
Static Analysis

Principles of Software System Construction

Jonathan Aldrich

Some slides from Ciera Jaspan

Find the Bug!

disable interrupts

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

2 April 2012
15-214: Principles of Software System

Construction
3

disable interrupts

re-enable interrupts

ERROR: returning

with interrupts disabled

Limits of Inspection

• People

• …are very high cost

• …make mistakes

• …have a memory limit

So, let’s automate

inspection!

2 April 2012 4
15-214: Principles of Software System

Construction

Metal Interrupt Analysis

is_enabled

disableenable

enable =>

err(double enable)

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

is_disabled

disable =>

err(double disable)

end path =>

err(end path

with/intr

disabled)

2 April 2012 5
15-214: Principles of Software System

Construction

Applying the Analysis

initial state is_enabled

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

2 April 2012
15-214: Principles of Software System

Construction
6

transition to is_disabled

transition to is_enabled

final state is_enabled is OK

final state is_disabled: ERROR!

Empirical Results on Static Analysis

• InfoSys study [Chaturvedi 2005]

– 5 projects

– Average 700 function points each

– Compare inspection with and

without static analysis

Adapted from [Chaturvedi 2005]

• Conclusions

– Fewer defects

– Higher productivity

2 April 2012 7
15-214: Principles of Software System

Construction

Static Analysis Finds “Mechanical” Errors

• Defects that result from inconsistently following simple, mechanical
design rules

• Security vulnerabilities
– Buffer overruns, unvalidated input…

• Memory errors
– Null dereference, uninitialized data…

• Resource leaks
– Memory, OS resources…– Memory, OS resources…

• Violations of API or framework rules
– e.g. Windows device drivers; real time libraries; GUI frameworks

• Exceptions
– Arithmetic/library/user-defined

• Encapsulation violations
– Accessing internal data, calling private functions…

• Race conditions
– Two threads access the same data without synchronization

2 April 2012
15-214: Principles of Software System

Construction
8

Outline

• Why static analysis?

– Automated

– Can find some errors faster than people

– Can provide guarantees that some errors are found

• How does it work?

• What are the hard problems?• What are the hard problems?

• How do we use real tools in an organization?

2 April 2012 9
15-214: Principles of Software System

Construction

Outline

• Why static analysis?

• How does it work?

– Systematic exploration of program abstraction

– Many kinds of analysis

• AST walker

• Control-flow and data-flow• Control-flow and data-flow

• Type systems

• Model checking

– Specifications frequently used for more information

• What are the hard problems?

• How do we use real tools in an organization?

2 April 2012 10
15-214: Principles of Software System

Construction

Abstract Interpretation

• Static program analysis is the systematic examination of an

abstraction of a program’s state space

• Abstraction

– Don’t track everything! (That’s normal interpretation)

– Track an important abstraction

• Systematic• Systematic

– Ensure everything is checked in the same way

• Let’s start small…

2 April 2012 11
15-214: Principles of Software System

Construction

A Performance Analysis

What’s the performance problem?

public foo() {

<

logger.debug(“We have ” + conn + “connections.”);

}

public foo() {

<

if (logger.inDebug()) {

logger.debug(“We have ” + conn + “connections.”);}

Seems minor<

but if this performance gain on 1000

servers means we need 1 less machine,

we could be saving a a lot of money

logger.debug(“We have ” + conn + “connections.”);

}

}

2 April 2012 12
15-214: Principles of Software System

Construction

A Performance Analysis

• Check that we don’t create strings outside of a
Logger.inDebug check

• Abstraction
– Look for a call to Logger.debug()

– Make sure it’s surrounded by an if (Logger.inDebug())

• Systematic• Systematic
– Check all the code

• Known as an Abstract Syntax Tree (AST) walker
– Treats the code as a structured tree

– Ignores control flow, variable values, and the heap

– Code style checkers work the same way

• you should never be checking code style by hand

– Simplest static analysis: grep

2 April 2012 13
15-214: Principles of Software System

Construction

An interrupt checker

• Check for the interrupt problem

• Abstraction

– 2 states: enabled and disabled

– Program counter

• Systematic

– Check all paths through a function– Check all paths through a function

• Error when we hit the end of the function with interrupts
disabled

• Known as a control flow analysis

– More powerful than reading it as a raw text file

– Considers the program state and paths

2 April 2012 14
15-214: Principles of Software System

Construction

Adding branching

• When we get to a branch, what should we do?

