
 1

The Learning Aspect Pattern

Alessandro Garcia Uirá Kulesza José Sardinha
Carlos Lucena Ruy Milidiú

Software Engineering Laboratory
Pontifical Catholic University of Rio de Janeiro - PUC-Rio - Brazil

{afgarcia, uira, sardinha, lucena, milidiu}@inf.puc-rio.br

Learning Aspect

An intelligent agent has the ability to learn and adapt itself as a result of
several events, including its own actions, its mistakes, its successive
interactions with the external world, and collaborations with other agents. As
the agents’ complexity increases, object-oriented abstractions cannot
modularize the learning-specific concerns that tend to spread across several
classes of the agent design. The Learning Aspect pattern documents an
aspect-oriented solution for the modularization of the learning concerns. The
pattern totally decouples the basic agent structure from the learning protocol,
which in turn improves the system reusability and maintainability.

Keywords Machine Learning, Aspect-Oriented Software Development, Intelligent Agents.

Context Agents need to learn based on internal and external events, including their

own actions, their mistakes, the successive interactions with the external
world and the collaborations with other agents [1, 2, 3]. The introduction of
the learning property to an agent design is typically based on the use of
machine learning techniques [2, 3]. Hence engineers of intelligent agents [2, 3,
4] must deal with the agents’ basic functionality, the agent services that are
made available to the clients, and with a number of learning-specific
concerns, which greatly increase the system complexity.

Many learning facets need to be considered [2, 3, 4], including the definition of
events that trigger the agent learning, the information gathering to enable the
learning process, the specification of the learning knowledge, the
implementation of the learning algorithms to process the gathered
information, and the adaptation of the current agent knowledge. In this
context, the separation of the learning concerns is crucial to make the agent
components easier to maintain and reuse.

Example Consider a multi-agent system that supports the management of paper
submissions for conferences as well as the reviewing process. This system is
from herein referred to as Expert Committee (EC). The EC system
encompasses user agents that are software assistants to represent system
users in reviewing processes. The basic functionality of the user agents is to
infer and keep information about the corresponding users related to their
research interests and their participation in scientific events.

In addition to their basic functionality, user agents can collaborate with each

 2

other; the collaboration concern comprises the roles [26, 27] played by the
agents. Each role represents collaborative activities in specific contexts. Each
EC agent plays different roles, but the main ones are chair and reviewer. Roles
are associated with plans, which implement more sophisticated collaborative
activities. The chair role has plans for distributing review proposals; the
reviewer role has plans for judging the chair proposals. The chair negotiates
with reviewers for performing reviews. Figure 1 shows classes representing the
agents’ basic functionalities and some examples of roles and plans; it does not
address the learning-specific concerns.

Collaboration

Agent

goals
agents
addAgent()
removeAgent()
…

UserAgent

researchInterests
agenda
publications
engagePC()
…

Plan

goal
agent
clone()
execute()
…

Distribution
Plan

executePlan()
distributePapers()
...

Judgement
Plan

executePlan()
judgeProposal()
...

Basic Functionality

ReviewProposal

paper
isAccepted()
getReviewer()
getPaper()
…

Chair

papers
deadline
reviewDeadline
getReviewers()
...

Reviewer

chairName
papersToReview
setChair()
...

Role

goals
collaborators
protocol
addAgent()
…

plays

performs

judges

Figure 1. Object-Oriented Design for the User Agents and their Roles (Without Learning)

EC agents also incorporate the learning property, using two widely-applied
learning techniques: Temporal Difference Learning (TD-Learning) [2] and Least
Mean Squares (LMS) [2]. The reviewer role uses TD-Learning in order to learn
the user preferences in the subjects he/she likes to review. The chair role uses
LMS to learn the reviewer preferences. In order to gather information relevant
to the learning process, user agents supervise the executions of their own
actions, the feedback from the users, their interactions with environment
components and their collaborations. Figure 2 presents the learning-related
components in addition to the basic agent design shown in Figure 1.

The combination of the Observer pattern [5] with the Strategy pattern [5] is a
flexible approach to the OO design of the learning concerns [6, 7]. The
Observer pattern implements the mechanism for event monitoring and
information gathering, while the Strategy pattern makes it flexible with respect
to the learning strategies. Consider a concrete example of this approach in the
context of the EC system, as shown in Figure 2. In such a system, the goal of
the Observer pattern is to notify the learning components of relevant events
that trigger the learning process. Operations on Plan, Agent, Role classes are
monitored to provide the learning component with contextual information and
start the learning process. The Agent and Role classes do not directly
implement the Observable interface because some agents and roles have not the
learning property. The LearningComponent class implements the Strategy pattern
and represents a family of different algorithms that implement the learning
techniques. The TD-Learning and LMS subclasses implement the specific
learning algorithms.

 3

Collaboration

Agent

goals
agents
addAgent()
removeAgent()
…

UserAgent

researchInterests
agenda
publications
LComponents
engagePC()
addLC()
notifyLC()
…

Plan

goal
agent
clone()
execute()
…

Distribution
Plan

Judgement
Plan

Basic Functionality

ReviewProposal

Chair

papers
deadline
reviewDeadline
LComponents
getReviewers()
addLC()
notifyLC()
...

Reviewer

chairName
papersToReview
LComponents
setChair()
addLC()
notifyLC()
...

