
Jonathan Aldrich

Inspection Analysis of Software Artifacts
© 2009 Jonathan Aldrich

1

Analysis of Software Artifacts

Inspection

Portions © 2007 by
William L Scherlis.
Used by permission.

Inspection 2Analysis of Software Artifacts
© 2009 Jonathan Aldrich

The Computer’s Perspective

http://www.xkcd.com/371/

used by permission

Inspection 3Analysis of Software Artifacts
© 2009 Jonathan Aldrich

The Computer’s Perspective

http://www.xkcd.com/371/

used by permission

Inspection 4Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Inspection – The Big Questions
1. What is inspection?

• And what are the benefits?

2. When are inspections better than testing?
• What kind of attributes?
• What is the typical experience of firms with inspection?

3. Are there different kinds of inspections?
• What are the relative benefits of each?

4. Who are the inspection participants?
• Roles played and their benefits

5. How is the inspection process
accomplished?
• What are summary guidelines for the meetings?

6. What gets inspected?
• And when to do inspections?

Inspection 5Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Software Inspections
1. What are software inspections (reviews)?

• Meetings (real or virtual) during which designs and code are reviewed by
people other than the original developer.

• What are the benefits of inspections?
• New perspective

• Finding defects may be easier for people who haven't seen the artifact before and don’t
have preconceived ideas about its correctness

• Knowledge sharing
• Regarding designs and specific software artifacts
• Regarding defect detection practices

• Find flaws early
• Can dramatically reduce cost of fixing them
• During detail design – even before code is written
• Or code that does not yet have a test harness
• Or code in which testing has found flaws but root causes are not understood

• Reduce rework and testing effort
• Can reduce overall development effort

Source material
Peer Reviews in Software: A Practical Guide.

Karl E. Wiegers.
Additional material from William Scherlis.

Inspection 6Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Inspections vs. Testing

2. What attributes are well-handled by
inspections but not testing?

• Characteristics of code
• Maintainability, evolvability, reusability

• Other properties tough to test
• Scalability, efficiency
• Security, integrity
• Robustness, reliability, exception handling

• Requirements, architecture, design documents
• Cannot “execute” these as a test

Inspection 7Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Experience with inspection

• Raytheon
• Reduced "rework" from 41% of cost to 20% of cost
• Reduced effort to fix integration problems by 80%

• Paulk et al.: cost to fix a defect in space shuttle software
• $1 if found in inspection
• $13 during system test
• $92 after delivery

• IBM
• 1 hour of inspection saved 20 hours of testing
• Saved 82 hours of rework if defects in released product

• IBM Santa Teresa Lab
• 3.5 hours to find bug with inspection, 15-25 through testing

• C. Jones
• Design/code inspections remove 50-70% of defects
• Testing removes 35%

• R. Grady, efficiency data from HP
• System use 0.21 defects/hour
• Black box 0.28 defects/hour
• White box 0.32 defects/hour
• Reading/inspect 1.06 defects/hour

Inspection 8Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Experience with inspection

• Raytheon
• Reduced "rework" from 41% of cost to 20% of cost
• Reduced effort to fix integration problems by 80%

• Paulk et al.: cost to fix a defect in space shuttle software
• $1 if found in inspection
• $13 during system test
• $92 after delivery

• IBM
• 1 hour of inspection saved 20 hours of testing
• Saved 82 hours of rework if defects in released product

• IBM Santa Teresa Lab
• 3.5 hours to find bug with inspection, 15-25 through testing

• C. Jones
• Design/code inspections remove 50-70% of defects
• Testing removes 35%

• R. Grady, efficiency data from HP
• System use 0.21 defects/hour
• Black box 0.28 defects/hour
• White box 0.32 defects/hour
• Reading/inspect 1.06 defects/hour

• Your mileage may vary
• Studies give different answers
• These results show what is possible

Inspection 9Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Kinds of Inspections

Inspections / Formal Technical Reviews
• Participation defined by policy

• Developers
• Designated key individuals – peers,

QA team, Review Board, etc.
• Advance preparation by participants

• Typically based on checklists
• Formal meeting to discuss artifact

• Led by moderator, not author
• Documented process followed
• May be virtual or conferenced

