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Abstract
Step-indexed semantic models of types were proposed as an alter-
native to purely syntactic proofs of type safety using subject reduc-
tion. Building on work by Ahmed, Appel and others, we introduce
a step-indexed model for the imperative object calculus of Abadi
and Cardelli. Providing a semantic account of this calculus using
more ‘traditional’, domain-theoretic approaches has proved chal-
lenging due to the combination of dynamically allocated objects,
higher-order store, and an expressive type system. Here we show
that the step-indexed model can interpret a rich type discipline with
object types, subtyping, recursive and bounded quantified types in
the presence of state.

Keywords Formal calculi, type systems, language semantics

1. Introduction
The imperative object calculus of Abadi and Cardelli is a very
small, yet very expressive object-oriented language [2]. Despite
the extreme simplicity of its syntax, the calculus models many
important concepts of object-oriented programming, as well as
the often subtle interaction between them. In particular it raises
interesting and non-trivial questions with respect to typing.

In contrast to the more common class-based object-oriented
languages, in the imperative object calculus every object comes
equipped with its own set of methods which can be updated at run-
time. As a consequence, the methods need to reside in the store, i.e.
the store is higher-order. Moreover, objects are allocated dynami-
cally and aliasing is possible. Dynamically-allocated, higher-order
store is present in different forms in many practical programming
languages (e.g. pointers to functions in C and general references in
SML), but it considerably complicates the construction of adequate
semantic models in which one can reason about the behaviour of
programs (cf. [29]).

Purely syntactic arguments such as subject-reduction suffice for
proving the soundness of traditional type systems. However, once
such type systems are turned into powerful specification languages,
like the logic of objects of Abadi and Leino [4] or the hybrid
type system of Flanagan et al. [18], arguments based solely on the
operational semantics seem no longer appropriate. The meaning
of assertions is no longer obvious, since they have to describe
the code on the heap. We believe that specifications of program
behaviour should have a meaning independent of the particular
proof system on which syntactic preservation proofs rely, as also
argued by [13, 30].

In the setting described above one would ideally prove sound-
ness with respect to a semantic model that makes a clear distinction
between semantic validity and derivability using the syntactic rules.
However, building such semantic models is challenging, and there
is currently no fully satisfactory semantic account of the imperative
object calculus:

Denotational semantics. Domain-theoretic models have been em-
ployed in proving the soundness of the logic of Abadi and Leino
[30, 31]. However, the existing techniques fall short of provid-
ing convincing models of typed objects: [31] considers an un-
typed semantics, and the model of [30] handles neither second-
order types, nor object types with variance annotations. Due
to the dynamic-allocated higher-order store present in the im-
perative object calculus, the models rely on techniques for re-
cursively defined domains in functor categories [24, 28]. This
makes them complex, and establishing properties even for spe-
cific programs often requires a substantial effort.

Equational reasoning. Gordon et al. develop reasoning principles
for establishing the contextual equivalence of untyped objects,
and apply them to prove correctness of a compiler optimiza-
tion [19]. Jeffrey and Rathke consider a concurrent variant of
the calculus, and characterize may-testing equivalence in terms
of the trace sets generated by a labeled transition system [22].
In both cases the semantics is limited to equational reasoning,
i.e. establishing contextual equivalences between programs. In
theory, this can be used to verify a program by showing it equiv-
alent to one that is trivially correct and acts as a specification.
However, this can be more cumbersome in practice than using
program logics, the established formalism for specifying and
proving the correctness of programs.

Translations. Abadi et al. [3] give an adequate encoding of the
imperative object calculus into a lambda calculus with records,
references, recursive and existential types and subtyping. To-
gether with an interpretation of this target language, an ade-
quate model for the imperative object calculus could, in prin-
ciple, be obtained. However, we are not aware of any adequate
domain-theoretic model for general references and impredica-
tive second-order types. And, even if such a model would be
constructed, it will still be preferable to have a self-contained
model for the imperative object calculus, without the added
complexity of the (non-trivial) translation.

A solution to this problem could be the step-indexed semantic
models introduced by Appel et al. as an alternative to subject-
reduction proofs [9, 10]. Such models are based directly on the
operational semantics, and are much simpler than the existing
domain-theoretic models. In this setting the types are simply in-
terpreted as sets of syntactic values indexed by a number of com-
putation steps. Intuitively, a term belongs to a certain type if it
behaves like an element of that type for any number of steps. Ev-
ery type is built as a sequence of increasingly accurate semantic
approximations, which allows one to easily deal with recursion.
Type safety is an immediate consequence of this interpretation of
types, and the semantic counterparts of the usual typing rules are
proved as independent lemmas, either directly or by induction on
the index. Ahmed et al. successfully applied this generic technique
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A,B ::= X | Top | Bot | A→ B (types)

| [md :νd Ad]d∈D | µ(X)A

| ∀(X6A)B | ∃(X6A)B

ν ::= ◦ | + | − (variance annot.)

a, b ::= x (variables)

| [md=ς(xd:A)bd]d∈D (object creation)

| a.m (method invocation)

| a.m := ς(x:A)b (method update)

| clone a (shallow copy)

| λ(x:A)b (procedures)

| a b (application)

| foldA b (recursive folding)

| unfoldA b (recursive unfolding)

| Λ(X6A)b (type abstraction)

| a[A] (type application)

| pack X6A = C in a :B (existential package)

| open a as X6A, x:B in b :C (package opening)

Figure 1. Syntax of types and terms

to a lambda calculus with general references, impredicative poly-
morphism and recursive types [5, 7, 8].

In this paper we further extend the model of Ahmed et al. with
object types and subtyping, and we use the resulting model to
prove the soundness of an expressive type system for the imperative
object calculus. The main contribution of our work is the novel
semantics of object types.

Even though in this paper we are concerned with the safety of a
type system, the step-indexing technique is not restricted to types,
and has already been used for equational reasoning [6, 10] and
for proving the soundness of Hoare-style program logics of low-
level languages [13, 14]. We hope that eventually it will become
possible to use a step-indexed model to prove the soundness of
more expressive program logics for the imperative object calculus.

Outline The next section introduces the syntax, the operational
semantics and the type system that we consider for the imperative
object calculus. In Section 3 we present the step-indexed semantic
model for this calculus. In particular, we provide the definitions
of our semantic types together with the properties that they fulfill.
In Section 4 these properties are used to prove the soundness of
the initial type system. Section 5 concludes with a comparison to
related work, together with some interesting directions for further
investigation.

Full proofs can be found in the extended version of this paper
[21].

2. The Imperative Object Calculus
We recall the syntax of the imperative object calculus with recur-
sive and second-order types, and introduce a small-step operational
semantics for this calculus that is equivalent to the big-step seman-
tics given by Abadi and Cardelli [2].

2.1 Syntax
Let Var, TVar and Meth be pairwise disjoint, countably infinite sets
of variables, type variables and method names, respectively. Let

E [·] ::= [·] | E .m | E .m := ς(x:A)b | clone E |
| E b | v E | foldA E | unfoldA E | E [A]

| pack X6A = C in E :B | open E as X6A, x:B in b :C

Figure 2. Evaluation contexts

x, y range over Var, X,Y range over TVar, and let m range over
Meth. Figure 1 defines the syntax of the types and terms of the
imperative object calculus.

Objects are unordered collections of named methods. In a
method m = ς(x:A)b, ς is a binder that binds the ‘self’ argu-
ment x in the method body b. The self argument can be used inside
the method body for invoking the methods of the containing ob-
ject. Methods with arguments other than self can be obtained by
having a procedural abstraction as the method body. The methods
of an object can be invoked or updated, but no new methods can
be added, and the existing methods cannot be deleted. The type of
objects with methods named md that return results of typeAd, for d
in some setD, is written as [md :νd Ad]d∈D , where ν ∈ {◦,+,−}
is a variance annotation that indicates if the method is considered
invoke-only (+), update-only (−), or may be used without restric-
tion (◦).

We write procedural abstractions with type A→ B as λ(x:A)b
and applications as a b, respectively. Although procedural abstrac-
tions can be defined as syntactic sugar in Abadi and Cardelli’s
calculus, it smoothes the theory in Section 3 to include them
as primitives. We use foldA and unfoldA to denote the iso-
morphism between a recursive type µ(X)B and its unfolding
{{X 7→ µ(X)B}}(B). Finally, we consider bounded universal and
existential types ∀(X6A)B and ∃(X6A)B along with their in-
troduction and elimination forms.