Role

goals
collaborators
protocol
addAgent()
…

plays

performs

judges

Observable
addLC()
removeLC()
notifyLC()

LMS

processInfo()
getLR()
…

Learning
Component

learningRate
processInfo()
…

TD-Learning

processInfo()
getTD()
setReward()
…

Strategy
pattern

Learning

Legend:
– learning-specific members

– methods with some learning code
– learning-specific classes

LC – LearningComponent

paper
paperInterest
evaluationRate
isAccepted()
getPaper()
getPaperInterest()
getEvaluation()

LComponents
executePlan()
distributePapers()
addLC()
notifyLC()
...

LComponents
executePlan()
judgeProposal()
addLC()
notifyLC()
...

public Result judgeProposal(...) {
...
lc.processInformation();
...

}

Figure 2. Learning: the Observer Pattern with the Strategy Pattern.

However, the OO design of the learning concerns has a huge impact on the
agent structure. Learning issues crosscut multiple class hierarchies
representing other agent concerns, such as collaboration and the agent’s basic
functionality. As shown in Figure 2, although part of the learning concerns is
localized in the classes of the Strategy pattern, learning-specific code
replicates and spreads across several class hierarchies of a software agent.
Several participants (e.g. Chair, Reviewer, UserAgent, and Plan subclasses)
have to implement the observation mechanism and consequently have
learning code in them. Some classes (e.g. the RevisionProposal class) have
learning-specific knowledge. Adding or removing the learning code from
classes requires invasive changes in those classes.

Note that even if we try to refactor the OO solution presented in Figure 2, we
cannot find a more modular solution. One alternative solution is to try to
move the learning-specific methods and attributes from the agent classes to a
new class. However, the following problems still remain: (i) the agent classes
need to keep an attribute with a reference to this new learning-related class,
and (ii) the code relative to the information gathering remains scattered over
the methods on other agent classes (for example, the method
judgeProposal() in Figure 2). These problems happen because learning is a
crosscutting concern independently of the object-oriented decomposition used.

 4

Problem Object-oriented abstractions do not support the modularization of the learning
concerns. The design of the learning issues tends to affect or crosscut many
classes and methods that implement other agent concerns. This makes it hard
to distinguish between the learning protocol and other agent concerns
involved [9, 11, 20, 21]. Adding, removing or modifying the learning concerns
to/from a system is often an invasive, difficult to reverse change. How do we
separate the learning-specific concerns from the other concerns? The following
forces emerge from this problem:
• Transparency. The design solution should support the introduction of

learning behavior into existing systems in a way that is transparent to the
rest of the system.

• Reusability. The basic learning protocol should be easy to reuse to different
agent types and roles.

• Readability and Maintainability. Agent classes, which modularize the agent’s
basic functionality, should not be polluted with learning-specific knowledge.
Moreover agent classes should not be mixed with invocations of learning-
specific methods in order to improve the system readability and
maintainability.

• Ease of Evolution. The design of the learning concerns should be easy to
evolve as new learning-related requirements need to be satisfied. Changes
on the definition of observed events and on the learning strategies should
not affect the basic agent functionality.

• Code Replication. The design solution should minimize code replication
across different classes and methods of the multi-agent system.

• Flexibility. The design should be flexible enough to support the association
of different learning strategies with distinct agent types and role classes.

• Generality. The solution should be general enough to support the
modularization of the learning concerns independent of the used machine
learning techniques.

Solution Use aspects1 to improve the separation of the learning concerns (Figure 3).
Learning aspects are used to modularize the entire learning protocol,
including the learning-specific knowledge and the information gathering. The
Learning aspect separates the learning protocol from agent classes, such as
agent types, plans, and roles. By using Learning aspects, we define when and
how the agent learns. They specify how to extract information from diverse
agent components which are necessary to enable the agent learning.

The Learning aspects connect the agent classes with the corresponding
learning components, making it transparent to the agent’s basic functionality
the particularities of the learning algorithms in use. These aspects are able to
crosscut join points1 in the agent classes in order to change their normal
execution and invoke the learning components. The join points include the
change of a knowledge element, execution of actions on plans, roles, and
agent types, or still some threw exception. Auxiliary classes are used to
implement different learning techniques. Agent classes and Learning aspects
are combined through a weaving process, as illustrated in Figure 3.

1 Appendix A presents a brief overview of terminology related to aspect-oriented design.

 5

Lazy DogLazy DogLazy Dog

LearningLearningLearning

Intelligent DogIntelligent DogIntelligent Dog

Legend:
class

aspect

weaving

Figure 3. Diagram for Learning Aspect using the “Dog Learning” Example

Structure

Figure 4 illustrates the structure of the Learning Aspect pattern. The design
notation is based on an aspect-oriented modeling language [16, 17], which is
used throughout this paper. This language extends UML with notations for
representing aspects. The notations provide a detailed description of the
aspect elements. In this modeling language, an aspect is represented by a
diamond; it is composed of internal structure and crosscutting interfaces.

The internal structure declares the internal attributes and methods. A
crosscutting interface specifies when and how the aspect affects one or more
classes [16, 17]. Each crosscutting interface is presented using the rectangle
symbol with compartments (Figure 4). A crosscutting interface is composed of
inter-type declarations, pointcuts and advices. The first compartment of a
crosscutting interface represents inter-type declarations, and the second
compartment represents pointcuts and their attached advices. The notation
uses a dashed arrow to represent the crosscutting relationship, which relates
one aspect to classes and/or aspects.

The Learning Aspect pattern has four participants:

• Learning Aspect
- defines the general learning protocol.

