that the next step of the robot is a movement
(as collecting the right-now dropped pebble is useless and does not help the
robot to navigate or compute anything). Let us first consider the case in
which we let the robot land at vertex g to place the pebble B2 there. If the
robot never leaves the sight of B2 then the robot can clearly never come to

11

cell A, and it also cannot count the number of vertices of P . Thus, assume
the robot eventually leaves the sight of B2. Clearly, for one of the choices of
landing at g or h, the “leaving” of the robot does not happen at a vertex of
F2 (i.e., if for a particular choice of landing the “leaving” happens at a vertex
of F2, then for the other choice of landing the “leaving” happens at a vertex
of Fx – the symmetrically placed vertex fault to F2; this follows because the
robot will do the same sequence of movements in either case). Thus, choosing
the proper landing, the robot moves from a vertex of Fx to a cell with no
sight of a pebble, and thus it ends up at the situation of Lemma 1, which
guarantees that the robot will stay in one cell (forever). ⊓⊔

Thus, according to the theorem, the two pebbles have to be dropped in
adjacent cells, or in the same cell. This hints us that the robot should keep
track of the two pebbles such that they are not very far apart. Thus, as the
robot moves, it should move the pebbles too. While this may help in visiting
vertices, it is not obvious it helps in counting them exactly. This provokes
us to make the following conjecture.

Conjecture 1. A simple robot with two pebbles cannot count the number of
vertices of a polygon with vertex faults.

2.3 Counting with 3 Pebbles

Now, we present an algorithm for counting the vertices of a polygon with
any number of vertex faults using three pebbles of two different types.

Theorem 3. A simple robot with three pebbles of two different types can
count the number of vertices of a polygon P with vertex faults.

Proof. Our algorithm uses the distinct pebble (pebble of type 2) to mark the
start vertex v0, and two other identical pebbles (pebbles of type 1) to traverse
consistently along the boundary of P in ccw order. Starting at vertex v0, the
algorithm’s goal is to be able to go to the i-th vertex on the boundary,
i = 1, 2, 3, 4, . . . , until the pebble of type 2 is found again, and thus the
number of vertices of P is inferred. The pebble of type 2 will not have any
other usage in the algorithm.

As we have seen in the previous sections, going to the first vertex is
already impossible if no pebble is used (recall, just set {v1, v2} to be a vertex
fault and let the robot land at vertex v2 instead of landing at v1). Using two
pebbles, traversing the boundary consistently is possible. We will show how
to make one step of the traversing, i.e., how to move to the next vertex on
the boundary. The whole traversing is then just the repetition of these steps.

12

Assume the robot is at vertex v0 and it wants to walk to vertex v1. The
robot leaves a pebble (which is always of type 1 from now on) at v0 and it
attempts to move to its first visible vertex (which may be a virtual vertex).
Let us denote by v the vertex where the robot landed. Observe now that the
robot landed at vertex v1 if and only if the robot sees the pebble at the left
neighbor of v – the last visible vertex (possibly virtual) when considered in
ccw order. To see this, observe first that if the robot indeed landed at v1, it
sees a pebble at its left neighbor, even if v0 belongs to a vertex fault F and
the left neighbor is seen as a virtual vertex vF . On the other side, consider
the case when the robot did not land at v1, but at some other vertex v.
Thus, {v1, v} has to be a vertex fault of the polygon, and v0, v1, and v are
mutually visible. We want to show that v does not see a pebble at its left
neighbor (even if it is seen as a virtual vertex). This could only be possible if
v0 and the true left neighbor w of v formed a virtual vertex for v. However,
as v sees vertices v0, v1, and w in this order, v0 and w cannot form a virtual
vertex, as v0 and w do not appear consecutively in the combinatorial vision
of v.

The robot can thus easily check whether it landed at the desired vertex.
It just looks to its left neighbor and checks whether there is the pebble. If
the robot does not land at vertex v1, but at some vertex v instead, then
clearly {v1, v} is a vertex fault in P . Observe that vertex v sees v0 and v1.
The robot wants to move to v1. From the view of vertex v, vertex v1 is the
neighboring vertex of v0 (which is the vertex with the pebble) in ccw order.
Thus, the robot attempts to move to this vertex, and, as v and v1 form a
vertex fault, the robot lands correctly at v1. Let us call this strategy the
remedy procedure.

Thus, a robot can move to the neighboring vertex on the boundary using
one pebble. If the robot had more pebbles, it could just place a new one,
move to the neighboring vertex (using the same algorithm), etc. In case of
two pebbles only, the robot does the following. It leaves the second pebble
at the vertex v1 (it knows the current vertex is v1) and moves to the left
neighboring vertex, i.e., to v0. This can be done in a similar way as when the
robot walked from v0 to v1, just in the reverse, symmetrical order. The robot
again checks whether it landed at v0 (now it is easy, it just checks whether it
landed at a vertex with a pebble on it), and performs the (slightly altered)
remedy procedure, if needed. This time, if the robot does not land at v0,
the robot sees two pebbles, and thus it has to attempt to walk to the first
visible vertex with a pebble (in the order of vertices as seen from the robot’s
position). A robot at vertex v0 then collects the pebble and attempts to
move to the vertex with the second pebble, the vertex v1. If the robot lands
at v1, the robot can start the same algorithm again, thus getting from v1

13

to v2, etc. If the robot does not land at v1, however, then it lands at vertex
v which forms with v1 a vertex fault. From v the robot sees v1, and it can
identify v1 as the vertex with the pebble. Thus, the robot can attempt to
move to v1 where it also has to land.