The set of free variables of a term a is denoted by fv(a), and
similarly the free type variables in a type A by fv(A). We identify
types and terms up to the consistent renaming of bound variables.
We use {{t 7→ r}} to denote the singleton map that maps t to r. For
a finite map σ from variables to terms, σ(a) denotes the result of
capture-avoiding substitution of all x ∈ fv(a) ∩ dom(σ) by σ(x).
The same notation is used for the substitution of type variables.
Generally, for any function f , the notation f [t := r] denotes the
function that maps t to r, and otherwise agrees with f .

2.2 Operational Semantics
Let Loc be a countably infinite set of heap locations ranged over by
l . We extend the set of terms by run-time representations of objects
{md=ld}d∈D , associating heap locations to a set of method names.
Values are generated by the following grammar:

v ∈ Val ::= {md=ld}d∈D | λ(x:A)b | foldA v

| Λ(X6A)b | pack X6A = C in v :B

Apart from run-time objects, values consist of procedures, type
abstractions and existential packages as in the call-by-value lambda
calculus. We often only consider terms and values without free
variables, and denote the set of these closed terms and closed values
by CTerm and CVal, respectively. We call programs the closed
terms in which locations do not occur, and we denote the set of
all programs by Prog. A heap h is a finite map from Loc to CVal 1,
and we write Heap for the set of all heaps.

Figure 2 defines the set of evaluation contexts, formalizing a
left-to-right, call-by-value strategy. We write E [a] for the term ob-
tained by plugging a into the hole [·] of E . The one-step reduc-

1 In fact, for the purpose of modelling the object calculus it would suffice to
regard procedures as the only kind of storable value.
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(RED-OBJ) 〈h, [md=ς(xd:A)bd]d∈D〉 → 〈h [ld := λ(xd:A)bd]d∈D , {md=ld}d∈D〉 where ∀d ∈ D. ld /∈ dom(h)

(RED-INV) 〈h, {md=ld}d∈D .me〉 → 〈h, h(le) {md=ld}d∈D〉 if e ∈ D

(RED-UPD) 〈h, {md=ld}d∈D .me := ς(x:A)b〉 → 〈h [le := λ(x:A)b], {md=ld}d∈D〉 if e ∈ D

(RED-CLONE) 〈h, clone {md=ld}d∈D〉 → 〈h
ˆ
l′d := h(ld)

˜
d∈D ,

˘
md=l

′
d

¯
d∈D〉 where ∀d ∈ D. l′d /∈ dom(h)

(RED-BETA) 〈h, (λ(x:A)b) v〉 → 〈h, {{x 7→ v}}(b)〉

(RED-UNFOLD) 〈h, unfoldA (foldB v)〉 → 〈h, v〉

(RED-TBETA) 〈h, (Λ(X6A)b)[B]〉 → 〈h, {{X 7→ B}}(b)〉

(RED-OPEN) 〈h, open v as X6A, x:B in b :C〉 → 〈h, {{x 7→ v′, X 7→ C′}}(b)〉 where v ≡ pack X ′6A′ = C′ in v′ :B′

Figure 3. One-step reduction

tion relation → is defined as the least relation on configurations
〈h, a〉 ∈ Heap × CTerm generated by the rules in Figure 3 and
closed under the following context rule:

〈h, a〉 → 〈h ′, a′〉 =⇒ 〈h, E [a]〉 → 〈h ′, E [a′]〉(RED-CTX)

The methods are actually stored in the heap as procedures.
Object construction allocates new heap storage for these proce-
dures and returns a record of references to them (RED-OBJ). Upon
method invocation the corresponding stored procedure is retrieved
from the heap and applied to the enclosing object (RED-INV). The
self parameter is thus passed just like any other procedure argu-
ment. This makes the ‘self-application’ semantics of method invo-
cation explicit, while technically, it allows us to more directly use
the step-indexed model of Ahmed et al. [5, 7, 8].

While variables are immutable identifiers, methods can be up-
dated destructively. Such updates only modify the heap and leave
the run-time object unchanged (RED-UPD). Object cloning gener-
ates a shallow copy of the object in the heap (RED-CLONE). The
last four rules in Figure 3 are as in the lambda calculus.

For k ∈ N,→k denotes the k-step reduction relation. We write
〈h, a〉9 if the configuration 〈h, a〉 is irreducible (i.e. there exists
no configuration 〈h ′, a′〉 such that 〈h, a〉 → 〈h ′, a′〉).

Note that reduction is not deterministic, due to the arbitrarily
chosen new locations in (RED-OBJ) and (RED-CLONE). However,
we still have that there is always at most one, uniquely determined
redex.

Proposition 2.1 (Unique decomposition). If 〈h, a〉 → 〈h ′, a′〉 then
there exists a unique context E , and two unique subterms b and b′

such that a ≡ E [b], 〈h, b〉 → 〈h ′, b′〉 is an instance of one of the
rules in Figure 3, and a′ ≡ E [b′].

This has the important consequence that the reduction order
is fixed, e.g., if there is a reduction sequence beginning with an
application, 〈h, a b〉 →k 〈h ′, v〉, then this sequence splits into

〈h, a b〉 →i1 〈h1, v1 b〉 →i2 〈h2, v1 v2〉 →k−i1−i2 〈h ′, v〉

where 〈h, a〉 →i1 〈h1, v1〉 and 〈h1, b〉 →i2 〈h2, v2〉 for some
i1, i2 ≥ 0. Similar decompositions into subsequences hold for
reductions starting from the other term forms.

It is easy to see that the operational semantics is independent
of the type annotations inside terms. Also the semantic types that
we consider in Section 3 will not depend on the syntactic type
expressions in the terms. In order to reduce the notational overhead
and to prevent confusion between the syntax and semantics of types
we will omit type annotations when presenting the step-indexed
model. For example, instead of a[A] we will merely write a[].

2.3 Type System
The type system we consider features procedure, object, iso-
recursive and impredicative, bounded quantified types, as well as
subtyping, and corresponds to FOb<:µ from [2].

It is fairly standard and consists of four inductively defined
typing judgments:

• Γ ` �, describing well-formed typing contexts,
• Γ ` A, defining well-formed types,
• Γ ` A 6 B, for subtyping between well-formed types, and
• Γ ` a : A, for typing terms.

The typing context Γ is a list containing type bindings for the (term)
variables x:A and upper bounds for the type variables X6A.
A typing context is well-formed if it does not contain duplicate
bindings for (term or type) variables and all types appearing in it are
well-formed. A type is well-formed with respect to a well-formed
context Γ if all its type variables appear in Γ.

Figure 4 defines the subtype relation. It allows subtyping in
width for the object types: an object type with more methods is a
subtype of an object type with less methods, as long as the types of
the common methods agree. For the invoke-only (+) and update-
only methods (−) in a type, covariant respectively contravariant
subtyping in depth is allowed (SUBOBJ). Furthermore, the unre-
stricted methods (◦) can be regarded by subtyping as either invoke-
only or update-only (SUBOBJVAR). Since the annotations can be
conveniently chosen at creation time (OBJ) this brings much flexi-
bility. As explained in [2], it allows the type system to distinguish
between the invocations and updates done through the self argu-
ment, and the ones done from the outside.

Finally, Figure 5 defines the typing relation. The applicability
of the rules for method invocation (INV), and for method update
(UPD), depends on the variance annotation. Also notice that only
type-preserving updates are allowed (UPD). It is important to note
that we do not give types to heap locations. The type system is
simpler since it only checks programs, not partially evaluated terms
as it would be required by a subject-reduction proof.

3. A Step-indexed Semantics of Objects
Modelling higher-order store is necessarily more involved than
the treatment of first-order storage since the semantic domains
become mutually recursive. Recall that heaps store values which
may be procedures. These in turn can be modeled as functions
that take a value and the initial heap as input, and return a value
and the possibly modified heap upon termination. This suggests the
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Subtyping Γ ` A 6 B

(SUBVAR)
Γ1, X6A,Γ2 ` �

Γ1, X6A,Γ2 ` X 6 A

(SUBPROC)
Γ ` A′ 6 A Γ ` B 6 B′

Γ ` A→ B 6 A′ → B′

(SUBOBJ)

E ⊆ D ∀e∈E. (νe ∈ {+, ◦} ⇒ Γ ` Ae 6 Be)
∧ (νe ∈ {−, ◦} ⇒ Γ ` Be 6 Ae)

Γ ` [md :νd Ad]d∈D 6 [me :νe Be]e∈E

(SUBOBJVAR)
∀d ∈ D. νd = ◦ ∨ νd = ν′d

Γ ` [md :νd Ad]d∈D 6 [md :ν′
d
Ad]d∈D

(SUBREC)
Γ, Y6Top, X6Y ` A 6 B

Γ ` µ(X)A 6 µ(Y )B

(SUBUNIV)
Γ ` A′ 6 A Γ, X6A′ ` B 6 B′

Γ ` ∀(X6A)B 6 ∀(X6A′)B′

(SUBEXIST)
Γ ` A 6 A′ Γ, X6A ` B 6 B′

Γ ` ∃(X6A)B 6 ∃(X6A′)B′

Figure 4. Subtyping

following semantic domains for values and heaps, respectively:

DVal = (DHeaps ×DVal ⇀ DHeaps ×DVal) + . . .