– 1: explore each path separately

• Most exact information for each path

• But—how many paths could there be?

• Leads to an exponential state explosion

– 2: join paths back together

• Less exact

• But no state explosion

• Not just conditionals!

– Loops, switch, and exceptions too!

2 April 2012 15
15-214: Principles of Software System

Construction

Example: Bad

1. int foo() {

2. unsigned long flags;

3. int rv;

4. save_flags(flags);

5. cli();

6. rv = dont_interrupt();

7. if (rv > 0) {

8. do_stuff();

Abstraction (before statement)

2-4: enabled

5: enabled

6: disabled

7: disabled

8: disabled

9: disabled8. do_stuff();

9. restore_flags();

10. } else {

11. handle_error_case();

12. }

13. return rv;

14. }

9: disabled

11: disabled

13: unknown

Error: did not

reenable interrupts

on some path

2 April 2012 16
15-214: Principles of Software System

Construction

A null pointer checker

• Prevent accessing a null value

• Abstraction

– Program counter

– 3 states for each variable: null, not-null, and maybe-null

• Systematic

– Explore all paths in the program (as opposed to all paths in the – Explore all paths in the program (as opposed to all paths in the

method)

• Known as a data-flow analysis

– Tracking how data moves through the program

– Very powerful, many analyses work this way

– Compiler optimizations were the first

2 April 2012 17
15-214: Principles of Software System

Construction

Example: Bad

1. int foo() {

2. Integer x = new Integer(6);

3. Integer y = bar();

4. int z;

5. if (y != null)

6. z = x.intVal() + y.intVal();

Abstraction (before statement)

3: x � not-null

4: x � not-null, y � maybe-null

5: x � not-null, y � maybe-null

6: x � not-null, y � not-null
7. else {

8. z = x.intVal();

9. y = x;

10. x = null;

11. }

12. return z + x.intVal();

13. }

6: x � not-null, y � not-null

8: x � not-null, y � null

9: x � not-null, y � null

10: x � not-null, y � not-null

12: x � maybe-null, y � not-null

Error: may have null

pointer on line 12

2 April 2012 18
15-214: Principles of Software System

Construction

Example: Method calls

1. int foo() {

2. Integer x = bar();

3. Integer y = baz();

4. Integer z = noNullsAllowed(x, y);

5. return z.intValue();

6. }
Two options:

1. Global analysis
7. Integer noNullsAllowed(Integer x, Integer y) {

8. int z;

9. z = x.intValue() + y.intValue();

10. return new Integer(z);

11. }

1. Global analysis

2. Modular analysis

with specifications

2 April 2012 19
15-214: Principles of Software System

Construction

Global Analysis

• Dive into every method call

– Like branching, exponential without joins

– Typically cubic (or worse) in program size even with joins

• Requires developer to determine which method has the fault

– Who should check for null? The caller or the callee?

2 April 2012 20
15-214: Principles of Software System

Construction

Modular Analysis w/ Specifications

• Analyze each module separately

• Piece them together with specifications

– Pre-condition and post-condition

• When analyzing a method

– Assume the method’s precondition

– Check that it generates the postcondition– Check that it generates the postcondition

• When the analysis hits a method call

– Check that the precondition is satisfied

– Assume the call results in the specified postcondition

2 April 2012 21
15-214: Principles of Software System

Construction

Example: Method calls

1. int foo() {

2. Integer x = bar();

3. Integer y = baz();

4. Integer z = noNullsAllowed(x, y);

5. return z.intValue();

6. }

7. @Nonnull Integer noNullsAllowed(@Nonnull Integer x, @Nonnull Integer y) {7. @Nonnull Integer noNullsAllowed(@Nonnull Integer x, @Nonnull Integer y) {

8. int z;

9. z = x.intValue() + y.intValue();

10. return new Integer(z);

11. }

12. @Nonnull Integer bar();

13. @Nullable Integer baz();

2 April 2012 22
15-214: Principles of Software System

Construction

Class invariants

• Is always true outside a class’s methods

• Can be broken inside, but must always be put back together

again

public class Buffer {

boolean isOpen;

int available;

/*@ invariant isOpen <==> available > 0 @*/

public void open() {

isOpen = true;

//invariant is broken

available = loadBuffer();

}

}

ESC/Java is a kind of

static analysis tool

2 April 2012 23
15-214: Principles of Software System

Construction

Other kinds of specifications

• Class invariants

– What is always true when entering/leaving a class?