• Specific Learning Subaspect
- implements the part of the learning that is specific to an agent type
or role.

• Learning Component
- implements a specific learning technique.

• Agent Element
- provides relevant events and contextual information for learning
purposes – this element can be a plan, an agent, a role, or other classes
that are part of the agent. They do not have any learning-specific code.

 6

Information
Gathering

<< crosscutting
interface >>

events_()

init()
learn()
...

init()
learn()
adaptKnowledge()
...

Agent

Role

Plan

events_()

Information
Gathering

Learning
Component

learningRate
processInformation()
...

belief1
...
setBelief1()
...

Learning
Knowledge

*

<< crosscutting
interface >>

<< crosscutting
interface >>

Learning

operation1()
...

Legend:
_beforeAdvice
afterAdvice_
aroundAdvice

Specific
Learning

agent
elements

crosscutts

Figure 4. The Static View of the Learning Aspect Pattern.

 In the structure of the Learning pattern (Figure 4), some parts are common
to all instantiations of the pattern, and other parts are specific to each
instantiation. The common parts are:

1. The general learning protocol (Learning Aspect):
 a. learning components are initialized,
 b. events are sensed,
 c. contextual information is gathered,
 d. learning components are called, and
 e. the agent knowledge is adapted.
2. The list of Learning Components in the Learning Aspect, i.e. the

references to components that implement more sophisticated learning
strategies.

3. The learning-specific knowledge.
4. The general structure of the Learning Components.

The specific parts are:
5. The definition of the specific events associated with an agent type or

role.
6. The specific information gathering.
7. The initialization of specific learning components used.
8. The adaptation of the agent knowledge.
9. The implementation of the specific Learning Components.

The purpose of the Learning aspect is to make the agents able to learn. The
Learning aspect extends the agent classes to introduce the learning protocol
to them. The Learning aspect has three main parts: the aspect itself and two

 7

crosscutting interfaces. The aspect holds the list of specialized learning
components, and the methods to update the agent knowledge since new
conclusions are obtained from the learning components. The crosscutting
interfaces define how the Learning aspect crosscut different classes of the
software agents.

The InformationGathering interface defines the join points that describe
the relevant events and the information which must be gathered from the
agent/role classes in order to enable the learning process. This interface
contains the advices which invoke either methods responsible for
implementing a learning behavior or a specific learning component. The
advices usually run after executions of methods on agent classes, role
classes and plan classes, and other classes eventually associated with the
agent. The LearningKnowledge interface introduces different learning-
specific attributes and methods into different agent/role classes based on
inter-type declarations.

Note that all the learning code is removed from the agent classes and is
separately implemented in associated learning aspects, as explained above.
The learning code consists of learning aspects and auxiliary classes devoted
to implement specific learning strategies. When the learning aspects are
woven with the system code, they essentially affect several agent classes; the
weaving process is required to compose the learning design with the other
agent concerns, such as the agent’s basic functionality and roles.

Dynamics Figure 5 presents the basic pattern dynamics: (i) the Learning Aspect detects
that a relevant operation (join point) on an agent/role class was performed,
(ii) the Learning Aspect intercepts this operation, (iii) the Learning Aspect
gathers event-related information through the advice parameters, (iv) the
Learning Aspect optionally updates some learning-specific knowledge, (v) the
Learning Aspect selects and calls the corresponding Learning Components,
providing them with the event-related information, (vi) the Learning
Components process the new information, (vii) if they get a conclusion, the
Learning Aspect updates the attributes of the agent/role classes.

:Specific
Learning:Plan

learn()

execute()

events_(AgentClass)

:Learning
Component

operation()

setKnowledge()

processInformation()

conclusion

adaptKnowledge()

:Agent:Knowledge
Element

setLearningKowledge()

Legend:
join point
object

aspect

Figure 5. Dynamic View of the Learning Aspect Pattern

 8

 Several events can trigger the agent learning [1, 2, 3, 4], including the
execution of internal agent actions, throwing of exceptions, messages
exchanged between agents, and events sensed in the external environment.
The pattern dynamics is illustrated in the next section in terms of the
example.

Solved
Example

Figure 6 illustrates the pattern instantiation for the EC system. The
Learning aspect and its subaspects crosscut about 12 different classes in
this system. However, the figure only presents a partial set of the classes
affected by the learning aspects; it shows the Reviewer class, the
RevisionProposal class, the UserAgent class, and the JudgementPlan
class. The Learning aspect has two subaspects: ChairLearning and
ReviewerLearning; Figure 6 illustrates only the ReviewerLearning
subaspect.

paperInterest
evaluationRate
...
getInterest()
...

Learning
KnowledgeRevisionProposal

paper
isAccepted()
getPaper()
getReviewer()
…

<< crosscutting
interface >>

events_()

Information
Gathering

<< crosscutting
interface >>

Information
Gathering

<< crosscutting
interface >>

init()
learn()
adaptKnowledge()
...

Learning

init()
learn()
getResponse()
...

Reviewer
Learning TDLearning

processInformation()
getTD()
getReward()
setReward()
…

Reviewer

UserAgent

JudgementPlan

execute()
judgeProposal()
...

Learning
Component

learningRate
processInformation()
...

*

events_()

Legend:
_beforeAdvice
afterAdvice_
aroundAdvice

crosscutts

Figure 6. The Learning Pattern for the Reviewer Role.