DHeaps = Loc ⇀fin DVal
(1)

A simple cardinality argument shows that there are no set-theoretic
solutions (i.e. where A ⇀ B denotes the set of all partial functions
from A to B) satisfying the equations in (1). A possible solution is
to use a domain-theoretic approach, as done for imperative objects
in [23, 31].

However, in a model of a typed calculus one wants even more:
naively taking a collection Type of subsets τ ⊆ DVal as interpreta-
tions of syntactic types does not work, since values generally de-
pend on the heap and a typed model should guarantee that all heap
access operations are type-correct. One is led to (i) also consider
heap typings: partial maps Ψ ∈ HeapTypings = Loc ⇀fin Type
that map heap locations to the set of possible values that may be
stored, and (ii) to refine the collection of types to take heap typings
into account: a type will then consist of values paired with heap
typings which describe the necessary requirements on heaps. Thus
(i) and (ii) suggest to take

Types = P(HeapTypings×DVal)

HeapTypings = Loc ⇀fin Types
(2)

Again, a cardinality argument shows the impossibility of defining
these sets.

A final obstacle to modelling imperative languages, albeit in-
dependent of the higher-order nature of heaps, is due to dynamic
allocation in the heap. It results in heap typings that may vary in
the course of a computation, reflecting the changing ‘shape’ of the

Γ ` a : A

(SUB)
Γ ` a : A Γ ` A 6 B

Γ ` a : B

(VAR)
Γ1, x:A,Γ2 ` �

Γ1, x:A,Γ2 ` x : A

Procedure types

(LAM)
Γ, x:A ` b : B

Γ ` λ(x:A)b : A→ B

(APP)
Γ ` a : B → A Γ ` b : B

Γ ` a b : A

Object types (where A ≡ [md :νd Ad]d∈D)

(OBJ)
∀d∈D. Γ, xd:A ` bd : Ad

Γ ` [md=ς(xd:A)bd]d∈D : A

(INV)
Γ ` a : A e ∈ D νe ∈ {+, ◦}

Γ ` a.me : Ae

(UPD)
Γ ` a : A e ∈ D Γ, x:A ` b : Ae νe ∈ {−, ◦}

Γ ` a.me := ς(x:A)b : A

(CLONE)
Γ ` a : A

Γ ` clone a : A

Recursive types

(UNFOLD)
Γ ` a : µ(X)A

Γ ` unfoldµ(X)A a : {{X 7→ µ(X)A}}(A)

(FOLD)
Γ ` a : {{X 7→ µ(X)A}}(A)

Γ ` foldµ(X)A a : µ(X)A

Bounded quantified types

(TABS)
Γ, X6A ` b : B

Γ ` Λ(X6A)b : ∀(X6A)B

(TAPP)
Γ ` a : ∀(X6A)B Γ ` A′ 6 A

Γ ` a[A′] : {{X 7→ A′}}(B)

(PACK)
Γ ` C 6 A Γ ` {{X 7→ C}}(a) : {{X 7→ C}}(B)

Γ ` (pack X6A = C in a :B) : ∃(X6A)B

(OPEN)
Γ ` a : ∃(X6A)B Γ ` C Γ, X6A, x:B ` b : C

Γ ` (open a as X6A, x:B in b :C) : C

Figure 5. Typing of terms
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heap. However, as is the case for many high-level languages, the
object calculus is well-behaved in this respect:

• inside the language, there is no possibility of deallocating heap
locations; and
• only weak (i.e. type-preserving) updates are allowed.

As a consequence, extensions are the only changes of heap typings
that need to be considered. Intuitively, values that rely on heaps
with typing Ψ will also be type-correct for extended heaps, with an
extended heap typing Ψ′ w Ψ. For this reason, semantic models
of dynamic allocation typically lend themselves to a Kripke-style
presentation, where all semantic entities are indexed by possible
worlds drawn from the set of heap typings, partially (pre-) ordered
by heap extension.

Rather than trying to extend the already complex domain-
theoretic models to heap typings and dynamic allocation, we will
use the step-indexing technique. Being based directly on the oper-
ational semantics, this provides an alternative that has less math-
ematical overhead. In particular, there is no need to find semantic
domains satisfying (1); we can simply haveDVal be the set of closed
values and use syntactic procedures in place of set-theoretic func-
tions. Moreover, it is relatively easy to also model impredicative
second-order types in the step-indexed model of [5, 8], which is
crucial for the interpretation of object types we develop below.
This is non-trivial in the domain-theoretic models, at best.

The circularity in (2) is resolved by considering a stratification
based on a notion of ‘k-step execution safety’, in contrast to the
information ordering employed in domain theory: the central idea
is that a term has a type τ with approximation k if this assumption
cannot be proved wrong (in the sense of reaching a stuck state)
in any context by executing fewer than k steps. The key insight
with respect to constructing sets (2) is that all language constructs
operating on the heap (reading, updating, and allocating) each
consume one step. Thus, in order to determine whether a heap
typing-value pair 〈Ψ, v〉 belongs to a type τ with approximation
k it is sufficient to know the types of the stored values on which v
relies (as recorded by Ψ) only up to level k − 1. The true meaning
of types and heap typings is then obtained by taking the limit over
all approximations.

The preceding considerations are now formalized, building on
the model originally developed by Ahmed et al. for an ML-like
language with general references and impredicative second-order
types [5, 7, 8]. Apart from some notational differences, the defini-
tions in Section 3.1 are the same as in [5]. Section 3.2 adds subtyp-
ing, while Section 3.3 deals with procedure types and Section 3.4
revisits reference types. The semantics of object types is presented
in Section 3.5, and constitutes the main contribution of this paper.
We further deviate from [5] by adding bounds to the second-order
types in Section 3.6, and by using iso-recursive instead of equi-
recursive types in Section 3.7.

3.1 The Semantic Model
To make the (circular) definition of types and heap typings from
(2) work, the step-indexed semantics considers triples with an ad-
ditional natural numbers index, rather than just pairs. First, we
inductively define two families (PreTypek)k∈N of pre-types, and
(HeapTypingk)k∈N of heap pre-typings, by

τ ∈ PreType0 ⇔ τ = ∅
τ ∈ PreTypek+1 ⇔ τ ∈ P(N× (

S
j≤k HeapTypingj)× CVal)

∧ ∀〈j,Ψ, v〉 ∈ τ. j ≤ k ∧ Ψ ∈ HeapTypingj

where HeapTypingk = Loc ⇀fin PreTypek. Clearly PreTypek ⊆
PreTypek+1 and thus HeapTypingk ⊆ HeapTypingk+1 for all k.

Now it is possible to set

τ ∈ PreType ⇔ τ ∈ P(N× (
S
j HeapTypingj)× CVal)

∧ ∀〈j,Ψ, v〉 ∈ τ. Ψ ∈ HeapTypingj
When writing 〈k,Ψ, v〉 in the following we always implicitly as-
sume that Ψ ∈ HeapTypingk.

Definition 3.1 (Semantic approximation). For any pre-type τ we
call bτck the k-th approximation of τ and define it as the subset
containing all elements of τ that have an index strictly less than k:

bτck = {〈j,Ψ, v〉 ∈ τ | j < k}
This is lifted pointwise to (partial) functions to pre-types:

bΨck = λl ∈ dom(Ψ). bΨ(l)ck
From these definitions we have:

Proposition 3.2 (Stratification). For all τ ∈ PreType and k ∈ N,

bτck ∈ PreTypek.

So in particular, if 〈k,Ψ, v〉 ∈ τ and l ∈ dom(Ψ) then Ψ(l) ∈
PreTypej for some j ≤ k. This is captured by the following
‘stratification invariant’, which all the constructions on (pre-) types
will satisfy, and which ensures the well-foundedness of the whole
construction:

Stratification invariant. For all pre-types τ , bτck+1 cannot de-
pend on any pre-type beyond approximation k.