• Loop invariants

– What is always true inside a loop?

• Lock invariant

– What lock must you have to use this object?– What lock must you have to use this object?

• Protocols

– What order can you call methods in?

• Good: Open, Write, Read, Close

• Bad: Open, Write, Close, Read

2 April 2012 24
15-214: Principles of Software System

Construction

Typechecking

• Another static analysis!

• In Perl…

– No typechecking at all!

• In ML, no annotations required

– Global typechecking

• In Java, we annotate with types

foo() {
a = 5;
b = 3;
bar(“A”, “B”);• In Java, we annotate with types

– Modular typechecking

– Types are a specification!

• In C#, no annotations for local variables

– Required for parameters and return values

– Best of both

bar(“A”, “B”);
print(5 / 3);

}

bar(x, y) {
print(x / y);

}

2 April 2012 25
15-214: Principles of Software System

Construction

Static Analysis for Race Conditions

• Race condition defined:

[From Savage et al., Eraser: A Dynamic Data Race Detector for
Multithreaded Programs]
– Two threads access the same variable

– At least one access is a write

– No explicit mechanism prevents the accesses from being simultaneous

• Abstraction• Abstraction
– Program counter of each thread, state of each lock

• Abstract away heap and program variables

• Systematic
– Examine all possible interleavings of all threads

• Flag error if no synchronization between accesses

• Exploration is exhaustive, since abstract state abstracts all concrete
program state

• Known as Model Checking

2 April 2012
15-214: Principles of Software System

Construction
26

Model Checking for Race Conditions

thread1() {

read x;

}

thread2() {

lock();

write x;

Thread 1 Thread 2

read x

lock

write x

unlockwrite x;

unlock();

}

Interleaving 1: OK

2 April 2012 27
15-214: Principles of Software System

Construction

Model Checking for Race Conditions

thread1() {

read x;

}

thread2() {

lock();

write x;

Thread 1 Thread 2

read x

lock

write x

unlock

write x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

2 April 2012 28
15-214: Principles of Software System

Construction

Model Checking for Race Conditions

thread1() {

read x;

}

thread2() {

lock();

write x;

Thread 1 Thread 2

read x

lock

write x

unlockwrite x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

Interleaving 3: Race

2 April 2012 29
15-214: Principles of Software System

Construction

Model Checking for Race Conditions

thread1() {

read x;

}

thread2() {

lock();

write x;

Thread 1 Thread 2

read x

lock

write x

unlockwrite x;

unlock();

}

Interleaving 1: OK

Interleaving 2: OK

Interleaving 3: Race

Interleaving 4: Race

2 April 2012 30
15-214: Principles of Software System

Construction

Outline

• Why static analysis?

• How does it work?

• What are the important properties?

– Side effects

– Modularity

– Aliases– Aliases

– Termination

– Precision

• How do we use real tools in an organization?

2 April 2012 31
15-214: Principles of Software System

Construction

Hard problems

• Side effects

– Often difficult to specify precisely

• In practice: ignore (unsafe) or approximate (loses accuracy)

• Modularity

– Specifications

– Not just performance issue– Not just performance issue

– Don’t have to analyze all the code

– Reduces interactions between people

• Aliasing and pointer arithmetic

• Termination

• Precision

2 April 2012 32
15-214: Principles of Software System

Construction

Aliasing

• Two variables point to the same object

• A variable might change underneath you during a seemingly

unrelated call

• Multi-threaded: change at any time!

• Makes analysis extremely hard

2 April 2012 33
15-214: Principles of Software System

Construction

Aliasing solutions

• Can add more specifications

– Unique, Immutable, Shared…

• Analysis can assume no aliases

– Can miss issues from aliasing

• Analysis can assume the worst case

– Can report issues that don’t exist– Can report issues that don’t exist

2 April 2012 34
15-214: Principles of Software System

Construction

Pointer arithmetic

• Very difficult to analyze

• Many tools will gladly report an issue, even if there is none

• May be a good idea to avoid

– Rationale: It might be correct, but it’s ugly and makes problems more

difficult to find

2 April 2012 35
15-214: Principles of Software System

Construction

Termination

• How many paths are in a program?

