
Course Wrap-up:

the Past and Future of Objects

Principles of Software System Construction

Jonathan Aldrich and Charlie Garrod

Fall 2013

Outline

• The Beginnings of Objects

– Simulation in Simula

• Pure OO in Smalltalk

– Historical context, demo

• OO Design Approaches

– Refactoring and related design principles

• Self: Objects Without Classes

• Actors: Concurrent Objects

• Emerald: Distributed Objects

• The Engineering Significance of Objects

• Current OO Research at CMU

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
4

Simulation at the NCC in 1961

• Context: Operations research
– Goal: to improve decision-

making by simulating complex
systems

• Discrete-event simulations like
Rabbit world, but in domains
like traffic analysis

– Kristin Nygaard and Ole-Johan
Dahl at the Norwegian
Computing Center

• Development of SIMULA I
– Goal: SIMULA "should be problem-oriented and not computer-oriented, even if

this implies an appreciable increase in the amount of work which has to be done
by the computer.“

– Modeled simulations “as a variable collection of interacting processes"

– Design approach: "Instead of deriving language constructs from discussions of the
described systems combined with implementation considerations, we developed
model system properties suitable for portraying discrete event systems,
considered the implementation possibilities, and then settled the language
constructs."

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
5

SIMULA: a Motivating Problem

• Need to store vehicles in a toll booth queue.

• Want to store vehicles in a linked list to represent the queue

• Each vehicle is either a car, a truck, or a bus.

• Different kinds of vehicles interact with the toll booth in

different ways

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
6

Needs Motivating OOP

• Issues with SIMULA I

– Since each object in a simulation was a process, it was awkward to get

attributes of other objects

– "We had seen many useful applications of the process concept to

represent collections of variables and procedures, which functioned as

natural units of programming” motivating more direct support for this

– "When writing simulation programs we had observed that processes often

shared a number of common properties, both in data attributes and

actions, but were structurally different in other respects so that they had

to be described by separate declarations.”

– “memory space [was] our most serious bottleneck for large scale

simulation.”

[source: Kristen Nygaard and Ole-Johan Dahl, The Development of the SIMULA Languages, History of

Programming Languages Conference, 1978]

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
7

Needs Motivating OOP

• Issues with SIMULA I

– Since each object in a simulation was a process, it was awkward to get

attributes of other objects

– "We had seen many useful applications of the process concept to

represent collections of variables and procedures, which functioned as

natural units of programming” motivating more direct support for this

– "When writing simulation programs we had observed that processes often

shared a number of common properties, both in data attributes and

actions, but were structurally different in other respects so that they had

to be described by separate declarations.”

– “memory space [was] our most serious bottleneck for large scale

simulation.”

[source: Kristen Nygaard and Ole-Johan Dahl, The Development of the SIMULA Languages, History of

Programming Languages Conference, 1978]

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
8

Garbage collection was a good technology for the memory problem. The

others required new ideas.

Hoare’s Record Classes

• C. A. R. Hoare proposed Record Classes in 1966
– Goal: capture similarity and variation in data structures

record class Expression (

subclasses

Constant(real value),

Variable(string name),

BinaryExpr(reference(Expression) left, right;

subclasses Sum, Difference, Product, Quotient));

• Each class described a particular record structure

• A subclass shared fields from its parent

• Variables could take any type in the subclass hierarchy

• A record class discriminator provided case analysis on the record type

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
9

Expression

Constant

value: real

Variable

name: string

BinaryExpr

left: reference(Expression)

right: reference(Expression)

Sum

Product Quotient

Difference

Hoare’s Record Classes

• C. A. R. Hoare proposed Record Classes in 1966
– Goal: capture similarity and variation in data structures

record class Expression (

subclasses

Constant(real value),

Variable(string name),

BinaryExpr(reference(Expression) left, right;

subclasses Sum, Difference, Product, Quotient));

• Each class described a particular record structure

• A subclass shared fields from its parent

• Variables could take any type in the subclass hierarchy

• A record class discriminator provided case analysis on the record type

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
10

Expression

Constant

value: real

Variable

name: string

BinaryExpr

left: reference(Expression)

right: reference(Expression)

Sum

Product Quotient

Difference

Dahl and Nygaard’s observations on record classes:

• "We needed subclasses of processes with...actions...not only of pure

data records"

• "We also needed to group together common process properties in such

a way that they could be applied later, in a variety of different situations

not necessarily known in advance"