 The ReviewerLearning aspect affects the action of judging a proposal in
order to learn the user preferences. The execution of the judgeProposal()
method on the JudgementPlan class is an important event for the learning
purpose; once the judgment is concluded, the judgement-related information
is used by the learning aspect in order to learn about the user preferences.
The ReviewerLearning aspect catches the information associated with the
proposal judgement and the associated learning component is invoked (the
TDLearning class in this case).

 9

 The ReviewerLearning aspect also intercepts methods on the Reviewer
class, and on the UserAgent class. Figure 6 also illustrates how the
LearningKnowledge interface of the Learning aspect modifies the structure
of the RevisionProposal class. This interface introduces the attributes
paperInterest and evaluation and the associated “setters” and “getters”
so that the chair role can learn based on the reviewer evaluation.

 Figure 7, presents the pattern behavior when the ReviewerLearning aspect
detects that an important action on an agent plan was performed and
learning is required:

• The judgement plan is executed.

• Judgement actions are performed by calling the method
judgeProposal().

• The ReviewerLearning aspect detects the judgement result by
intercepting the end of the method execution.

• This aspect gathers the information needed from the plan context, i.e. the
RevisionProposal object.

• The aspect updates the RevisionProposal object so that the chair can
learn based on the reviewer judgement – it updates this object state by
invoking the methods setPaperInterest() and setEvaluation(), both
of them introduced by the Learning aspect.

• The ReviewerLearning aspect selects and calls the corresponding
learning components, the TDLearning class in this case, and provides
them with the contextual information.

• The aspect executes its specific algorithms and alternatively gets a
conclusion which leads to the adaptation of the agent knowledge, in this
example the update of the user’s research interests in the UserAgent
class.

:Reviewer
Learning

:Judgement
Plan

learnPreferences()

execute ()

events_(RevisionProposal)

:TDLearning

judgeProposal()

setResearchInterests()

processInformation(RevisionProposal)

getReward()

getTD()

conclusion

adaptKnowledge()

:UserAgent:Revision
Proposal

setPaperInterest()

setEvaluation()

Legend:
join point
object

aspect

Figure 7. Learning the Reviewer Preferences.

 10

Consequences The Learning Aspect pattern has the following consequences:
• Transparency. Aspects are used to introduce the learning behavior into

agent classes in a transparent way. The description of which agent
classes need to be affected is present in the aspect and these monitored
agent classes are not intrusively modified.

• Improved Separation of Concerns. The learning protocol is entirely
separated from the other agent concerns, such as the agent’s basic
concerns and interaction. The classes and aspects associated with other
agent concerns have no learning code.

• Reusability. The basic learning protocol is modularized in a generic
learning aspect, which can be reused and refined to different contexts.

• Readability and Maintainability. The agent kernel is not intermingled with
invocations of methods responsible for the learning implementation. As a
consequence, the pattern solution improves readability, which in turn
improves maintainability.

• Ease of Evolution. As the multi-agent system evolves, new agent classes
may have to be monitored and trigger the learning process. Agent
developers need only to add new pointcuts in the learning aspects in
order to implement the new required functionality.

• Reduced Code Replication. The pattern supports the isolation of the
learning protocol in learning aspects, minimizing the code replication.

• Flexibility. The pattern solution is flexible enough to support the
association of different learning strategies with distinct agent types and
role classes.

• Generality. The solution of the Learning Aspect pattern is general enough
to support the modularization of the learning concerns independent of
machine learning techniques in use. The pattern solution presents the
central components required in the learning techniques.

Although the learning-specific concerns are completely defined apart from
other agent concerns, the use of the pattern imposes some problems to the
agent designer:

• Required Refactoring. In some circumstances, the realization of the
Learning Aspect pattern requires restructuring of the base code
associated with other agent components in order to expose suitable join
points. In this way, capturing the learning concerns as aspects sometimes
requires restructuring of the classes and methods to expose suitable join
points. For instance, we have extracted code from existing methods of a
plan class into a new method to expose a method-level join point so that
the learning aspects can intercept it. Tools to help in the refactoring
would make it easier to introduce aspects into an existing system.

• Description of Learning Aspects Depends on Specific Core Classes. The
names of agent classes, role classes and plan classes appear in the
definition of pointcuts in the learning aspects. The description of a
Learning Aspect cannot be directly applied to other agents.

• Introduction of More Design Elements. The Learning Aspect pattern
introduces new design elements (aspects) to promote the separation of the
learning concerns. This solution introduces another level of indirection.

 11

Variants

Reflective Learning. This variant is similar to the aspect-oriented solution
presented here. However, this variant rests on the use of the Reflection
architectural pattern [29]. This reflective solution uses learning meta-objects
as an alternative to learning aspects. Each learning aspect is a meta-class
and learning subaspects are defined subclassing this meta-class. The
LearningKnowledge crosscutting interface is defined as attributes internal
to the learning meta-classes. The InformationGathering crosscutting
interface is defined using the meta-object protocol that intercepts the
methods calls (events) to objects and redirects the control flow to meta-
objects. The disadvantage of this reflective variant is that it requires a meta-
object protocol which usually introduces changes to the virtual machine. In
addition, reflective solutions do not directly support the composition of the
learning meta-classes with other meta-classes modularizing other
crosscutting concerns. As the agents’ complexity increases, good
composition mechanisms are essential to the system reusability and
maintainability.