As indicated above, in order to take dynamic allocation into
account we consider a possible worlds model. Intuitively we think
of a pair (k,Ψ) as describing the state of a heap h , where Ψ lists
locations in h that are guaranteed to be allocated, and contains
the approximate type (up to approximation k) of the stored values.
In the course of a computation, there are three different situations
where the heap state changes:

• New objects are allocated on the heap, which is reflected by
a heap pre-typing Ψ′ with additional locations compared to
Ψ. This operation does not affect any of the previously stored
objects, so Ψ′ will be an extension of Ψ.
• The program executes for k− j steps, for some j ≤ k, without

accessing the heap. This is reflected by a heap state (j, bΨcj)
that ‘forgets’ that we have a more precise approximation, and
guarantees that the heap is safe only for j execution steps.
• The heap is updated, in such a way that all typing guarantees

of Ψ are preserved. Thus updates will be reflected by an infor-
mation forgetting extension, as in the previous case. However,
because of the step taken by the update itself, in this case we
necessarily have that j < k.

The following definition of state extension captures these possible
evolutions of a state.

Definition 3.3 (State extension). The state extension v is the
relation on N× (Loc ⇀fin PreType) defined by

(k,Ψ) v (j,Ψ′) ⇔ j ≤ k ∧ dom(Ψ) ⊆ dom(Ψ′)

∧ ∀l ∈ dom(Ψ).
¨
Ψ′
˝
j

(l) = bΨcj (l)

The step-indexing technique relies on the approximation of
the ‘true’ set of values that constitute a type, by all those values
which behave accordingly unless a certain number of computation
steps is taken. Reducing the number of available steps, we will
only be able to make less distinctions. Moreover, if for instance
a procedure relies on locations in a heap as described by a state
(k,Ψ), we can safely apply it after further allocations. In fact,
if we are only interested in safely executing the procedure for
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j < k steps, a correspondingly approximate heap will suffice.
These conditions are captured precisely by state extension, so we
require our semantic types to be closed under state extension:

Definition 3.4 (Semantic types and heap typings). The set Type of
semantic types is the subset of PreType defined by

τ ∈ Type ⇔ ∀k, j ≥ 0. ∀Ψ,Ψ′. ∀v ∈ CVal. (k,Ψ) v (j,Ψ′)

∧ 〈k,Ψ, v〉 ∈ τ ⇒ 〈j,Ψ′, v〉 ∈ τ

We define the set HeapTyping = Loc ⇀fin Type of heap typings,
ranged over by Ψ in the following, as the subset of heap pre-typings
that map to semantic types.

As explained by Ahmed in [5], this structure may be viewed
as an instance of Kripke models of intuitionistic logic where states
are the possible worlds, state extension is the reachability relation
between worlds, and where the closure under state extensions cor-
responds to Kripke monotonicity.

Definition 3.5 (Well-typed heap). A heap h has type Ψ with ap-
proximation k, written as h :k Ψ, if dom(Ψ) ⊆ dom(h) and

∀j < k. ∀l ∈ dom(Ψ). 〈j, bΨcj , h(l)〉 ∈ Ψ(l)

Semantic types only contain values, but we also need to asso-
ciate types to terms that are not values. We do this in two steps,
first for closed terms, then for arbitrary ones. A closed term has a
certain type with approximation k with respect to some heap typ-
ing Ψ, if in all heaps that are allowed by Ψ the term behaves like
an element of the type for k computation steps. In general, before
reducing to a value the term will execute for j steps, and possibly
allocate some new heap locations in doing so. The state describing
the final heap will therefore be an extension of the state describing
the initial store, and it only needs to be safe for the remaining k− j
steps. Similarly, the final value needs to be in the original type only
for another k − j steps. The next definition makes this precise.

Definition 3.6 (Closed Term :k,Ψ Semantic Type). For a term a we
define that a has type τ with respect to the state (k,Ψ) as:

a :k,Ψ τ ⇔ fv(a) = ∅ ∧ ∀j < k, h, h ′, b.

(h :k Ψ ∧ 〈h, a〉 →j 〈h ′, b〉 ∧ 〈h ′, b〉9)

⇒ ∃Ψ′. (k,Ψ) v (k − j,Ψ′)
∧ h ′ :k−j Ψ′ ∧ 〈k − j,Ψ′, b〉 ∈ τ

Even though the terms we evaluate are closed, when type-
checking their subterms we also have to reason about open terms.
Typing open terms is done with respect to a semantic type environ-
ment which maps variables to semantic types. We reduce typing
open terms to typing closed terms by substituting all free variables
with appropriate closed values. This is done by a value environment
(a finite map from variables to closed values) that agrees with the
type environment.

Definition 3.7 (σ :k,Ψ Σ). We say that value environment σ agrees
with semantic type environment Σ, with respect to the state (k,Ψ),
if ∀x ∈ dom(Σ). σ(x) :k,Ψ Σ(x). We denote this by σ :k,Ψ Σ.

Definition 3.8 (Semantic typing judgement). We say that a term
a (possibly with free variables, but not containing locations), has
type τ with respect to a semantic type environment Σ, written as
Σ |= a : τ , if after substituting well-typed values for the free
variables of a, we obtain a closed term that has type τ for any
number of computation steps. More precisely:

Σ |= a : α ⇔ fv(a) ⊆ dom(Σ)

∧ ∀k ≥ 0. ∀Ψ. ∀σ :k,Ψ Σ. σ(a) :k,Ψ α

By construction, the semantic typing judgment enforces that all
terms that are typable with respect to it do not produce type errors
when evaluated.

Definition 3.9 (Safe for k steps). We call a configuration 〈h, a〉
safe for k steps, if the term a does not get stuck in less than k
steps when evaluated in the heap h, i.e. we define the set of all such
configurations by

Safek = {〈h, a〉 | ∀j < k. ∀h ′, b. 〈h, a〉 →j 〈h ′, b〉
∧ 〈h ′, b〉9 ⇒ b ∈ Val}

Definition 3.10 (Safety). We call a configuration safe if it does not
get stuck in any number of steps.

Theorem 3.11 (Safety). For all programs a, if ∅ |= a : α, then for
all heaps h we have that 〈h, a〉 ∈ Safe.

Proof sketch. One first easily shows that, if a :k,Ψ τ and h :k Ψ,
then 〈h, a〉 ∈ Safek. The theorem then follows by observing that
any h has the empty heap type, with any approximation k.

This result is much more direct than in a subject-reduction proof
[35]. However, unlike with subject-reduction, the validity of the
typing rules still needs to be proved with respect to the model. We
do this in two steps. In the remainder of this section we introduce
the specific semantic types of our model, and prove that they satisfy
certain semantic typing lemmas. These proofs are similar in spirit
to proving the ‘fundamental theorem’ of Kripke logical relations
[25]. Then, in Section 4 we prove the soundness of the rules of the
initial type system with respect to these typing lemmas.

Even though the semantic typing lemmas are constructed so that
they directly correspond to the rules of the original type system,
there is a big difference between the two. While the semantic typ-
ing lemmas allow us to logically derive valid semantic judgments
using other valid judgments as premises, the typing rules are just
syntax which is used in the inductive definitions of the typing and
subtyping relations.

3.2 Subtyping
Since types in the step-indexed model are sets (with some addi-
tional properties), the natural subtyping relation is set inclusion.
This subtyping relation forms a complete lattice on semantic types,
where infima and suprema are given by set-theoretic intersections
and unions, respectively. The least element is ⊥ = ∅, while the
greatest is

> = {〈j,Ψ, v〉 | j ∈ N,Ψ ∈ HeapTypingj , v ∈ CVal}.
Obviously ⊥ and > satisfy both the stratification invariant (i.e.

they are pre-types) and the closure under state extension condition,
so they are indeed semantic types.

We can easily show the standard subsumption property

Lemma 3.12 (Subsumption). If Σ |= a : α and α ⊆ β then
Σ |= a : β.

While it is very easy to define subtyping this way, the interaction
between subtyping and the other features of the type system, in
particular the object types, is far from trivial.