SIMULA 67’s Class Prefix Idea

• Create a Link class to represent the linked list

• Add the Link class as a prefix to vehicles, which are subclasses
– Today we would say this is not a good design—but it nevertheless was

enough to motivate a good idea

• As in Hoare’s design, subclassing is hierarchical
– Car, Truck, etc. are subclasses of Vehicle

• Unlike Hoare’s classes, Simula classes can have virtual procedures
– Allows subclasses to override behavior for the toll booth

• Unlike in Hoare’s design, each class was declared separately
– Link could be reused for other linked lists, not just lists of vehicles

– Supports extensibility: can add RVs later as a subclass of Vehicle

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
11

Sample Simula 67 Code
Begin

Class Glyph;

Virtual: Procedure print Is Procedure print;;

Begin End;

Glyph Class Char (c);

Character c;

Begin

Procedure print;

OutChar(c);

End;

Glyph Class Line (elements);

Ref (Glyph) Array elements;

Begin

Procedure print;

Begin

Integer i;

For i:= 1 Step 1 Until UpperBound (elements, 1) Do

elements (i).print;

OutImage;

End;

End;

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
12

Ref (Glyph) rg;

Ref (Glyph) Array rgs (1 : 4);

! Main program;

rgs (1):- New Char ('A');

rgs (2):- New Char ('b');

rgs (3):- New Char ('b');

rgs (4):- New Char ('a');

rg:- New Line (rgs);

rg.print;

End;

Smalltalk Context: Personal Computing

• The Dynabook at Xerox PARC:

“A Personal Computer for

Children of All Ages”

• Funded by US Govt (ARPA, the folks

who brought you the internet) to

facilitate portable maintenance

documentation

• Alan Kay’s goal

– Amplify human reach

– Bring new ways of thinking to

civilization

(CMU still pursuing this goal with

computational thinking)

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
13

Alan Kay with a Dynabook

prototype

Smalltalk and Simula

“What I got from Simula was that you could now replace

bindings and assignment with goals. The last thing you wanted

any programmer to do is mess with internal state even if

presented figuratively. Instead, the objects should be presented

as sites of higher level behaviors more appropriate for use as

dynamic components.”

- Alan Kay, The early history of Smalltalk. In History of

programming languages—II, 1993.

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
14

Smalltalk

• The name

– “Children should program in…”

– “Programming should be a matter of…”

• Pure OO language

– Everything is an object (including true, “hello”, and 17)

– All computation is done via sending messages

• 3 + 4 sends the “+” message to 3, with 4 as an argument

• To create a Point, send the “new” message to the Point class

– Naturally, classes are objects too!

• Garbage collected

– Following Lisp and Simula 67

• Reflective

– Smalltalk is implemented (mostly) in Smalltalk

• A few primitives in C or assembler

– Classes, methods, objects, stack frames, etc. are all objects

• You can look at them in the debugger, which (naturally) is itself implemented in Smalltalk

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
15

Smalltalk Demo

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
16

Smalltalk, according to Alan Kay

• “In computer terms, Smalltalk is a recursion on the notion of
computer itself. Instead of dividing “computer stuff” into
things each less strong than the whole—like data structures,
procedures, and functions which are the usual paraphernalia
of programming languages—each Smalltalk object is a

recursion of the entire possibilities of the computer.

• “…everything we describe can be represented by the
recursive composition of a single kind of behavioral building
block that hides its combination of state and process inside
itself and can be dealt with only through the exchange of
messages.

• “Thus [Smalltalk’s] semantics are a bit like having thousands
and thousands of computers all hooked together in a very fast
network.”

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
17

Dan Ingalls’ perspective

• Computing should be viewed as an intrinsic capability of

objects that can be uniformly invoked by sending messages...

Instead of a bit-grinding processor raping and plundering data

structures, we have a universe of well-behaved objects that

courteously ask each other to carry out their various desires.

– Daniel Ingalls, Design Principles Behind Smalltalk (1981)

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
18

Impact of Smalltalk and Simula

• Mac (and later Windows): inspired by Smalltalk GUI

• GUI frameworks

– Smalltalk MVC � MacApp � Cocoa, MFC, AWT/Swing, …

• C++: inspired by Simula 67 concepts

• Objective C: borrows Smalltalk concepts, syntax

• Java: garbage collection, bytecode from Smalltalk

• Ruby: pure OO model almost identical to Smalltalk

– All dynamic OO languages draw from Smalltalk to some extent

• Design and process ideas impacted by Smalltalk

– Patterns, Refactoring, Extreme programming/Agile movement

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
19

Refactoring

• A “disciplined technique for restructuring an existing body of
code, altering its internal structure without changing its
external behavior” – Martin Fowler, Refactoring: Improving

the Design of Existing Code.