Known Uses Developers have been using a design solution similar to the Learning Aspect
pattern to implement the Brainstorm framework for multi-agent systems
[20]. This framework implements the reflective learning variant. The
LearningAspect elements are implemented as meta-objects. We have also
implemented the Learning Aspect pattern both in the EC system [21] and in
the Portalware system [10, 11]. The Portalware system has learning aspects
associated with information agents in order to optimize user queries. The
queries are intercepted by the aspects, which is the information used by
learning components to build the user profiles. The user profiles are used to
optimize the next user queries.

 We know other software projects that implement learning in an OO manner
and could use this pattern. Some of these systems are the following:

• A real system [7, 13] developed for the participation in the Trading Agent
Competition (TAC) [30]. TAC is an international forum designed to
encourage high quality research on competitive trading agents. The multi-
agent system in TAC operates in a shopping scenario of goods for
traveling purposes. The artificial agents are travel agents that buy and
sell airplane tickets, hotel rooms, and entertainment tickets for clients.
There are two types of intelligent agents in this system which
incorporates machine learning techniques: the Hotel Negotiator Agent and
the Price Predictor Agent. The former uses: (i) a minimax decision tree [3]
and an evaluation function based on perceptrons [2] (neural networks) to
model the agent knowledge, (ii) a Learning aspect to modularize the
auction history and the final results of the auctions (learning-specific
knowledge), and the specification of methods called to finalize the
auctions (information gathering) - the events that trigger the agent
learning, and (iii) a Learning component that implements the TD-Learning
algorithm. The second agent uses: (i) an exponential smoothing technique
[34] to model the agent knowledge, (ii) a Learning aspect to separate the
ask prices and last predicted ask price (learning-specific knowledge), and
the specification of auction-related methods that are called in each
minute of the game (information gathering), and (iii) a Learning component

 12

which implements the Back Propagation [2, 4] and LMS algorithms.

 • A system [14] that implements the Tic-Tac-Toe game. The agents here use
a minimax decision tree [3] and neural networks to implement the agent
knowledge. A Learning aspect encapsulates the player trajectories and
the final result of the game (learning-specific knowledge), and the
specification of methods called to make new plays and to finalize the
game (information gathering). A Learning component was used to
implement an algorithm for adaptive dynamic propagation [3].

See Also

The Learning Aspect pattern is a variant of the Learning pattern [19]. The
Learning Aspect pattern is alternatively related to the Role Object pattern
[20] when this pattern solution is used to structure the agent roles; the
learning aspects learn based on the execution of role methods. The
Learning Aspect pattern contains the aspect-oriented implementation of
the Observer pattern [22, 32]. The Strategy pattern [5] can be used to
implement different learning strategies. Finally, the implementation of the
Learning Aspect pattern (see below) uses some idioms [23] for the AspectJ
language [24], like Template Advice, Composite Pointcut, and Advice
Method.

Implementation We describe below some guidelines for implementing the Learning Aspect
pattern. We give AspectJ [24] code fragments to illustrate a possible
implementation of the pattern, describing details of the EC example.
Although we illustrate an implementation of the Learning Aspect pattern in
AspectJ, the pattern can be specified using a different aspect-oriented
programming language following the guidelines presented.

Step 1: How to define a Learning Aspect?
A Learning Aspect must define the general learning protocol. This aspect
must define the attributes and methods common to all the learning aspects
in the system. For example, it holds a reference to the associated learning
components, an abstract method to initialize these components, and an
abstract method to invoke the learning components.

 The EC system contains the implementation of a general Learning
aspect to both chair and reviewer agent roles. This aspect is declared as
abstract. Note that the initialization method is called by an after advice,
which is in turn associated with an abstract pointcut. Pointcuts are used
to define which join points on the object execution the aspect is interested
to observe.

 13

 These pointcuts must expose as parameters the information (object
instances) necessary to be used in the aspect context. Advices associated
with these pointcuts invoke methods on aspects and classes, and if it is
necessary they pass the information gathered in the pointcuts as
arguments. The learningInstantiation pointcut describes when a specific
learning aspect should be initialized; it is abstract because it depends on
the agent type or role class associated with the specific learning aspect.
This aspect also specifies the methods: (i) learnPreferences()– which is
responsible for invoking the learning components; and (ii)
updatePreferences()– which updates the user research interests, after the
execution of the learning algorithm.

public abstract aspect Learning {

...
protected Hashtable Role.learningComponents = new Hashtable();

protected void abstract init(Role role);

protected abstract pointcut learningInstantiation(Role role);

 after(Role role): learninInstantiation(role) {
 System.out.println("<* Learning *> initialization:" + ((Role)role).getName());
 init(role);
 }

 public Hashtable abstract learnPreferences(Hashtable currentInterests,
 Vector my_keywords, boolean newDecision, int currentPaperInterestDegree);

public void updatePreferences(Hashtable currentInterests, Hashtable newPreferences)
{ ...}

 ...
}

 Step 2: Why the Learning aspect must be singleton?

In general, each agent instance must have its own Learning aspect. As a
consequence, Learning aspects must be instantiated per Agent instance.
The current version of AspectJ supports the specification of per-object
aspects. We could describe the instantiation of the Learning aspect using
perthis:

public abstract aspect Learning perthis(Agent) {…}

However, the use of perthis restricts the scope of the aspect. When one
AspectJ aspect is declared to be singleton or static, its scope is the whole
system and the aspect can crosscut all system classes. Per-object aspects
can only crosscut the object with which it is associated. Since the learning
protocol crosscuts several classes, not only the Agent class or the Role
class, the perthis clause cannot be used in this context. As a result, you
have to declare Learning aspects as singletons and introduce the methods
and attributes to the Agent and Role classes. This was the strategy followed
in the definition of the learningComponents attribute described in Step1.

