
Jonathan Aldrich, Ph.D.
Associate Professor
Institute for Software Research
School of Computer Science
Carnegie Mellon University

January 2014

© 2014 Jonathan Aldrich These materials may not be duplicated or distributed without advance
written permission from the author.

Software Architecture

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Outline

• What is software architecture?
• What are its benefits?
• How to develop a software architecture?
• How to document a software architecture?
• Conclusion and takeaways

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Example Architecture:
Potsdam Observatorium

What is (Building) Architecture?
And why is it useful?

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

What is Software Architecture?

Example Architecture:
Potsdam Observatorium

Software architecture represents the high-level design
of a software system, showing how desired system
properties are achieved

High-Level Design

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Where Architecture Fits

• Requirements
– What the system should do
– What properties it should have

• Architecture
– High-level design, how properties are achieved

• Detailed design
– Lower-level design, how system functions

• Code
– How the system actually works

What

How

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Two Architectures for Web Search

How does architecture affect system properties?
• Modifiability / ease of change
• Consistency of results
• System cost
• Scalability of system
• Reliability of system

Architecture A Architecture B

requests requests

network
switch

. . .

Cluster of
commodity

servers

Big server

Altavista search engine Google search engine

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Two Architectures for Sending Email

Which architecture was better in 1980? Which was better in 2000?
Factors to consider
• Simplicity
• Efficiency
• Security

Modules within sendmail process Processes implementing qmail

sendmail qmail

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Two Architectures for Sending Email

requests requests

network
switch

. . .

Cluster of
commodity

servers

Big server

sendmail qmail

• Sendmail was the dominant email client from 1982 until 2000.
• In 1988 the Morris worm, the first internet worm, took advantage of a

sendmail vulnerability; many other vulnerabilities have been found
since.

• By 2000 sendmail had begun a steep and permanent decline, and
qmail was growing exponentially.

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Architecture is an Abstraction
• Focus on principal design decisions

– Structure – components and connections
– Behavior – responsibilities of each component,

high level algorithms
– Interaction – rules governing how components communicate
– Quality attributes – strategy for achieving
– Implementation – language, platform, libraries, etc.

– Any decision that impacts key stakeholder concerns or has
global impact on the program

• Elide unimportant details
– Decisions that are internal to a component

• i.e. which other components cannot depend on
• e.g. internal algorithms, data structures, local design patterns

– AND do not impact key stakeholder concerns

Architecture is design, but not all design is architectural

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Outline

• What is software architecture?
• What are its benefits?
• How to develop a software architecture?
• How to document a software architecture?
• Conclusion and takeaways

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Architecture Benefits: System Properties

• Architecture is not about a system’s function,
but rather the system’s properties

• Some properties and their consequences
– Fitness: performance, reliability, security � competitive advantage
– Modifiability/ease of changing � business agility
– Reuse of code � reduced cost

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Business Case: Cell Phones [M. Bass]

• Market is driven by killer products
– e.g. Razr, iPhone

• Most profit is made at initial release
– Premium charged on initial sales
– Drops rapidly when copycats arrive

• Business model
– Be first to market with new features

• Software quality attributes
– Ability to change rapidly and at low cost

• True story: effect of architecture
– Leading cell phone manufacturer

• not enough new products
• starts to lose market share, decides to release faster
• leads to trouble: e.g. tone so loud it damages hearing � recalls

– Analysis
• software structure did not enable rapid change
• too costly to rewrite software from scratch
• eventually left cell phone business entirely

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Telecom Architecture Scenario

• Context: telecommunications wholesaler
– Provides services both to end users and resellers
– 8 legacy applications built with different interfaces, technologies

• Challenges
– Duplicate functionality between end user / reseller channels
– Several manual steps in process; difficult to automate
– Difficult to roll out new services
– Need to free reserved resources when an operation is canceled

• What would you do?

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Telecom Architecture Solution

• Service-Oriented Architecture
– Wrap legacy applications with a standard web services interface
– Automate tasks using scripting (BPEL)
– Share common operations, services between the different

channels
– Incorporate undoing reservations into the script

• Impacts
– Common interface enabled automation � lower cost
– Also facilitates replacing components � agility
– Scripts make business operation changes easier � agility
– Reuse of common components � lower cost
– Built-in undo avoids wasting resources � reliability, lower cost

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Outline

• What is software architecture?
• What are its benefits?
• How to develop a software architecture?
• How to document a software architecture?
• Conclusion and takeaways

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

How to Develop a Software Architecture

• Investment driven by complexity and scale
• Fitness evaluated by key risks
• Design appropriate for the domain
• Structure aligned with the organization

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Tradeoffs in Architecture Investment

Source: Boehm,
Valerdi, Honour
2008

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Driving Architecture via Risks

• Low risk � little investment needed
– Typically use a reference architecture (e.g. 3-tier web)
– Reference architectures capture (“hoist”) known domain risks

• Otherwise, evaluate architecture fitness using risks

• Major risks are architectural drivers
• Example drivers and architectural analysis approaches

– Maintainability/Reuse: variation, interface standards
– Performance: queuing theory, real-time analysis
– Security: threat modeling
– Distributed development: interfaces between teams

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Domain-Specific Architectures

• Pattern: A reusable solution to a recurring architecture design problem

• Example: 3-tier web applications
– Data tier stores data in a database
– Logic tier implements business logic
– Presentation tier handles web requests
– Benefits?