• Goal: improve maintainability

– Increase readability, reduce complexity, support extensibility

• Typically done in an incremental way

– Many basic “micro-refactorings” applied in sequence

• May be triggered by code smells

– Code duplication, large classes or methods, high coupling, etc.

– A good proxy: what would your TA think?

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
20

Sample Refactorings

• Rename method

– Tricky/tedious to do manually: all references must be updated

• Encapsulate field

– Replace with getter/setter, allowing representation change and interposed
behavior

• Replace conditional with polymorphism

– Makes code more extensibe

• Extract class or method

– Move reusable code into a construct that supports reuse

• Move method

– When the method is in the wrong place

• Pull up/push down methods or fields

– To reuse a method more widely, or to remove methods where they are
not used

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
21

Refactoring in Practice

• Tool support helps a lot

– Although only simple refactorings are typically automated

– Eclipse demo

• Supported by good unit tests, version control

– Easy to have confidence in changing code if you have good tests, and
can easily revert to a known state

• Dovetails with agile methodology

– Value continuous code improvement over big design up front

– Often, you don’t know enough about the problem to do the big design
anyway—so fixing what you get wrong is essential

– More in 15-313!

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
22

More Design Principles

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
23

Don’t Repeat Yourself

Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.

• Duplicate code: the most obvious symptom
– Refactor to merged close duplicates into methods

– Create abstract classes

– Apply design patterns

– Use code generation when PL abstractions are not good enough
• But never edit the generated code! [no longer a single representation]

• Watch out for other sources of duplication
– Text files, etc.

• Also known as “Once and Only Once”
– Some argue for a “Rule of Three” – refactor when a piece of code appears three

times. In practice it depends on how much code is duplicated.

– Quality Rationale [Yaron Minksy, Jane Street]: you can’t pay people enough to read
boring/repetitive code carefully

– Evolution Rationale: difficult to evolve repeated code, especially maintaining
consistency

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
24

Worse is Better [Gabriel]

Contrasting design styles:

• The “Right Thing”

– Correctness is an absolute requirement

– Consistency is also required, even at the cost of

simplicity/completeness

– Completeness: cover as many important situations as is practical

– Simplicity is desirable, especially in the interface – but OK to sacrifice

• “Worse is Better”

– Simplicity, especially in the implementation, is most important

– Correctness is essential, but it is better to be simple than correct

– Consistency is a goal; OK to sacrifice for simplicity, but better to leave

out functionality

– Completeness is desirable, but can be sacrificed for any other quality

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
25

Worse is Better: Simplicity

• Memorable, but oxymoronic slogan

– Meaning is that less functionality (“worse”) is often preferable (“better”)

• Rationale

– If the initial program is good, it will be easier to implement and adapt

– Use will spread rapidly, but users are conditioned to expect imperfection

– Pressure, and capacity, to improve due to widespread use

“Therefore, the worse-is-better software first will gain acceptance,
second will condition its users to expect less, and third will be
improved to a point that is almost the right thing. In concrete terms,
even though Lisp compilers in 1987 were about as good as C
compilers, there are many more compiler experts who want to make C
compilers better than want to make Lisp compilers better.”

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
26

Simplicity or Planning for Change?

• 214 emphasizes planning for change in design

– But adding flexibility often has a cost: e.g. interface indirection

– Almost every design pattern has a complexity cost

– OO keeps costs lower than other paradigms, but the cost is still there

• Simplicity itself facilitates change

– It is easier to change a system if it is small and well-understood

– KISS: Keep it simple stupid

• Coined by Kelly Johnson at Lockheed: challenge to fix a jet plane with a
handful of tools

• Are you sure you are going to need it?

– Often developers, and even users, are certain they need functionality that
doesn’t turn out to be important

– So common there’s an acronym: YAGNI (you ain’t gonna need it)

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
27

Next Time

• Self: Objects Without Classes

• Actors: Concurrent Objects

• Emerald: Distributed Objects

• The Engineering Significance of Objects

• Current OO Research at CMU

OO History
Principles of Software System Construction

© 2013 Jonathan Aldrich
28