 14

 Note that although the structure of the Learning Aspect pattern does not
describe these aspect members as part of a crosscutting interface, they have
to be introduced due to AspectJ restrictions. They are declared as protected,
which means that “they are protected to the aspects”: only code in the
aspect and subaspects can see these fields and methods. If the Agent or
Role class has other protected members named in the same way (declared in
Agent or in another class) there will not be a name collision, since no
reference to these members will be ambiguous. The use of inter-type
declarations complicates the design of the Learning aspect since it requires
the agent or role instance to be exposed as a parameter in each advice of the
Learning aspect.

 The Learning aspect in the EC system is implemented in AspectJ as a
singleton aspect since it crosscuts many system classes. In this sense, the
Role instance is passed as a parameter in the advices of the Learning
aspects so that the advice code can determine which system’s role is in
charge of being adapted.

 Step 3: How to define the interface for information gathering?
The Learning aspect must define the abstract pointcut events()responsible
to declare join points in the object execution where the learning algorithms
must be invoked. This pointcut must be refined in the concrete learning
subaspects. You should use: (i) the Composite Pointcut idiom [23] when there
are several events to be monitored, and (ii) the Advice Method idiom [23] for
deciding whether an event is relevant or not for the learning process.

public abstract aspect Learning {

...

protected abstract pointcut events(RevisionProposal proposal, Plan plan);

 ...
}

 Step 4: How to define the interface for learning knowledge?
You must define each element of the learning knowledge as an inter-type
declaration in AspectJ. Sometimes, the learning knowledge affects several
agent classes and role classes. In these cases, you should use the
Introduction Container idiom [23].

 In the EC system, the abstract Learning aspect introduces the attributes
evaluation and paperInterest in the RevisionProposal class, in order to
become possible that the chair and reviewer roles can learn based on the
paper evaluation.

 public abstract aspect Learning {
 ...
 private Hashtable RevisionProposal.evaluation = new Hashtable();

 private int RevisionProposal.paperInterest = 0;

 public Hashtable RevisionProposal.getEvaluation() {
 return evaluation;
 }

 15

 public void RevisionProposal.setEvaluation(Hashtable evaluation){
 this.evaluation = evaluation;
 }

 public int RevisionProposal.getPaperInterest(){
 return paperInterest;
 }

 public void RevisionProposal.setPaperInterest(int interest) {
 this.paperInterest = interest;
 }
 ...
}

 Step 5: How to define a specific Learning aspect?
You must create learning subaspects to define the learning behavior specific
to an agent type or role context by extending the abstract Learning aspect.

 In the EC system, we implemented the specific learning aspects to both
chair and reviewer agent roles. An agent playing the chair role learns new
research interests of a specific reviewer based on the reply of the paper
review proposal. An agent playing the reviewer role learns new research
interests of a user based on its feedback. Since the chair and reviewer
learning have common aspects and are inter-related, we implemented their
behavior in an aspect hierarchy, composed by the Learning aspect and
ChairLearning and ReviewerLearning subaspects.

For example, the ChairLearning aspect implements the abstract pointcut
events(), defined in the abstract Learning aspect, by intercepting the
method verifyReviewerResponse() of the ProposalJudgementReceptionPlan
class. This pointcut is associated with an after advice, which is responsible
for evaluating the paper revision proposal returned by the reviewers
(invoking the method learnPreferences()). This advice is also responsible
for updating their research interests (invoking the method
updatePreferences()), using the information (evaluation and paperInterest
attributes) introduced in the RevisionProposal class.

 public aspect ChairLearning extends Learning {
 ...
 // (reviewer name, table of research interests)
 public Hashtable Chair.reviewers = new Hashtable();

 protected pointcut events(RevisionProposal proposal, Plan plan): (
 this(plan) && args(proposal) &&
 execution(void JudgementReceptionPlan.evaluateResponse(RevisionProposal)));

 after (RevisionProposal proposal, Plan plan): events(proposal, plan) {
 boolean acceptedProposal = proposal.isAccepted();
 Paper paper = proposal.getPaper();
 ResearchArea area = paper.getResearchArea();
 Vector paperKeywords = area.getResearchKeywords();
 Hashtable reviewerEvaluation = proposal.getEvaluation();
 int reviewerInterest = proposal.getPaperInterest();
 Reviewer reviewer = proposal.getReviewer();
 String reviewerName = reviewer.getName();

 16

 //getting the reviewer' current interests
 Hashtable reviewerPreferences = (Hashtable)reviewers.get(reviewerName);

 //learning the new user interests
 Hashtable newPreferences = learnPreferences(reviewerPreferences,
 paperKeywords, acceptedProposal, reviewerInterest);

 //update my preferences
 updatePreferences(reviewerPreferences,newPreferences);
 }

 public Hashtable learnPreferences(Hashtable currentInterests,Vector my_keywords,
 boolean newDecision, int currentPaperInterestDegree) {...}
}

 The ReviewerLearning subaspect defines the pointcut events() by
intercepting the method judgeProposal() of the JudgementPlan class. This
pointcut is associated with an after advice, which invokes the method
learnPreferences() passing the information about the paper revision
proposal. This invocation results in the update of the reviewers’ research
interests based on their evaluation.