3.3 Procedure Types
Intuitively, a procedure has type α → β if, when invoked with an
argument of type α, it produces a result of type β. In a step-indexed
model, a procedure has type α → β for k computation steps if
when applied to any well-typed argument of type α it produces
a result that has type β for another k − 1 steps. This is because
the procedure application itself takes one computation step, and the
only way to use a procedure is by applying it to some argument.
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Σ[x := α] |= b : β =⇒ Σ |= λx. b : α→ β(SEMLAM)

(Σ |= a : β → α ∧ Σ |= b : β =⇒ Σ |= a b : α(SEMAPP)

α′ ⊆ α ∧ β ⊆ β′ =⇒ α→ β ⊆ α′ → β′(SEMSUBPROC)

Figure 6. Typing lemmas: procedure types

Additionally, we have to take into account that the procedure
can also be applied after some computation steps that extend the
heap. So, for every j < k and for every heap typing Ψ′ such that
(k,Ψ) v (j,Ψ′), when applying the procedure to a value in type
α for j steps with respect to Ψ′, the result must have type β for j
steps with respect to Ψ′. This fits nicely with the possible worlds
reading of procedure types as intuitionistic implication.

Definition 3.13 (Procedure types). If α and β are semantic types,
then α → β consists of those triples 〈k,Ψ, λx. b〉 such that for all
j < k, heap typings Ψ′ and closed values v:

((k,Ψ) v (j,Ψ′) ∧ 〈j,Ψ′, v〉 ∈ α) ⇒ {{x 7→ v}}(b) :j,Ψ′ β

Proposition 3.14. If α and β are semantic types, then α → β is
also a semantic type.

Figure 6 contains the semantic typing lemmas associated with
procedure types. The procedure type constructor is of course con-
travariant in the argument type and covariant in the result type.

Lemma 3.15 (Procedure types). The three semantic typing lemmas
shown in Figure 6 are valid implications.

Proof sketch. The validity of (SEMAPP) and (SEMLAM) is proved
in [5]. Verifying (SEMSUBPROC) is simply a matter of unfolding
the definitions.

3.4 Revisiting Reference Types
While our calculus does not have references syntactically, we will
use the model of references from [5, 8] in our construction under-
lying object types. In order to interpret the variance annotations in
object types, we also need to introduce readable reference types and
writable reference types, with covariant and contravariant subtyp-
ing, respectively [27, 32].

A heap typing associates to each allocated location the precise
type that can be used when reading from it and writing to it. So all
heap locations support both reading and writing at a certain type,
and we do not have read-only or write-only locations. Intuitively,
for the readable reference types and the writable ones the precise
type of the locations is only partially known, so that without addi-
tional information only one of the two operations is safe at a mean-
ingful type.

We first recall the definition of reference types from [5, 8].

Definition 3.16 (Reference types). If τ is a semantic type then

ref◦τ = {〈k,Ψ, l〉 | bΨ(l)ck = bτck}

According to this definition, a location l has type ref◦τ if the
type associated to l by the heap typing Ψ is approximately τ . Se-
mantic approximation is used to satisfy the stratification invariant,
and is operationally justified by the fact that reading from a location
or writing to it takes one computation step. So, l has type ref◦τ for
k steps if all values that are read from l or written to l have type τ
for k − 1 steps.

The readable reference type ref+τ is similar to ref◦τ , but poses
less constraints on the heap typing Ψ: it only requires that Ψ(l) is
a subtype of τ , as before up to some approximation.

Definition 3.17 (Readable reference types). If τ is a type then

ref+τ = {〈k,Ψ, l〉 | bΨck (l) ⊆ bτck}
The value stored at location l also has type τ by subsumption,

and therefore can be read and safely used as a value of type τ .
However, the true type of location l is in general unknown, so
writing any value to it could be unsafe (the true type of l might
be the empty type ⊥). On the other hand, knowing that a location
has type ref+τ does not mean that we cannot write to it: it simply
means that we do not know the type of the values that can be written
to it, so in the absence of further information no writing can be
guaranteed to be type safe2.

Dually, the type ref−τ of writable references contains all those
locations l whose type associated by Ψ is a supertype of τ .

Definition 3.18 (Writable reference types). If τ is a type then

ref−τ = {〈k,Ψ, l〉 | bτck ⊆ bΨck (l)}
We can safely write a value of type τ to a location of type ref−τ ,

since this value also has the real type of location l by subsumption.
However, the real type of such locations can be arbitrarily general.
In particular it can be >, the type of all values. Thus a location
about which we only know that it has type ref−τ can only be read
safely at type >.

With these definitions, the usual reference type from [5, 8]
can be recovered as the intersection of a readable and a writable
reference type:

ref◦τ = ref+τ ∩ ref−τ
Hence ref+τ and ref−τ are both supertypes of ref◦τ . It can also
be easily shown that the readable reference type constructor is co-
variant, while the writable reference one is contravariant. The usual
reference types are therefore obviously invariant. For a variance an-
notation ν ∈ {◦,+,−} we use refν to stand for the reference type
constructor with this variance. Note that, strictly speaking, the set
refντ is not a semantic type since for our calculus locations are not
values. The definition of object types we give below does not rely
on refντ being a type.

3.5 Object Types
Giving a semantics to object types is challenging. Not surprisingly,
the definition of object types is more complex than the other defini-
tions of types encountered in this paper. A look at the typing rules
from Section 2 gives an indication why this is the case. First, an
adequate interpretation of object types must permit subtyping both
in width and in depth, taking the variance annotations into account
accordingly. Second, in contrast to all the other types we consider
which have just a single elimination rule, once constructed, objects
support three different operations: invocation, update, and cloning.
The definition of object types must ensure the consistent use of
an object through all possible future operations. That is, all the re-
quirements on which invocation, update or cloning rely must al-
ready be established at object creation time.

We will now explain the construction in detail. It is well-known
that invocation, update, cloning and the desired subtyping proper-
ties impose conflicting requirements on typed objects:

• Our decision to store methods in the heap as procedures,
together with the ‘self-application’ operational semantics of
method invocation (RED-INV in Figure 3), suggests that ob-
ject types are somewhat similar to recursive types of records of
references holding procedures that take the enclosing record as
argument:

[md : τd]d∈D ≈ µ(α).{md : ref◦(α→ τd)}d∈D.

2 Note that this is conceptually different from the immutable reference types
modeled in [5] using singleton types.

7



Let α = [md :νd τd]d∈D .

(∀d ∈ D. Σ[xd := α] |= bd : τd) =⇒ Σ |= [md=ς(xd)bd]d∈D : α(SEMOBJ)

(Σ |= a : α ∧ e ∈ D ∧ νe ∈ {+, ◦}) =⇒ Σ |= a.me : τe(SEMINV)

(Σ |= a : α ∧ e ∈ D ∧ νe ∈ {−, ◦} ∧ Σ[x := α] |= b : τe) =⇒ Σ |= a.me := ς(x)b : α(SEMUPD)

Σ |= a : α =⇒ Σ |= clone a : α(SEMCLONE)

(D ⊆ E ∧ (∀d ∈ D. νd ∈ {+, ◦} ⇒ αd ⊆ βd)(SEMSUBOBJ)

∧ (∀d ∈ D. νd ∈ {−, ◦} ⇒ βd ⊆ αd)) =⇒ [me :νe αe]e∈E ⊆ [md :νd βd]d∈D

(∀d ∈ D. νd = ◦ ∨ νd = ν′d) =⇒ [md :νd αd]d∈D ⊆ [md :ν′
d
αd]d∈D(SEMSUBOBJVAR)

Figure 7. Typing lemmas: object types

However, the invariance of the reference type constructor
blocks any form of subtyping, even just in width3.
• A combination of type recursion and an existential quantifier

that uses the recursion variable as bound would allow us to
enforce covariance for the positions of the recursion variable,
and thus have subtyping in width:

[md :νd τd]d∈D ≈ µ(α).∃α′ ⊆ α.{md : ref◦(α′ → τd)}d∈D
This is similar to the encoding of self types explored in [2, 3].
• For subtyping in depth with respect to the variance annotations

we simply use the readable and writable reference types defined
in the previous section:

[md :νd τd]d∈D ≈ µ(α).∃α′⊆α.{md : refνd(α′ → τd)}d∈D.

Still, by keeping α′ abstract, neither the typing rule for method
invocation (INV in Figure 5), nor the one for object cloning
(CLONE) is validated.
• By explicitly enforcing in the definition of object types that the

object value itself belongs in fact to this existentially quantified
α′, the assumptions become sufficiently strong to repair the in-
vocation case. In fact, by enforcing this not only for the current
object value, but also for all ‘very similar’ values, maybe not
even created yet, the case of cloning is also covered.

The following definition formalizes this construction.