web
requests

presentation
tier

logic
tier

data
tier

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Domain-Specific Architectures

• Pattern: A reusable solution to a recurring architecture design problem

• Example: 3-tier web applications
– Data tier stores data in a database
– Logic tier implements business logic
– Presentation tier handles web requests
– Benefits include modifiability, scalability

web
requests

presentation
tier

logic
tier

data
tier

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Architecture-Organization Alignment

• Conway’s Law
Any organization that designs a system...will inevitably
produce a design whose structure is a copy of the
organization's communication structure (Conway, 1968)

• Case example: product line
– Applications initially developed independently
– Desired reusable library to reduce cost, increase agility
– Failed to build library using existing teams
– Success required a team dedicated to the core library.

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Outline

• What is software architecture?
• What are its benefits?
• How to develop a software architecture?
• How to document a software architecture?
• Conclusion and takeaways

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Architectural Views
• Many possible “views” of architecture

– Implementation structures
• Modules, packages
• Modifiability, Independent construction, …

– Run-time structures
• Components, connectors
• Interactions, dynamism, reliability, …

– Deployment structures
• Hardware, processes, networks
• Security, fault tolerance, …

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Why Document Architecture?

• Blueprint for the system

– Artifact for early analysis

– Primary carrier of quality attributes
– Key to post-deployment maintenance and

enhancement

• Documentation speaks for the architect,
today and 20 years from today
– As long as the system is built, maintained, and

evolved according to its documented architecture

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

What is Wrong Today?

• In practice today’s documentation
consists of
– Ambiguous box-and-line diagrams
– Inconsistent use of notations
– Confusing combinations of

viewtypes
• Many things are left unspecified:

– What kind of elements?
– What kind of relations?
– What do the boxes and arrows

mean?
– What is the significance of the

layout?

A

B C

D

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

What could the arrow mean?

BA

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

What could the arrow mean?

• Many possibilities
– A passes control to B
– A passes data to B
– A gets a value from B
– A streams data to B
– A sends a message to B
– A creates B
– …

BA

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Representing C&C Views

connector

component

system

port role

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Guidelines: Avoiding Ambiguity

• Always include a legend
• Define precisely what the boxes mean
• Define precisely what the lines mean
• Don’t mix viewtypes unintentionally

– Recall: Module (classes), C&C (components)

• Supplement graphics with explanation
– Very important: rationale (architectural intent)

• Do not try to do too much in one diagram
– Each view of architecture should fit on a page
– Use hierarchy

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Technique: Hierarchy

• Use hierarchy to define elements in more
detail in separate views

• Helps keep an architectural description
manageable

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Web Component

LDAP Directory

RDBMS

Direct Adapter

Indirect Adapter

Controller

Interface

SOAP Connector
& roles

LDAP Connector
& roles

DB Connector
& roles

RMI Connector
& roles

Event Bus
Connector

& roles

Legend

Viewer

System Boundary

Top-level C&C View

Rule &
Configuration

DB

Integrated
Data Rep

External
LDAP1

External
LDAP2

External
DB1

External
DB1

Change Log
M

e
ta

V
ie

w
e

r

D
ire

ct
A
d
a
p
te

r1

D
ire

ct
A
d
a
p
te

r2

In
d
ire

ct
A
a
p
te

r1

In
d
ire

ct
A
a
p
te

r2

A
d
a
p
te

r
M

a
n
a
g
e
r

Administrator
Console

J
o

in

E
n

g
in

e

Façade
Component

Transaction Log

Adapter
Registry

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Rule
Translator

Router

Transaction
Coordinator

Receiver

Rule Set
Manager

Call &
Return

Legend

Message
Handler

Interface

Agent

Jo
in

E
n
g
in

e

Context

<Event Bus>

R
u
le

 a
n
d

<
C
o
n
fig

u
ra

tio
n
 D

B
>

<Façade
Component>

Send port

Receive port

Showing Details of Component

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Outline

• What is software architecture?
• What are its benefits?
• How to develop a software architecture?
• How to document a software architecture?
• Conclusion and takeaways

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Conclusion: Key Takeaways

• Architecture captures high-level design of software
– Structure and communication
– Key design decisions

• Enables desired properties of system
– Reuse � reduce cost
– Modifiability � business agility
– Fitness for use � competitive advantage

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

Extra: Architecture Research at CMU

• Architecture modeling and analysis
– Verify security, performance properties
– Ensure an architecture is realizable

• Architecture adaptation models
– React to breakdowns, security breaches
– Adapt to changing resources (e.g. network bandwidth)

• Architecture-based development
– Synchronizing code and architecture
– Verifying constraints at architectural interfaces

Software Architecture

©
 2

01
4

Jo
na

th
an

 A
ld

ric
h

References and Further Reading

� Software Architecture: Perspectives on an Emerging
Discipline. Mary Shaw and David Garlan. Prentice Hall, 1996.

� Software Architecture: Foundations, Theory, and Practice.
Taylor, Medvidovic, and Dashofy. Wiley, 2009.

▪ Software Architecture in Practice. Bass, Clements, and
Kazman. Addison-Wesley, 2003.

▪ Just Enough Software Architecture. George Fairbanks.
Marshall & Brainerd, 2006.

Further
Reading

References