 Step 6: How to define learning knowledge specific to an agent type?

In general, the learning knowledge is defined only at the Learning aspect
(Step 4). However, there is sometimes a need for defining learning knowledge
specific to an agent type or role. In this case, you only need to define this
specific learning knowledge as inter-type declarations in the subaspects.

 The ChairLearning aspect specifies the reviewers attribute which
maintains the learning knowledge about the research interests of the
reviewers. This attributed is introduced to the Chair class. The attribute
reviewer is initialized through the pointcut learningInitialization()and
its respective advice; this advice runs before the execution of the method
sendPapersToReviewer() of the PaperDistributionPlan class.

public aspect ChairLearning extends Learning {

...
// (reviewer name, table of research interests)
public Hashtable Chair.reviewers = new Hashtable();
...

}

 Step 7: How to initialize a specific Learning aspect?

A specific Learning aspect needs to be initialized when a given event
happens. The initialization involves attributes of the specific Learning
aspect, and the associated Learning Components. Use a pointcut to define
when the aspect should be initialized. Use an advice to implement the
initializations, and associate this advice with the initialization pointcut.

 The ChairLearning aspect specifies an initialization pointcut. The
triggering event is the beginning of the paper distribution, i.e. the execution
of the sendPapersToReview() method.

 17

public aspect ChairLearning extends Learning {
 ...
 protected pointcut learningInitialization(Agent agent, Reviewer reviewer, List papers):

args (agent, reviewer, papers) &&
 call(public void PaperDistributionPlan.sendPapersToReviewer(Agent,Reviewer,List));

 before (Agent agent, Reviewer reviewer, List papers):
 learningInitialization(agent, reviewer, papers) {
 String reviewerName = reviewer.getName();
 Hashtable reviewer_interests =
 (Hashtable) reviewers.get(reviewerName);
 if (reviewer_interests == null) {
 reviewer_interests = new Hashtable();
 reviewers.put(reviewerName, reviewer_interests);
 }
 // Initialize the research interest of the reviewer
 ...
 }

}

Acknowledgments We would like to give special thanks to James Noble, our shepherd in
PLoP’04, for his important comments, helping us to improve our
pattern. We would also like to thank Daniela Brauner for helping us to
produce Figure 3. This work has been partially supported by CNPq
under grant No. 141457/2000-7 for Alessandro Garcia, grant No.
140252/2003-7 for Uirá Kulesza, grant No. 140601/2001-5 for José
Sardinha, and by FAPERJ under grant No. E-26/150.699/2002 for
Alessandro. The authors are also supported by the PRONEX Project
under grant 7697102900, and by ESSMA under grant 552068/2002-0
and by the art. 1st of Decree number 3.800, of 04.20.2001.

References
[1] Camacho, D. et al. MAPWEB: Cooperation between Planning Agents and Web Agents.

Information & Security: An International Journal, Vol 8, N 2, pp. 209-238, 2002.
[2] Mitchell, T. Machine Learning. McGraw Hill, New York, 1997.
[3] Russell, S., Norvig, P. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002.
[4] Bigus, J., Bigus, J. Constructing Intelligent Agents Using Java: Professional

Developer's Guide Series. 2nd Edition, John Wiley & Sons, 2001.
[5] Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, Reading, MA, 1995.
[6] Kendall, E. et al. A Framework for Agent Systems. Implementing Application

Frameworks – Object-Oriented Frameworks at Work, M. Fayad et al. (eds.). John
Wiley & Sons: 1999.

[7] Sardinha, J., Milidiú, R., Lucena, C., Paranhos, P., Cunha, P. LearnAgents - A multi-
agent system for the TAC Classic. Poster Session at AAMAS'2004 - Trading Agent
Competition, New York, NY, July 2004

[8] Sardinha, J., Ribeiro, P., Lucena, C., Milidiú, R. An Object-Oriented Framework for
Building Software Agents. Journal of Object Technology, Jan 2003, Vol. 2, No. 1.

[9] Pace, A., Campo, M., Soria, A. Architecting the Design of Multi-Agent Organizations
with Proto-Frameworks. In: Software Engineering for Multi-Agent Systems II, LNCS
2940, Feb 2004, pp. 75-92.

[10] Garcia, A.,Cortés,M., Lucena,C. An Environment for the Development and
Maintenance of E-Commerce Portals based on a Groupware Approach. Proc. of the
IRMA’01 Conference, Toronto, May 2001, pp. 722-724.

 18

[11] Garcia, A., Lucena, C., Cowan, D. Agents in Object-Oriented Software Engineering.
Software: Practice & Experience, Elsevier, Vol. 34, Issue 5, April 2004, pp. 489 - 521.

[12] Garcia, A., Sant'Anna, C., Chavez, C., Lucena, C., Staa, A. Separation of Concerns in
Multi-Agent Systems: An Empirical Study. In: Software Engineering for Multi-Agent
Systems II, LNCS 2940, Jan 2004.

[13] Sardinha, A., Garcia, A., Lucena, C., Milidiú, R. On the Incorporation of Learning in
Open Multi-Agent Systems: A Systematic Approach. Proc. of the 6th AOIS Workshop
at CAiSE’04, Riga, Latvia, June 2004.

[14] Sardinha, J., Milidiú, R., Lucena, C., Paranhos, P. An OO Framework for Building
Intelligence and Learning Properties in Software Agents. Proc. of the SELMAS’03
Workshop, Portland, USA, May 2003.