Definition 3.19 (Object types). Let α = [md :νd τd]d∈D , defined
as the set of all triples 〈k,Ψ, {me=le}e∈E〉 such that D ⊆ E and

∃α′. α′ ∈ Type ∧ α′ ⊆ bαck(1)

∧ (∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd(α′ → τd))(2)

∧ (∀j < k. ∀Ψ′. ∀
˘

me=l
′
e

¯
e∈E . (k,Ψ) v (j,Ψ′)(3)

∧ (∀e ∈ E.
¨
Ψ′
˝
j

(l′e) = bΨcj (le))

⇒ 〈j,
¨
Ψ′
˝
j
,
˘

me=l
′
e

¯
e∈E〉 ∈ α

′)

The condition stating that D ⊆ E ensures that all values in an
object type provide at least the required methods listed by this type,
but can also provide more. Clearly this is necessary for subtyping
in width. Condition (1) postulates the existence of a more specific
type α′, which may be thought of as the ‘true’ type of the object
{me=le}e∈E (up to approximation k). The subsequent conditions
are then all stated in terms of α′ rather than α. Condition (2) states

3 It turns out that even without the reference types (e.g. for the functional
object calculus) the contravariance of the procedure type constructor in its
first argument would still cause any sort of subtyping to fail.

the requirements for the methods in terms of the reference type
constructors introduced in Section 3.4.

As explained above, in order to be able to invoke methods we
must know that {me=le}e∈E belongs to the more specific type α′

for all j < k steps (which suffices since application consumes a
step). In the particular case where Ψ′ is Ψ and {me=l

′
e}e∈E is

{me=le}e∈E condition (3) states exactly this. We need the more
general formulation in order to ensure that the clones of the consid-
ered object also belong to the same type α′. Therefore we enforce
that no matter how an object value {me=l

′
e}e∈E is constructed it

belongs to type α′, provided that it satisfies the same typing as-
sumptions as {me=le}e∈E , with respect to a possibly extended
heap typing Ψ′. Allowing for state extension is necessary since
cloning itself allocates new locations not present in the original Ψ,
and also because cloning can be performed after some intermediate
computation steps that result in further allocations.

We show that this definition of object types actually makes
sense, in that it defines a semantic type. This is not immediately
obvious because of the recursion.

Proposition 3.20. If τd ∈ Type for all d ∈ D, then we also have
that [md :νd τd]d∈D ∈ Type.

Proof sketch. To show that [md :νd τd]d∈D is uniquely deter-
mined, one could prove that (1)–(3) determine a contractive map
Type→Type and then use the general results about recursive types
from [10]. Alternatively, we observe that τ =

S
k bτck for

all types τ , and then directly argue that Definition 3.19 defines¨
[md :νd τd]d∈D

˝
k

only in terms of
¨
[md :νd τd]d∈D

˝
j

for j < k.
That [md :νd τd]d∈D is closed under state extension, relies on the
transitivity of state extension and is easily verified.

Figure 7 presents the semantic typing lemmas for object types
and their subtyping.

Lemma 3.21 (Object types). All the semantic typing lemmas
shown in Figure 7 are valid implications.

Proof sketch. The semantic typing lemmas are proved indepen-
dently. We sketch this for (SEMOBJ). For α = [md :νd τd]d∈D
and assuming Σ[xd := α] |= bd : τd for all d ∈ D, we must show
that Σ |= [md=ς(xd)bd]d∈D : α.

So let k ≥ 0, σ and Ψ be such that σ :k,Ψ Σ. By Def-
inition 3.8 (Semantic typing judgement) we must prove that
σ([md=ς(xd)bd]d∈D) :k,Ψ α, or equivalently (after suitable α-
renaming), that [md=ς(xd)σ(bd)]d∈D :k,Ψ α holds. Now let h, h′

and b′ be such that h :k Ψ and

〈h, [md=ς(xd)σ(bd)]d∈D〉 →
j 〈h′, b′〉
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For all non-expansive F,G : Type→ Type,

(∀τ ∈ Type. τ ⊆ α⇒ Σ |= a : F (τ)) =⇒ Σ |= Λ. a : ∀αF(SEMTABS)

(Σ |= a : ∀αF ∧ τ ∈ Type ∧ τ ⊆ α) =⇒ Σ |= a[] : F (τ)(SEMTAPP)

(∃τ ∈ Type. τ ⊆ α ∧ Σ |= a : F (τ)) =⇒ Σ |= pack a : ∃αF(SEMPACK)

(Σ |= a : ∃αF ∧ ∀τ∈Type. τ ⊆ α⇒ Σ[x := F (τ)] |= b : β) =⇒ Σ |= open a as x in b : β(SEMOPEN)

(β ⊆ α ∧ ∀τ ∈ Type. τ ⊆ β ⇒ F (τ) ⊆ G(τ)) =⇒ ∀αF ⊆ ∀βG(SEMSUBUNIV)

(α ⊆ β ∧ ∀τ ∈ Type. τ ⊆ α⇒ F (τ) ⊆ G(τ)) =⇒ ∃αF ⊆ ∃βG(SEMSUBEXIST)

Figure 8. Typing lemmas: bounded quantified types

for some j < k, and assume that 〈h′, b′〉 is irreducible. From the
operational semantics it is clear that j = 1 and b′ ≡ {md=ld}d∈D
and that, for some ld /∈ dom(h),

h′ = h [ld := λ(xd)σ(bd)]d∈D

Choosing Ψ′ =
¨
Ψ [ld := (α→ τd)]d∈D

˝
k−1

it is easily seen,
that (k,Ψ) v (k − 1,Ψ′). Furthermore, from the hypothesis
by (SEMLAM) we have that Σ |= λ(xd)bd : α → τd for all
d ∈ D. From this and the assumption that h :k Ψ it follows that
h′ :k−1 Ψ′.

By Definition 3.6 it remains to establish that 〈k−1,Ψ′, b′〉 ∈ α.
This is achieved by proving by induction on j ≥ 0 the following
more general claim:
Claim 3.22. For all j ∈ N, Ψ∗ and {md=l∗d }d∈D we have that

(k − 1,Ψ′) v (j,Ψ∗) ∧ (∀d ∈ D. bΨ∗cj (l∗d ) =
¨
Ψ′
˝
j

(ld))

⇒ 〈j, bΨ∗cj , {md=l∗d }d∈D〉 ∈ α

The key step is in choosing α′ equal to bαcj , and then verifying the
conditions (1)–(3) of Definition 3.19 (Object types) with the help
of the inductive hypothesis.

The proofs of the other typing lemmas are more straightfor-
ward, even though quite lengthy. For (SEMINV), (SEMUPD) and
(SEMCLONE), Proposition 2.1 (Unique decomposition) is used to
identify reduction sequences corresponding to the evaluation of the
subterm a.

Our attempts to prove 〈k−1,Ψ′, b′〉 ∈ α directly have failed,
and the generalization to Claim 3.22 seems crucial. In fact, the in-
duction on the step index j resolves the recursion that is inherent to
objects due to the self application semantics of method invocation.

3.6 Bounded Quantified Types
Impredicative quantified types in a step-indexed model were previ-
ously studied by Ahmed et al. for a lambda-calculus with general
references, and we follow their presentation [5, 8]. However, unlike
in the work of Ahmed et al. our quantifiers have bounds, and we are
also studying subtyping. It is important to note that the impredica-
tive second-order types were the reason why a semantic stratifica-
tion of types was needed in [5], as opposed to a syntactic one based
on the nesting of reference types [7].

A type constructor (i.e. a function from semantic types to se-
mantic types) F is non-expansive if in order to determine whether
a term has type F (τ) with approximation k, it suffices to know the
type τ only to approximation k. As we will later show all our type
constructors are non-expansive.

Definition 3.23 (Non-expansiveness). A type constructor F :
Type → Type is non-expansive if for all types τ and for all k ≥ 0
we have bF (τ)ck =

¨
F (bτck)

˝
k

.

The definitions of second-order types require that ∀ and ∃ are
only applied to non-expansive type constructors. Note that the non-
expansiveness condition in the following definitions ensures that,
in order to determine level k of a universal or existential type, a
quantification over types τ in PreTypek suffices. This helps avoid
the circularity that is otherwise introduced by the impredicative
quantification.