• Exponential # paths with if statements

• Infinite # paths with loops

• How could we possibly cover them all?

2 April 2012 36
15-214: Principles of Software System

Construction

Termination Solution

• Use abstraction!

• Finite number of (abstract) states

• If you’ve already explored a state for a statement,
stop.
– The analysis depends only on the code and the current state

– Continuing the analysis from this program point and state would
yield the same results you got before

– Might analyze a loop several times, but will eventually reach a
fixed point

• Worst case: lose precision, but terminate

• If the number of states isn’t finite, too bad
– Your analysis may not terminate

2 April 2012 37
15-214: Principles of Software System

Construction

Example

1. void foo(int x) {

2. File f = null;

3. if (x == 0)

4. f = new File(bar());

5. else

6. f = new File(baz());

7. while (x > 0) {

Path 1 (before stmt): else/no loop

3: f=null;

6: f=null;

10: f != null;

no errors

2 April 2012
15-214: Principles of Software

System Construction
38

8. do_work(f);

9. }

10. f.delete();

11. }

Example

1. void foo(int x) {

2. File f = null;

3. if (x == 0)

4. f = new File(bar());

5. else

6. f = new File(baz());

7. while (x > 0) {

Path 2 (before stmt): else/1 loop

3: f = null

6: f = null

7: f != null

8: f != null

9: f != null

10: f != null

2 April 2012
15-214: Principles of Software

System Construction
39

8. do_work(f);

9. }

10. f.delete();

11. }

Example

1. void foo(int x) {

2. File f = null;

3. if (x == 0)

4. f = new File(bar());

5. else

6. f = new File(baz());

7. while (x > 0) {

Path 3 (before stmt): else/2+ loops

3: f = null

6: f = null

7: f != null

8: f != null

9: f != null

7: f != null

2 April 2012
15-214: Principles of Software

System Construction
40

8. do_work(f);

9. }

10. f.delete();

11. }

already been here

Example

1. void foo(int x) {

2. File f = null;

3. if (x == 0)

4. f = new File(bar());

5. else

6. f = new File(baz());

7. while (x > 0) {

Path 4 (before stmt): then

3: f = null

4: f = null

7: f != null

already been here

all of state space has been explored

2 April 2012
15-214: Principles of Software

System Construction
41

8. do_work(f);

9. }

10. f.delete();

11. }

all of state space has been explored

Precision

• Abstraction is an approximation

• And it can be wrong

• No tool reports all and only real issues

Error exists Error doesError exists Error does

not exist

Analysis reports error True Positive False Positive

(annoying)

Analysis doesn’t report error False Negative

(false confidence)

True Negative

2 April 2012 42
15-214: Principles of Software System

Construction

Soundness and Completeness

• Sound tools have no false negatives

– Can have false positives

– Ideally, they are from “ugly” code anyway

– Provides assurance that no defects (of that type) are left

• Complete tools have no false positives

– All issues are “real” issues– All issues are “real” issues

– Not many of these in practice

– No confidence, but maybe good for smoke tests?

• Many tools try for low numbers of both

2 April 2012 43
15-214: Principles of Software System

Construction

Methods to increase precision

• Ignore highly unusual cases

• Make abstraction less abstract

• Add specifications

• Make code more analyzable

– Remove aliases

– Remove pointer arithmetic

– Clean up control flow

2 April 2012 44
15-214: Principles of Software System

Construction

Tradeoffs

• You can’t have it all

1. No false positives

2. No false negatives

3. Perform well

4. No specifications

5. Modular5. Modular

• You can’t even get 4 of the 5

– Halting problem means first 3 are incompatible

– Modular analysis requires specifications

• Each tool makes different tradeoffs

2 April 2012 45
15-214: Principles of Software System

Construction

Outline

• Why static analysis?

• How does it work?

• What are the important properties?

• How do we use real tools in an organization?

– FindBugs @ eBay

– SAL @ Microsoft (source: Manuvir Das)

2 April 2012 46
15-214: Principles of Software System

Construction

“False” Positives

1. int foo(Person person) {

2. if (person != null) {

3. person.foo();

4. }

5. return person.bar();

6. }

• Is this a false positive?

• What if that branch is

never run in practice?

• Do you fix it? And how?