• Formal follow-up process
• Written deliverable from review
• Appraise product

Inspection 10Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Kinds of Inspections

Inspections / Formal Technical Reviews
• Participation defined by policy

• Developers
• Designated key individuals – peers,

QA team, Review Board, etc.
• Advance preparation by participants

• Typically based on checklists
• Formal meeting to discuss artifact

• Led by moderator, not author
• Documented process followed
• May be virtual or conferenced

• Formal follow-up process
• Written deliverable from review
• Appraise product

Walkthroughs
• No advance preparation
• Author leads discussion in meeting
• No formal follow-up
• Low cost, valuable for education

Inspection 11Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Kinds of Inspections

Inspections / Formal Technical Reviews
• Participation defined by policy

• Developers
• Designated key individuals – peers,

QA team, Review Board, etc.
• Advance preparation by participants

• Typically based on checklists
• Formal meeting to discuss artifact

• Led by moderator, not author
• Documented process followed
• May be virtual or conferenced

• Formal follow-up process
• Written deliverable from review
• Appraise product

Walkthroughs
• No advance preparation
• Author leads discussion in meeting
• No formal follow-up
• Low cost, valuable for education

Other review approaches
• Pass-around – preparation part of an

inspection
• Peer desk check – examination by a

single reviewer (like pair programming)
• Ad-hoc – informal feedback from a team

member

Inspection 12Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Kinds of Inspections

Inspections / Formal Technical Reviews
• Participation defined by policy

• Developers
• Designated key individuals – peers,

QA team, Review Board, etc.
• Advance preparation by participants

• Typically based on checklists
• Formal meeting to discuss artifact

• Led by moderator, not author
• Documented process followed
• May be virtual or conferenced

• Formal follow-up process
• Written deliverable from review
• Appraise product

Walkthroughs
• No advance preparation
• Author leads discussion in meeting
• No formal follow-up
• Low cost, valuable for education

Other review approaches
• Pass-around – preparation part of an

inspection
• Peer desk check – examination by a

single reviewer (like pair programming)
• Ad-hoc – informal feedback from a team

member

There are tradeoffs among the techniques
• Formal reviews typically find more bugs

• Ford Motor: 50% more bugs found
• But they also cost more

Inspection 13Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Inspection – The Big Questions
1. What is inspection?

• And what are the benefits?

2. When are inspections better than testing?
• What kind of attributes?
• What is the typical experience of firms with inspection?

3. Are there different kinds of inspections?
• What are the relative benefits of each?

4. Who are the inspection participants?
• Roles played and their benefits

5. How is the inspection process
accomplished?
• What are summary guidelines for the meetings?

6. What gets inspected?
• And when to do inspections?

Inspection 14Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Review Roles: Moderator and Recorder

4. Who are the stakeholders in inspection?

Moderator

• Organizes review
• Keeps discussion on track
• Ensures follow-up happens

• Key characteristics
• Good facilitator
• Knowledgeable
• Impartial and respected
• Can hold participants accountable and correct inappropriate behavior

Recorder

• Captures a log of the inspection process

Inspection 15Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Review Roles: Reader

Reader

• Presents material
• Describes interpretation of each point
• Discuss different interpretations by other team members

• Why should the Reader be different from the Author?
• Reveals ambiguities

• If author were to present, others might not mention that their
interpretation was different

• Why not just ask for comments section by section?
• Can be faster
• Downside: does not capture differing perspectives as effectively

Inspection 16Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Review Roles: Author

Author

• Describes rationale for work

• Not moderator or reader
• Conflict between objectivity required of moderator/reader and

advocacy for the author’s own work
• Others raise issues more comfortably

• Not recorder
• Temptation to not write down issues the author disagrees with

• Why should the Author attend? Are there downsides?

Inspection 17Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Review Roles: Author

Author

• Describes rationale for work

• Not moderator or reader
• Conflict between objectivity required of moderator/reader and

advocacy for the author’s own work
• Others raise issues more comfortably

• Not recorder
• Temptation to not write down issues the author disagrees with

• Why should the Author attend? Are there downsides?
• Gain insight from others’ perspectives
• Can answer questions
• Can contribute to discussion based on knowledge of artifact
• Potential downside: meeting may be confrontational

Inspection 18Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Inspection – The Big Questions
1. What is inspection?