We have presented a procedure which allows the robot to move from a
vertex to its neighboring vertex on the boundary, and keeps both pebbles
with the robot. Thus, repeating this procedure until the robot reaches the
pebble of type 2 allows the robot to count the number of vertices of P . ⊓⊔

3 Fault Detection and Map Construction

We have shown that a simple robot with three pebbles of two types can
count the number of vertices of a polygon P . Using the traversing procedure
we will show that the robot can also reconstruct the correct cvv at every
vertex of the polygon, and thus it can reconstruct the visibility graph of P .
This is actually a simple task to do while the robot traverses the boundary
of P , as the robot at position vi (before attempting to move to vertex vi+1)
can check whether it sees a vertex with the pebble of type 1 (the vertex v0),
and thus it can find out whether v0 and vi are visible in P . This proves the
following theorem.

Theorem 4. Simple robot with three pebbles of two different types can re-
construct visibility graph (and all cvv’s) of a polygon with vertex faults.

A related reconstruction-question arises, namely, can a simple robot iden-
tify all vertex faults? We present a procedure that allows the robot to identify
all vertex faults visible from the vertex v0. Repeating this procedure for all
other vertices vi, i = 1, 2, . . . , n, then allows to identify all vertex faults.
Again, the robot can identify all vertex faults visible from v0 using three
pebbles of two different kinds. First, the robot computes the number of ver-
tices of P using the algorithm of the previous section. After that, the robot
at vertex v0 takes the pebble of type 1 from v0, and traverses the polygon
(using the traversing procedure with the two identical pebbles). The robot
checks for every visited vertex vi, i = 1, 2, . . . , n, whether it is visible from
v0 by leaving the pebble of type 1 at vi, traversing back to v0, and checking
whether pebble of type 1 is visible from v0. If vertex vi is visible from v0 at
the same position (in the ordered list of visible vertices) as the previously
visible vertex v′, then (and only then) {v′, vi} forms a vertex fault visible
from v0.

Theorem 5. Simple robot with three pebbles of two different types can iden-
tify the vertices F of every virtual vertex vF .

14

4 Conclusions and Further Work

We have studied a particular model of faulty sensing of simple combinatorial
robots in a polygon P . We have shown that even the otherwise trivial task
of computing the number of vertices of P is not feasible for a robot with one
pebble. We have demonstrated difficulties a robot with two pebbles has to
count the number of vertices and conjectured that the robot cannot count.
Finally, we have presented algorithms that allows a robot with three pebbles
of two different types to count the number of vertices of P , to reconstruct
the visibility graph of P , and to identify all vertex faults.

An obvious open problem left is Conjecture 1. Similarly, one might want
to get rid of using two types of pebbles. As a future work we would like
to study other models of faults for simple combinatorial robots (e.g., move-
ment faults where the robot does not stop at reflex vertices), and possibly a
combination of these faults.

References

1. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local visi-
bility to global geometry. International Journal of Robotics Research 27(9) (September
2008) 1055–1067

2. Brunner, J., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Simple robots in polygo-
nal environments: A hierarchy. In: Proceedings of the 4th International Workshop on
Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS). (2008) 111–124

3. Yershova, A., Tovar, B., Ghrist, R., LaValle, S.: Bitbots: Simple robots solving com-
plex tasks. In: Proceedings of the Twentieth National Conference on Artificial Intelli-
gence and the Seventeenth Innovative Applications of Artificial Intelligence Conference.
(2005) 1336–1341

4. Tovar, B., Freda, L., LaValle, S.: Using a robot to learn geometric information from
permutations of landmarks. Contemporary Mathematics 438 (2007) 33–45

5. Ganguli, A., Cortés, J., Bullo, F.: Distributed deployment of asynchronous guards in art
galleries. In: Proceedings of the American Control Conference. (June 2006) 1416–1421

6. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with
inaccurate compasses. In: Proceedings of 10th International Conference on Principles
of Distributed Systems (OPODIS). (2006) 484–500

7. Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wad, K.: Dynamic compass models
and gathering algorithms for autonomous mobile robots. In: Proceedings of the 14th
Colloquium on Structural Information and Communication Complexity (SIROCCO).
(2007) 274–288

8. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors
and movements. In: Proceedings of the 23rd Annual Symposium on Theoretical Aspects
of Computer Science (STACS). (2006) 549–560

15