Error on line 5:

Redundant comparison

to null

2 April 2012 47
15-214: Principles of Software System

Construction

“False” Positives

1. public class Constants {

2. static int myConstant = 1000;

3. }

• Is this a false positive?

• What if it’s in an open-

source library you

imported?

• What if there are 1000 • What if there are 1000

of these?Error on line 3: field

isn’t final but should be

2 April 2012 48
15-214: Principles of Software System

Construction

True Positives

• Defn 1: Any issue that the developer does not intend to fix

• Defn 2: Any issue that the developer wants to see (regardless

of whether it is fixed)

• Varies between projects and people

• Soundness and completeness are relative to the technical

abstractionsabstractions

• We hope the abstraction is what people want

2 April 2012 49
15-214: Principles of Software System

Construction

Example Tool: FindBugs

• Origin: research project at U. Maryland
– Now freely available as open source

– Standalone tool, plugins for Eclipse, etc.

• Checks over 250 “bug patterns”
– Over 100 correctness bugs

– Many style issues as well– Many style issues as well

– Includes the two examples just shown

• Focus on simple, local checks
– Similar to the patterns we’ve seen

– But checks bytecode, not AST
• Harder to write, but more efficient and doesn’t require source

• http://findbugs.sourceforge.net/

2 April 2012 50
15-214: Principles of Software System

Construction

Example FindBugs Bug Patterns

• Correct equals()

• Use of ==

• Closing streams

• Illegal casts

• Null pointer dereference• Null pointer dereference

• Infinite loops

• Encapsulation problems

• Inconsistent synchronization

• Inefficient String use

• Dead store to variable

2 April 2012 51
15-214: Principles of Software System

Construction

Demonstration: FindBugs

2 April 2012 52
15-214: Principles of Software System

Construction

FindBugs at eBay

• eBay wants to use static analysis

• Need off the shelf tools

• Focus on security and performance

• Had bad past experiences

– Too many false positives

– Tools used too late in process

• Help them choose a tool and add it to the process

2 April 2012 53
15-214: Principles of Software System

Construction

How important is this issue?

1. void foo(int x, int y)

2. int z;

3. z = x + y;

4. }

Line 3: Dead store to local

How about this one?How about this one?

void foo(int x, int y)

List dataValues;

dataValues = getDataFromDatabase(x, y);

}

Significant overhead, and not caught any other way!

2 April 2012 54
15-214: Principles of Software System

Construction

Tool Customization

• Turn on all defect detectors

• Run on a single team’s code

• Sort results by detector

• Assign each detector a priority

• Repeat until consensus (3 teams)• Repeat until consensus (3 teams)

2 April 2012 55
15-214: Principles of Software System

Construction

Priority = Enforcement

• Priority must mean something
– (otherwise it’s all “high priority”)

• High Priority
– High severity functional issues

– Medium severity, but easy to fix

• Medium Priority
– Medium severity functional issues– Medium severity functional issues

– Indicators to refactor

– Performance issues

• Low Priority
– Only some domain teams care about them

– Stylistic issues

• Toss
– Not cost effective and lots of noise

2 April 2012 56
15-214: Principles of Software System

Construction

Cost/Benefit Analysis

• Costs
– Tool license

– Engineers internally supporting tool

– Peer reviews of defect reports

• Benefits
– How many defects will it find?– How many defects will it find?

– What priority?

• Compare to cost equivalent of testing by QA Engineers
– eBay’s primary quality assurance mechanism

– Back of the envelope calculation

– FindBugs discovers significantly more defects

• Order of magnitude difference

• Not as high priority defects

2 April 2012 57
15-214: Principles of Software System

Construction

Quality Assurance at Microsoft

• Original process: manual code inspection

– Effective when system and team are small

– Too many paths to consider as system grew

• Early 1990s: add massive system and unit testing

– Tests took weeks to run

• Diversity of platforms and configurations• Diversity of platforms and configurations

• Sheer volume of tests

– Inefficient detection of common patterns, security holes

• Non-local, intermittent, uncommon path bugs

– Was treading water in Windows Vista development

• Early 2000s: add static analysis

2 April 2012 58
15-214: Principles of Software System

Construction

PREFast at Microsoft

• Concerned with memory usage

• Major cause of security issues

• Manpower to developer custom tool

2 April 2012 59
15-214: Principles of Software System

Construction

Standard Annotation Language (SAL)

• A language for specifying contracts between functions

– Intended to be lightweight and practical

– Preconditions and Postconditions

– More powerful—but less practical—contracts supported in systems

like JML or Spec#

• Initial focus: memory usage• Initial focus: memory usage

– buffer sizes

– null pointers

– memory allocation

2 April 2012 60
15-214: Principles of Software System

Construction

SAL is checked using PREfast

• Lightweight analysis tool

– Only finds bugs within a single procedure

– Also checks SAL annotations for consistency with code

• To use it (for free!)

