OOMatch: Pattern Matching as Dispatch in
Java

Adam Richard

13 Jan 2008

Introduction to OOMatch

» Implemented as an extension to Java (in Polyglot)
» Mostly backwards-compatible with Java

» Older (Non-OQ) languages - static dispatch

» Java, C++, others - overloading and receiver-based
polymorphic dispatch

» OOMatch provides a more powerful means of determining
dispatch, using pattern matching

Multimethods

void draw (Shape s) {...}
void draw(Circle c¢c) {...}

» Second method overrides first, since Circle is a subclass of
Shape

» Method depends on dynamic type of all arguments, (Java
only considers the receiver argument)

» Multijava:

void draw (Shape s) {...}
void draw (Shape@Circle c) {...}

Predicate Dispatch

double log(double x) {...}
double log(double x)

when x <= 0 {...} //overrides f (double)
double log(double x)
when x == 0 {...} //overrides both methods

» Can specify arbitrary predicates or preconditions to guard
entry into a method.

» When the predicate of one method m implies that of
another method n, m overrides n

» Difficulty: this is undecidable at compile-time

Pattern Matching

match pair with
(0, second) => second
=> ...

. e
rr

» OOMatch allows pattern matching not just on built-in
values but on Java objects.

Motivation/Design for OOMatch

» More powerful than multimethods

» Simpler, safer than full predicate dispatch
» Provide dispatch through pattern matching of objects
» Requires defining an ordering on the patterns

Patterns in Parameters

void f (Rect (Point (0, 0), Point p)) {}

» This function takes a single parameter of type Rect

» It only applies if the Rect is composed of two points, and
the first point has coordinates (0, 0).

» Any named variables in the pattern (p in this case) can be
used in the method body.

» Patterns can be nested to any arbitrary depth.

Overriding

void f(Rect r) {}
void f (Rect (Point (0, 0),
Point (int x, int vy))) {}
void f (Rect (Point pl, Point p2)) {}
void f (Rect (ScreenCoord pl, ScreenCoord p2) r) {}
void f (Rect (ScreenCoord (0, 0),
ScreenCoord(int x, int vy))) {}

Overriding diagram

f(Rect(Point, Point))
f(Rect(Point(0, 0), Point(int, int))) f(Rect(ScreenCoord, ScreenCoord))
t(Rect(ScreenCoord(0, 0), ScreenCoord(int, int)))

Enabling Pattern Matching

public class Rect {
private Point topLeft, bottomRight;

deconstructor Rect (Point topleft,
Point bottomRight)

topLeft = this.topleft;

bottomRight = this.bottomRight;
return true;

Method Overriding

» Method my overrides mo if all of my’s parameters are
preferred over my’s parameters

» And they must have the same name and number of
parameters
» But, methods in subclasses override those in
superclasses, regardless of parameters.

class A {

void f(Point p) { ... }

void f(Point (0, 0)) { ... } }
class B extends A {

void f(Point p) { ... } }

More Examples - AST processing

//Do nothing by default
Expr optimize (Expr e) { return e; }

//Anything + 0 is itself
Expr optimize (Plus (Expr e, NumConst (0)))
{ return e; }

//Constant folding

| Expr optimize (Binop (NumConst cl,
NumConst c2) op)

{ return op.eval(cl, c2); }

More Examples - GUI event processing

void doEvent (Widget w) {}

void doEvent (Button ("OK")) {
//OK button clicked

}

void doEvent (Button (String name)) {
//Process other buttons
//(e.g. if there 1s an array of
//buttons)

}

void doEvent (Textbox (String text)) {
//Textbox event

}

Errors

» Sometimes multiple methods can match, but none is the
most specific

» This is an ambiguity error.

//Anything + 0 is itself

Expr optimize (Plus (Expr e, NumConst (0)))
{ return e; }

//Constant folding
Expr optimize (Binop (NumConst cl,

NumConst c2) op)
{ return op.eval(cl, c2); }

Run-time Ambiguities

» “Most” ambiguities caught by the compiler

» Three situations where error delayed until run-time

» This is preferable to restricting the valid OOMatch
programs

» Thesis contains a proof that these three are the only
situations which can cause a run-time ambiguity

Run-time Ambiguities

1. Multiple inheritance (allowed in Java for interfaces) causes
difficulties

interface I {}
interface Il extends I {}
interface I2 extends I {}

void £(I x) { ... }
void £(I1 x) { ... }
void £(I2 x) { ... }

Run-time Ambiguities

2. Different deconstructors in the same set of methods

class Binop {

deconstructor Binop (Expr el,
{ ...}
deconstructor Binop2 (Expr el,

{ ...}

Expr e2)

Expr e2)

void f (Binop (Expr el, Expr e2)) { ... }

void f (Binop.Binop2 (Expr el, Expr e2)) {

Run-time Ambiguities

3. Non-deterministic deconstructors

void f(Point (0, 0)) { ... }
void f (Point (1, 1)) { ... }

deconstructor Point (int x, int y) {
Random r = new Random() ;
//Randomly return either 0 or 1
//for each of x and y
X = r.nextInt (2);
y r.nextInt (2);

Use Case

» Reimplemented a class of Soot - ConstraintChecker.java in
src/soot/jimple/toolkits/typing/integer/ - to use patterns.