Definition 3.24 (Bounded universal types). If F : Type →
Type is non-expansive and α ∈ Type, then we define ∀αF by
〈k,Ψ,Λ. a〉 ∈ ∀αF if and only if

∀j,Ψ′. ∀τ. (k,Ψ) v (j,Ψ′) ∧ bτcj ∈ Type ∧ bτcj ⊆ bαcj
⇒ ∀i < j. a :i,bΨ′ci F (τ)

Definition 3.25 (Bounded existential types). For all non-expansive
F : Type → Type and α ∈ Type, the set ∃αF is defined by
〈k,Ψ, pack v〉 ∈ ∃αF if and only if

∃τ. bτck ∈ Type ∧ bτck ⊆ bαck
∧ ∀j < k. 〈j, bΨcj , v〉 ∈ F (τ)

Proposition 3.26. If α ∈ Type and F : Type → Type is non-
expansive, then ∀αF and ∃αF are also types.

Lemma 3.27 (Bounded quantified types). All the semantic typing
lemmas shown in Figure 8 are valid implications.

Proof sketch. The first four implications are proved as in [5]; the
additional precondition τ ⊆ α in (SEMTAPP) and (SEMPACK)
serves to establish the requirements for the bounds. The two sub-
typing lemmas (SEMSUBUNIV) and (SEMSUBEXIST) are easily
proved by just unfolding the definitions.

3.7 Recursive Types
In contrast to most previous work on step-indexed models, we
consider iso-recursive rather than equi-recursive types4, so folds
and unfolds are explicit in our syntax and consume computation
steps. This is simpler, and sufficient for our purpose. As a benefit,
it suffices to require type constructors to be non-expansive, as
opposed to the stronger ‘contractiveness’ requirement in [10].

Definition 3.28 (Recursive types). Let F : Type → Type be a
non-expansive function. We define the set µF by

〈k,Ψ, fold v〉 ∈ µF ⇔ ∀j < k. ∀Ψ′. (k,Ψ) v (j,Ψ′)

⇒ 〈j,Ψ′, v〉 ∈ F (µF )

Proposition 3.29. For all non-expansive F : Type → Type,
µF ∈ Type is uniquely defined.

4 Still, iso-recursive types have been considered by Ahmed for a step-
indexed relational model of a lambda calculus [6].
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For all non-expansive F,G : Type→ Type,

Σ |= a : µF =⇒ Σ |= unfold a : F (µF )(SEMUNFOLD)

Σ |= a : F (µF ) =⇒ Σ |= fold a : µF(SEMFOLD)

(∀α, β. α ⊆ β ⇒(SEMSUBREC)

F (α) ⊆ G(β)) =⇒ µF ⊆ µG

Figure 9. Typing lemmas: recursive types

Proof. The well-definedness follows from the observation that
bµF ck is defined only in terms of bF (µF )cj for j < k, which by
non-expansiveness of F means that it relies only on bµF cj . The
closure under state extension is immediate from the definition.

Figure 9 presents the semantic typing lemmas for recursive
types.

Lemma 3.30 (Recursive types). All the semantic typing lemmas
shown in Figure 9 are valid implications.

Proof sketch. The validity of (SEMFOLD) and (SEMUNFOLD) are
easy consequences of Definition 3.28. For (SEMSUBREC), one
shows by induction on k that bµF ck ⊆ bµGck. Both the precondi-
tion of (SEMSUBREC) and the non-expansiveness of F and G are
used in this proof.

Lemma 3.31 (Non-expansiveness). All the type constructors we
consider are non-expansive.

4. Semantic Soundness
In order to prove that well-typed terms are safe to evaluate we re-
late the syntactic types to their semantic counterparts, and then use
the fact that the semantic typing judgement enforces safety by con-
struction (Theorem 3.11). This approach is standard in denotational
semantics.In fact, neither the statements nor the proofs of subtyp-
ing (Lemma 4.4) and semantic soundness (Theorem 4.5) mention
the step-indices explicitly.

Definition 4.1 (Interpretation of types and typing contexts). Let η
be a total function from type variables to semantic types.

1. The interpretation JAKη of a type A is given by the structurally
recursive meaning function in Figure 10.

2. The interpretation of a well-formed typing context Γ with re-
spect to η is given by the function that maps x to JAKη , for
every x:A ∈ Γ.

Note that in Figure 10 the type constructors used on the left
hand sides of the equations are simply syntax, while those on the
right hand sides refer to the corresponding semantic constructions,
as defined in the previous section.

Recall that non-expansiveness is a necessary precondition for
some of the semantic typing lemmas. In particular, the well-
definedness of JAKη depends on non-expansiveness, due to the
use of µ, ∀(·) and ∃(·) in Figure 10. So we begin by showing that
the interpretation of types is a non-expansive map.

Lemma 4.2 (Non-expansiveness). JAKη is non-expansive in η.

Proof sketch. We show that
j
JAKη

k
k

=
j
JAKbηck

k
k

holds by
induction on the structure of A, relying on Lemma 3.31 for the
non-expansiveness of the semantic type constructions.

JTopKη = > JBotKη = ⊥ JXKη = η(X)

JA→ BKη = JAKη → JBKη
q
[md :νd Ad]d∈D

y
η

=
h
md :νd JAdKη

i
d∈D

Jµ(X)AKη = µ(λα∈Type. JAKη[X:=α])

J∀(X6A)BKη = ∀JAKη (λα∈Type. JBKη[X:=α])

J∃(X6A)BKη = ∃JAKη (λα∈Type. JBKη[X:=α])

Figure 10. Interpretation of types

Definition 4.3 (η |= Γ). Let Γ be a well-formed typing context.
We say that η satisfies Γ, written as η |= Γ, if η(X) ⊆ JAKη holds
for all X6A appearing in Γ.

We show the soundness of the subtyping relation.

Lemma 4.4 (Soundness of subtyping). If Γ ` A 6 B and η |= Γ
then JAKη ⊆ JBKη .

Proof sketch. By induction on the derivation of Γ ` A 6 B and
case analysis on the last applied rule. Each case is immediately
reduced to one of the subtyping lemmas from Section 3.

Finally, we prove the semantic soundness of the syntactic type
system with respect to the model.

Theorem 4.5 (Semantic soundness). Whenever Γ ` a : A and
η |= Γ it follows that JΓKη |= a : JAKη .

Proof sketch. By induction on the derivation of Γ ` a : A and case
analysis on the last rule applied. Each case is easily reduced to one
of the semantic typing lemmas from Section 3, using a standard
type substitution lemma in some cases.

By Theorems 4.5 (Semantic soundness) and 3.11 (Safety), we
have a proof of safety for the type system from Section 2.3.

Corollary 4.6 (Type safety). Well-typed terms are safe to evaluate.

5. Conclusion
We have presented a step-indexed model for Abadi and Cardelli’s
imperative object calculus, and used it to prove the safety of a type
system with object types, recursive and second-order types, as well
as subtyping.

5.1 Comparison to Related Work
Domain-theoretic models. Abadi and Cardelli give a semantic
model for the functional object calculus in [1, 2]. Their type system
is comparable to the one we consider here. Types are interpreted as
certain partial equivalence relations over an untyped domain model
of the calculus. No indication is given on how to adapt this to the
imperative execution model.

Based on earlier work by Kamin and Reddy [23], Reus et al.
consider domain-theoretic models for the imperative object calcu-
lus [30, 31, 33], with the goal of proving soundness for the logic of
Abadi and Leino [4]. The higher-order store exhibited by the object
calculus makes the semantic domains be defined by mixed-variant
recursive equations. The dynamic allocation is then addressed by
interpreting specifications of the logic as Kripke relations, indexed
by store specifications, which are similar to the heap typings used
here.

Building on work by Levy [24], an ‘intrinsically’ typed model
of the object calculus is presented in [33], by solving the domain
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equations in a suitable category of functors. However, only first-
order types are considered.

Compared to the domain-theoretic models, the step-indexed
model we presented not only soundly interprets a richer type lan-
guage, but we found it also easier to work with. Being based on the
operational semantics, there is no need for explicit continuity con-
ditions, and the admissibility conditions are replaced by the clo-
sure under state extension condition, which is usually very easy
to check. All that is needed for the construction of recursive and
second-order types are non-expansiveness and the stratification in-
variant.

It is interesting to see how the object construction rule (OBJ)
is proved correct in each case. In [30, 31], it directly corresponds
to a recursive predicate, whose well-definedness (i.e. existence and
uniqueness) must be established. This imposes some further restric-
tions on the semantic types [28]. In the typed model of [33], object
construction is interpreted using a recursively defined function, and
correspondingly (OBJ) is proved by fixed point induction. In the
step-indexed case, the essence of the proof is a more elementary
induction on the index (cf. Lemma 3.21).