• And what are the benefits?

2. When are inspections better than testing?
• What kind of attributes?
• What is the typical experience of firms with inspection?

3. Are there different kinds of inspections?
• What are the relative benefits of each?

4. Who are the inspection participants?
• Roles played and their benefits

5. How is the inspection process
accomplished?
• What are summary guidelines for the meetings?

6. What gets inspected?
• And when to do inspections?

Inspection 19Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Process: Planning

5. How is the inspection process accomplished?

Planning
• Determine objectives
• Choose moderator
• Identify inspectors

• Good to involve people with connection to artifact
• e.g. depends on, interfaces with

• Schedule meeting(s)
• General guideline: 150-200 SLOC/hour, or 3-4 pages/hour

• Prepare and distribute inspection package
• Deliverable, supporting docs, checklists
• Cross-reference specs, standards

Inspection 20Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Process

Overview meeting
• Informal meeting
• Goal: go over features, assumptions, background, context
• Optional stage

• May be able to use paper overview or shared context

Preparation (Why?)
• Inspectors examine deliverable

• Defects: cause an error in the product
• Non-defects: improvements, clarification, style, questions

• May want to list typos/spelling/format/style separately and not discuss
during the meeting

• Conformance to standards & specification
• Often use checklist

• General guideline
• prep time ~ meeting time

Inspection 21Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Process: Meeting
The Meeting
• Reader describes one segment at a time

• Inspectors respond: defects, questions, suggestions
• Recorder writes down each defect, suggestion, issue

• This is the primary deliverable
• Moderator

• Avoid problem solving (why?), inappropriate behavior, lack of participation
• At conclusion: prepares report with appraisal and data

• Outcomes: Appraisal of product
• Accepted (minor changes, no follow up)
• Accepted conditionally (minor changes, verification)
• Reinspect following rework (major changes)
• Inspection not completed

• Outcomes: Input on improving inspection process

Inspection 22Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Process: Meeting
The Meeting
• Reader describes one segment at a time

• Inspectors respond: defects, questions, suggestions
• Recorder writes down each defect, suggestion, issue

• This is the primary deliverable
• Moderator

• Avoid problem solving (why?), inappropriate behavior, lack of participation
• At conclusion: prepares report with appraisal and data

• Outcomes: Appraisal of product
• Accepted (minor changes, no follow up)
• Accepted conditionally (minor changes, verification)
• Reinspect following rework (major changes)
• Inspection not completed

• Outcomes: Input on improving inspection process

• Variant: reviewers make comments on electronic bulletin board
• Cost is lower
• Lose benefits of direct meeting (face to face, telephone)

• Synergy - new bugs found (4%? 25%?)
• Learning by participants
• Communication about product

Inspection 23Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Process: Rework and Follow-up

Follow-up by author
• Author addresses each item

• Ensure understanding of issue
• Is it a defect or not? Is it a feature request or requirement change?

• Fixes defects and makes improvements
• Uncorrected/unverified defects go into defect tracking system

• Deliverables
• Corrected work product
• Response to each issue and rationale for action

• Moderator (or verifier) meets with author
• Check resolution of issues
• Examine corrected deliverable

• Author checks in code

Inspection 24Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Process: Analysis
Analysis
• Causal analysis

• Analyze root causes of defects
• Make improvements to development and QA

processes
• Add issue to checklist
• Change testing approach
• Develop or purchase new static analysis

• Measuring effectiveness
• Percentage of bugs found during inspection

• vs. found by other means or afterwards (test, customer)

• Measuring efficiency
• “Defects per hour”
• Will decrease as your process improves

Inspection 25Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Meetings: Review Guidelines
• Build reviews into your schedule

• Otherwise unexpected and viewed as intrusion
• Recognize that reviews can accelerate schedule by reducing other

V&V activities
• Keep review team small

• General guidelines: 3-7 participants
• 3 is minimum for formal process to work
• Below 3, too few perspectives besides author
• Above 7, work may be slowed by process, scheduling

• Smaller groups for code, larger groups for other documents
• Knowledge is spread around more, more stakeholders
• Particular for requirements