– Download and install Microsoft Visual C++ 2005 Express Edition

• http://msdn.microsoft.com/vstudio/express/visualc/

– Download and install Microsoft Windows SDK for Vista– Download and install Microsoft Windows SDK for Vista

• http://www.microsoft.com/downloads/details.aspx?familyid=c2b1e300-
f358-4523-b479-f53d234cdccf

– Use the SDK compiler in Visual C++

• In Tools | Options | Projects and Solutions | VC++ Directories add
C:\Program Files\Microsoft SDKs\Windows\v6.0\VC\Bin (or similar)

• In project Properties | Configuration Properties | C/C++ | Command Line
add /analyze as an additional option

2 April 2012 61
15-214: Principles of Software System

Construction

Buffer/Pointer Annotations

_in

_inout

_out

The function reads from the buffer. The caller provides
the buffer and initializes it.

The function both reads from and writes to buffer. The
caller provides the buffer and initializes it.

The function writes to the buffer. If used on the return _out

_bcount(size)
_ecount(size)

_opt

The function writes to the buffer. If used on the return
value, the function provides the buffer and initializes
it. Otherwise, the caller provides the buffer and the
function initializes it.

The buffer size is in bytes.
The buffer size is in elements.

This parameter can be NULL.

2 April 2012 62
15-214: Principles of Software System

Construction

PREfast: Immediate Checks

• Library function usage

– deprecated functions

• e.g. gets() vulnerable to buffer overruns

– correct use of printf

• e.g. does the format string match the parameter types?

– result types– result types

• e.g. using macros to test HRESULTs

• Coding errors

– = instead of == inside an if statement

• Local memory errors

– Assuming malloc returns non-zero

– Array out of bounds

2 April 2012 63
15-214: Principles of Software System

Construction

SAL: the Benefit of Annotations

• Annotations express design intent

– How you intended to achieve a particular quality attribute

• e.g. never writing more than N elements to this array

• As you add more annotations, you find more errors

– Get checking of library users for free

– Plus, those errors are less likely to be false positives– Plus, those errors are less likely to be false positives

• The analysis doesn’t have to guess your intention

– Instant Gratification Principle

• Annotations also improve scalability through modularity

– PreFAST uses very sophisticated analysis techniques

– These techniques can’t be run on large programs

– Annotations isolate functions so they can be analyzed one at a time

2 April 2012 64
15-214: Principles of Software System

Construction

SAL: the Benefit of Annotations

• How to motivate developers?
– Especially for millions of lines of unannotated code?

• Require annotations at checkin
– Reject code that has a char* with no __ecount()

• Make annotations natural
– Ideally what you would put in a comment anyway

• But now machine checkable
• Avoid formality with poor match to engineering practices

Incrementality
• Avoid formality with poor match to engineering practices

• Incrementality
– Check code ↔ design consistency on every compile
– Rewards programmers for each increment of effort

• Provide benefit for annotating partial code
• Can focus on most important parts of the code first
• Avoid excuse: I’ll do it after the deadline

• Build tools to infer annotations
– Inference is approximate
– Unfortunately not yet available outside Microsoft

2 April 2012 65
15-214: Principles of Software System

Construction

Impact at Microsoft

• Thousands of bugs caught monthly

• Significant observed quality improvements

– e.g. buffer overruns latent in codebaes

• Widespread developer acceptance

– Tiered Check-in gates

– Writing specifications– Writing specifications

2 April 2012 66
15-214: Principles of Software System

Construction

Static Analysis in Engineering Practice

• A tool with different tradeoffs

– Soundness: can find all errors in a given class

– Focus: mechanically following design rules

• Major impact at Microsoft and eBay• Major impact at Microsoft and eBay

– Tuned to address company-specific problems

– Affects every part of the engineering process

2 April 2012
15-214: Principles of Software System

Construction
67