Semantics of object types. Our main contribution in this pa-
per is the novel interpretation of object types in the step-indexed
model. The stratification induced by the step indices permits mixed-
variance recursive as well as impredicative, second-order types to
be constructed. Both are key ingredients in our interpretation of ob-
ject types; this would be the case even if we considered a syntactic
type system without these features. The use of recursive and ex-
istentially quantified types is in line with the type-theoretic work
on object encodings, which however has mainly focused on object
calculi with a functional semantics [16].

Closest to our work is the encoding of imperative objects into an
imperative variant of system F6µ with updatable records, proposed
in [3]. There, objects are interpreted as records containing refer-
ences to the procedures that represent the methods. As in our case,
these records have a recursive and existentially quantified record
type. The difference is that additional record fields are included in
order to achieve invocation and cloning, and uninitialized fields are
used to construct this recursive record in an ‘unsafe’ way. Finally,
variance annotations for imperative objects are not considered.

Step-indexed models. Step-indexed semantic models were intro-
duced by Appel et al. in the context of foundational proof-carrying
code [9]. Their goal was to construct more elementary and more
modular proofs of type soundness that can be easily checked au-
tomatically. They were primarily interested in low-level languages,
however they also applied their technique to a pure λ-calculus with
recursive types [10]. Later Ahmed et al. successfully extended it to
general references and impredicative polymorphism [5, 7, 8]. The
step-indexed semantic model we present extends the one by Ahmed
et al. with object types and subtyping. In order to achieve this, we
refined the reference types from [5] to readable and writable refer-
ence types. These are similar to the reference types in the Forsythe
programming language [32] and to the channel types of [17, 27].

Subtyping in a step-indexed semantic model was previously
considered by Swadi who studied a typed machine language [34].
Our setup is however much different than the one of Swadi. In
particular, the subtle issues concerning the subtyping of object
types are original to our work.

The previous work on step-indexing focuses on ‘semantic type
systems’, i.e. the semantic typing lemmas are used directly for
type-checking programs [8, 12, 9, 10]. However, when one con-
siders more complex type systems with subtyping, recursive types
or polymorphism, the semantic typing lemmas no longer directly
correspond to the usual syntactic rules. These discrepancies can be
fixed, but usually at the cost of more complex models, like the one

developed by Swadi to track type variables [12, 34]. In Swadi’s
model an additional semantic kind system is used to track the con-
tractiveness and non-expansiveness of types with free type vari-
ables. We avoid having a more complex model (e.g. one that tracks
type variables) by considering a standard, syntactic type system.
We use the semantic typing lemmas only to prove the soundness of
this syntactic type system, which is more suitable for type checking
programs (in particular it can be made decidable [26]).

Type safety proofs. Abadi and Cardelli use subject-reduction to
prove the safety of several type systems very similar to the one con-
sidered in this paper [2]. Those purely syntactic proofs are very dif-
ferent from the ‘semantic’ type safety proof we present (for detailed
discussions about the differences see [10, 35]). Constructing a step-
indexed model is definitely more challenging than proving progress
and preservation. However, for our model we could basically reuse
the whole model by Ahmed et al. and extend it to suit our needs,
even though the calculus we are considering is quite different. So
one would expect that once enough general models are constructed
(e.g. [5, 10, 11]), it will become easier to build new models just
by mixing and matching. Assuming the existence of an adequate
step-indexed model, the effort needed to prove the semantic typ-
ing lemmas using ‘pencil-and-paper’ is somewhat comparable to
the one required for a subject-reduction proof. Since each of the
semantic typing lemmas is proved in isolation, the resulting type
soundness proof is more modular. However, according to [9, 10]
the big advantage of step-indexing should kick in when formaliz-
ing the proofs in a proof assistant.

Functional object calculus. Our initial experiments on the cur-
rent topic were done in the context of the functional object calculus
[20]. Even though in the functional setting the semantic model is
much simpler, both models satisfy the same semantic typing lem-
mas. Even more, the syntactic type system we considered for the
functional calculus is exactly the same as the one in this paper, so
all the results in Section 4 directly apply to the functional object
calculus: well-typed terms do not get stuck, no matter whether they
are evaluated in a functional or an imperative way. It would not
be possible to directly prove such a result using subject-reduction,
since in that case the syntactic typing judgment for the imperative
calculus would also depend on a heap typing, and thus be differ-
ent from the judgment for the functional calculus. However, since
we are not using subject-reduction, we do not need to type-check
partially evaluated terms which contain heap locations.

5.2 Future Work
Machine checking proofs. Step-indexed models were intro-
duced with machine-checkable proofs in mind, so the proofs they
induce are elementary and very modular. The proof of type safety
we present in the extended version of this paper [21] should there-
fore be very well-suited for translation to some machine-checkable
form. This could be eased to a certain extent by the fact that we
extended the model of Ahmed et al. for which machine-checkable
proofs already exist [5].

Generalizing reference types. In the model described in this
paper we generalize the reference types from [5, 8] to readable and
writable reference types. It turns out that this can be generalized
even further. We can have a reference type constructor that takes
two other types as arguments: one that represents the most general
type that can be used when writing to the reference, and another for
the most specific type that can be read from it. This can be easily
expressed using our readable and writable reference types:

ref α, β , ref−α ∪ ref+β

Applying this in the context of object calculi would lead not only
to more fine-grained subtyping but also to simplifications [21, Ap-
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pendix A]. In particular, the variance annotations would no longer
be needed, and the complex and seemingly ad-hoc rules for subtyp-
ing object types [2] would be replaced by the simpler:

(SUBOBJ)
E ⊆ D ∀e ∈ E. Be6Ae ∧ A′e6B

′
eˆ

md : Ad, A
′
d

˜
d∈D 6

ˆ
me : Be, B

′
e

˜
e∈E

We plan to further investigate this. For now, it is worth noting that
constructing semantic models has provided us with deeper insights
about the underlying calculus than purely syntactical arguments.

Accommodating self types. Since our type system features re-
cursive and bounded existential types, self types (i.e. recursive ob-
ject types with ‘proper’ subtyping) can be accommodated via an
encoding. While we have not checked the details, we expect that
a treatment of self types can be achieved even more directly in
the model: given monotonic and non-expansive type constructors
Fd, we would define a self type [md :νd Fd]d∈D as in Defini-
tion 3.19 (Object types) but changing condition (2) to

∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd(α′ → Fd(α
′)).

However, unlike in the functional case, for the imperative calcu-
lus a remaining problem is that updated methods cannot take advan-
tage of the self types. Abadi and Cardelli give a modified imperative
object calculus with a more complex typing rule for method update
that fixes the problem [2, Chapter 17]. Incorporating these more
general ideas is not straightforward since the underlying calculus
and its operational semantics would change. While we believe that
the step-indexing technique is flexible enough to handle this, we
leave this for future work.

Very modal models. Appel et al. recently proposed a new se-
mantic model which improves the one by Ahmed et al. by consid-
ering more fine-grained semantic types [11]. It would be interesting
to see whether we can more naturally accommodate imperative ob-
jects in this more general model.

More realistic languages. Even though the imperative object
calculus provides a good framework for theoretical experiments, it
is different from any of the object-oriented languages used in prac-
tice. It would probably be more complicated, but also more use-
ful, to construct a step-indexed model for a real class-based object-
oriented programming language, or at least for a less abstract sim-
plification thereof (e.g. MJ [15]).

More than types. The step-indexing technique has already been
employed for more general reasoning about programs, not only
for type safety proofs. Based on previous work by Appel and
McAllester [10], Ahmed built a step-indexed partial equivalence
relation model for the lambda calculus with recursive and impred-
icative quantified types. She showed that her relational interpreta-
tion of types captures exactly contextual equivalence [6].

Benton also used step-indexing as a technical device, together
with a notion of orthogonality relating expressions to contexts, to
show the soundness of a compositional program logic for a very
simple stack-based abstract machine [13]. He also employed step-
indexing in a Floyd-Hoare-style framework based on relational
parametricity for the specification and verification of machine code
programs [14].

We hope that our work paves the way for more compelling,
semantic investigations of program logics for the imperative object
calculus. We think that it might be possible to use a step-indexed
model to prove the soundness of more expressive program logics
for this calculus. Unfortunately, in order to achieve this goal, we
are still lacking a good understanding of how dependent types can
be modeled in the step-indexed framework, in the presence of side-
effects like non-termination and state.
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