» Multimethods eliminated the dependence on Visitors.
» Lines of Code: 1221 => 948
» Uses of instanceof: 121 => 35

Use Case - Example Simplified Code

//Java
if (1 instanceof Local) {
if (((Local) 1) .getType()
instanceof IntegerType) {
left = ClassHierarchy.v () .typeNode (

((Local) 1) .getType());

}

}

//00Match
public TypeNode left (d.Local (IntType t)) {

return ClassHierarchy.v () .typeNode (t);

}

Conclusion

» Pattern Matching as Dispatch is a natural next step after
polymorphic dispatch and multimethods

» OOMatch - first known prototype implementation,
extension of Java

» Balance between safety and flexibility explored (finding
ambiguity errors vs. allowing more programs)

» Pattern Matching as Dispatch would be more useful if
added to languages designed from scratch

» Website(compiler, thesis):
http://plg.uwaterloo.ca/~a5richar/oomatch.html

Questions?

Let statement

let Point (int x, int y) = p;

» Matches p against the pattern

» An alternative to a series of calls to “getter” methods
» x and y can now be used in the method

» Match must succeed; if it fails, throws an exception

Where clause

void sqgrt (int x) where x >= 0 { ... }

» Simple version of predicate dispatch - no overriding among
different “where” clauses

» Method with “where” clause overrides the same method
without

Non-linear pattern matching

void f (Point p,

» Syntactic sugar for:

void f (Point p,
where p.equa

p)

Point q)
ls(q) |

}

Matching against class variables in scope

class Point {
private int x, vy;

boolean equals (Point (x, Vy))
{ return true; }

» Uses the same syntactic sugar for non-linear pattern
matching

Manual Overriding

void f(Plus(int x, 0)) { ... }
| void f£(Plus (0, int x)) { ... }

» Causes methods listed first to take precedence (as in ML,
case statement, etc.)
» Rules:
1. The methods must be able to simultaneously apply
sometimes

2. If m normally overrides n, can'twriten | m
3. The | operator causes transitive overriding

Final Methods and Cross-class Overriding

» Final means “cannot be overridden” - forces particular
behavior for certain arguments

class BankTransaction {

void withdraw (double amt) {
//default implementation

}

final void withdraw (double amt)
where (balance() - amt < 0)

{
//throw an error

}

Static Deconstructors

class C {
deconstructor Date(int year, int mon, int day)
on java.util.Date d

year = d.getYear();
mon = d.getMon();
day = d.getDay () ;
return true;

}

class D {
void f(C.Date(int year, int mon, int day)) {}

Motivation

» Combining functional and OO styles
» Functional: safe, easy to work with functions
» OO: powerful system for modularization, extending data
types
» OOMatch looks at a small aspect of this: pattern matching
as dispatch
» Pattern Matching: powerful feature of many functional
languages
» Dynamic Dispatch: important OO feature to enable
abstraction

Design Goals

» Freedom (no unnecessary restrictions on sensible
programs)

» Simplicity (intuitive for programmers)

» Safety (generally less important than freedom)
» Retain Java’s modular typechecking

» Pay only for what you use

Implementation

» OOMatch has been implemented as a Polyglot extension

» Polyglot is a Java-to-Java compiler
» Languages extend Polyglot to compile their language to
Java

» Implementation renames all methods, inserts dispatchers
into classes

» Deconstructors become regular methods

Backwards Compatibility

» Syntax is backwards-compatible

» Some cases where a Java program gives an error

» All differences can be caught by the compiler as either
warnings or errors

» Rather than converting Java to OOMatch, OOMatch
classes can use Java classes

» Can’t override Java classes with multimethods or patterns,
though

» Tested compiling JEdit with OOMatch - revealed 2 errors

and 19 warnings out of 50-100K LOC

Enabling Pattern Matching (Easy Way)

public class Rect {
public Rect (private Point topleft,
private Point bottomRight) {}
}

void f (Rect (Point pl, Point p2)) {}

» Combined constructor and deconstructor
» Enables matching as in the function £

When does a match occur?

| Parameter | E.g. | Rule
Regular Method: void f(Point p) | Multimethods
Call: f(q)
Literal Method: void f(0) Equality
Call: f(x " y) (== or .equals)
Pattern Method: Call deconstructor

void f(ColourPoint(0, 0))
Call: f(q)

on argument;
match resulting list
against pattern
recursively.

Overriding Rules

» Formals preferred over other formals of supertype
(multimethods)

» E.g. Circle c < Shape s

» Patterns preferred over formals of supertype
» E.g. Point (int x, 0) <Point p

» Literal preferred over formals which includes the value
» Eg. 1 <int x

» Patterns preferred over other patterns of supertype, same
deconstructor, and recursively preferred subpatterns

» E.g. CPoint (0, int x) <Point (int x, int y)
> p=<p

Scala

» Scala has case classes, which allow a class hierarchy to
be fixed into a set of cases for the subclass.

abstract class Term

case class Num(x : int) extends Term

case class Plus(left: Term, right : Term)
extends Term

Scala

» Case classes allow for easy pattern matching:

Term x = ...,

x match {
case Plus(y, Num(0)) =>vy
case Plus (Num(0), y) => vy
case _ => X

» Scala also has extractors, like our deconstructors
» Doesn’t do pattern matching as dispatch

JPred

» Restricted, but decidable, predicate dispatch using a
“when” clause.

void f(int x) when x > 1 { ... }
void f (int x) when x > 2 { ... }

» JPred computes that the second method overrides the first,
because x > 2 implies that x > 1.

» Allows only built-in operators in when clause.

Visitors

interface Visitor {
void caseExpr (Expr e);
void caseStmt (Stmt e);

}
class CodeGeneration implements Visitor
{ ... 1}
class Expr extends Node {
Node accept (Visitor v) {
v.caseExpr (this);

	Background
	Introducing OOMatch
	Use Case
	Conclusion
	Motivation and Design Goals
	Implementation