[15] Bellifemine, F., Poggi, A., Rimassi, G. JADE: A FIPA-Compliant Agent Framework.
Proc. of the Practical Applications of Intelligent Agents and Multi-Agents, April 1999;
pp. 97-108.

[16] Chavez, C. A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis,
Computer Science Department, PUC-Rio, April 2004, Rio de Janeiro, Brazil.

[17] Chavez, C., Lucena, C. Design-level Support for Aspect-oriented Software
Development. Proc. of the Workshop on Advanced Separation of Concerns at
OOPSLA'2001, Tampa Bay, USA, October 14, 2001.

[18] AspectWerkz Website. Simple, Dynamic, Lightweight and Powerful AOP for Java.
http://aspectwerkz.codehaus.org/

[19] Sardinha, J., Garcia, A., Milidiú, R., Lucena, C. The Learning Pattern. Proc. of the 4th
SugarLoafPLoP'04. Aug 2004, Fortaleza, Brazil.

[20] Amandi, A., Price, A. Building Object-Agents from a Software Meta-Architecture. In:
Advances in Artificial Intelligence, LNAI, vol. 1515, Springer, 1998.

[21] Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. Doctoral Thesis,
Computer Science Department, PUC-Rio, Rio de Janeiro, Brazil, April 2004.

[22] Hannemann, J., Kiczales, G. Design Pattern Implementation in Java and AspectJ.
Proc. of OOPSLA’02, November 2002, pp. 161-173.

[23] Hanenberg, S., Unland, R., Schmidmeier, A. AspectJ Idioms for Aspect-Oriented
Software Construction. Proc. of the EuroPlop’03, Irsee, Germany, June 2003.

[24] AspectJ Team. The AspectJ Programming Guide. Mar 2003, eclipse.org/aspectj
[25] Kiczales, G. et al. Aspect-Oriented Programming. Proc. of the European Conference on

OO Programming - ECOOP’97, LNCS 1241, Springer, Finland, June 1997.
[26] Fowler, M. Dealing with Roles. Proceedings of the 4th Annual Conference on the

Pattern Languages of Programs, Monticello, Illinois, USA, September 2-5, 1997.
[27] Odell, J., Parunak, H., Fleischer, M. The Role of Roles in Designing Effective Agent

Organizations. Software Engineering for Large-Scale Multi-Agent Systems, LNCS
2603, Springer, April 2003, pp. 27-38.

[28] Bowerman, B., O'Connell, R. Forecasting and Time Series: An Applied Approach.
Thomson Learning; 3rd edition, Massachusetts: Duxbury Press, March 1993.

[29] Buschmann, F. et al. Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley Sons, 1996.

[30] TAC web site.: http://www.sics.se/tac.
[31] Kiczales, G. et al. An Overview of AspectJ. Proceedings of the European Conference on

Object-Oriented Programming (ECOOP’01), Budapest, Hungary, 2001.
[32] Garcia,A., Sant'Anna,C., Figueiredo,E., Kulesza,U., Lucena,C., Staa,A. Modularizing

Design Patterns with Aspects: A Quantitative Study. Proc. of the 4th Intl. Conference
on Aspect-Oriented Software Development (AOSD'05), Chicago, USA, March 2005.

[33] Masuhara, H., Kiczales, G. Modeling Crosscutting in Aspect-Oriented Mechanisms.
In Proc. of ECOOP2003, LNCS 2743, pp.2-28, Darmstadt, Germany, 2003.

 19

Appendix A – Aspect Terminology

This appendix contains a brief overview of the terminology associated with aspect-oriented
software development. We have used the terminology described by Kiczales et al [24, 31]
and adopted by many aspect-oriented programming languages, such as AspectJ [24] and
AspectWerkz [18]. We present below the main terms that are usually considered as a
conceptual framework for aspect-orientated design and programming [16, 23, 25, 31, 33].

Aspects. Aspects are modular units that aim to support improved separation of
crosscutting concerns. An aspect can affect, or crosscut, one or more classes and/or
objects in different ways. An aspect can change the static structure (static crosscutting) or
the dynamics (dynamic crosscutting) of classes and objects. An aspect is composed of
internal attributes and methods, pointcuts, advices, and inter-type declarations.

Join Points and Pointcuts. Join points are the elements that specify how classes and
aspects are related. Join points are well-defined points in the dynamic execution of a
system. Examples of join points are method calls, method executions, exception throwing
and field sets and reads. Pointcuts have name and are collections of join points.

Advices. Advice is a special method-like construct attached to pointcuts. Advices are
dynamic crosscutting features since they affect the dynamic behavior of classes or objects.
There are different kinds of advices: (i) before advices - run whenever a join point is
reached and before the actual computation proceeds; (ii) after advices - run after the
computation “under the join point” finishes; (iii) around advices run whenever a join point
is reached, and has explicit control whether the computation under the join point is
allowed to run at all.

Inter-Type Declarations. Inter-type declarations either specify new members (attributes
or methods) to the classes to which the aspect is attached, or change the inheritance
relationship between classes. Inter-type declarations are static crosscutting features since
they affect the static structure of components.

Weaving. Aspects are composed with classes by a process called weaving. Weaver is the
mechanism responsible for composing the classes and aspects. Weaving can be performed
either as a pre-processing step at compile-time or as a dynamic step at runtime.