• Find problems, but don't try to solve them
• Typically less expensive to address 1-on-1
• Guideline: halt solution discussion after 1-3 minutes

• Limit meetings to 2 hours maximum
• Attention span gets lost beyond this

• Require advance preparation
• Provides much of the value of a (formal) review

Inspection 26Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Discussion: Checklists

• What makes a good checklist?
• Illustrate the principle with an example checklist item

• Principles

• Examples

Inspection 27Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Checklist Items from the Web
• Specification

• Is documentation complete, including DBC or Error checking specs as appropriate?
• Design

• Can better data structures or more efficient algorithms be used?
• Are error messages comprehensive and provide guidance as to how to correct the problem?
• Is there duplicate code that could be replaced by a call to a function that provides the behavior

of the duplicate code?
• Do any derived classes have common members that should be in the base class?

• Coding
• Have all array (or other collection) indexes been prevented from going out-of-bounds?
• Is integer arithmetic, especially division, used appropriately to avoid causing unexpected

truncation/rounding?
• Are all files closed properly, even in the case of an error?
• Are all object references initialized before use?
• In a switch statement, are all cases by break or return?
• Are all objects (including Strings) compared with "equals" and not "=="?

• Style
• Are descriptive variable and constant names used in accord with naming conventions?
• Are there literal constants that should be named constants?

• I think the above are good examples (but not comprehensive). Sources:
• http://users.csc.calpoly.edu/~jdalbey/205/Resources/InspectChecklist.html
• http://undergraduate.csse.uwa.edu.au/units/CITS2220/assign2/JavaInspectionCheckList.pdf

Inspection 28Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Customizing Checklists

• What should be included in a checklist
for a:
• Operating system?
• Online store?
• Word processor?
• Aircraft flight control system?
• Real-time system?
• Concurrent system?

Inspection 29Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Meetings: Checklists
• Benefits of checklists

• Focus on likely sources of error
• Form quality standard that aids preparers
• Can bring up issues specific to a product

• Should be short
• About seven items

• If more, group and do multiple passes

• Focus
• Priority issues
• Issues unlikely to be found other ways
• Historical problems
• Issues specific to the document

• Start with checklist from well-known source
• Refine based on experience

• Pitfall: overemphasis on style issues
• It’s good to find style issues in inspections, but other issues are higher

priority – specification, design, correctness, security, …

Inspection 30Analysis of Software Artifacts
© 2009 Jonathan Aldrich

People: Social Aspects of Reviews

• Reviews are challenging
• Authors invest self-worth in product
• Encourages you to avoid letting others find errors

• For Authors
• Recognize value of feedback
• Place value in making code easy to understand
• Don’t take criticism of code personally

• For reviewers
• Don’t show off how much better/smarter you are
• Be sensitive to colleagues

• Bad: "you didn't initialize this variable“
• Good: "I didn't see where this variable was initialized"

Inspection 31Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Review Pitfalls

• Letting reviewers lead the quality process
• Attitude: “why fix this, the reviewers will find it“
• Responsibility for quality is with author, not reviewers

• Reviewers help

• Insisting on perfection/completion before review
• Makes harder to accept suggestions for change

• Using review statistics for HR evaluation
• Real world example:

• Manager decides "finding more than 5 bugs during an inspection would
count against the author” [Weigers '02]

• Negative effects
• Avoid submitting for inspection
• Submit small pieces at a time
• Avoid pointing out defects in reviews (thus missing them)
• Holding "pre-reviews" that waste time and skew metrics

Inspection 32Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Inspection – The Big Questions
1. What is inspection?

• And what are the benefits?

2. When are inspections better than testing?
• What kind of attributes?
• What is the typical experience of firms with inspection?

3. Are there different kinds of inspections?
• What are the relative benefits of each?

4. Who are the inspection participants?
• Roles played and their benefits

5. How is the inspection process
accomplished?
• What are summary guidelines for the meetings?

6. What gets inspected?
• And when to do inspections?

Inspection 33Analysis of Software Artifacts
© 2009 Jonathan Aldrich

What to Inspect
• First, requirements documents; second, design documents

• Difficult to validate in other ways
• May have high associated risk

• Especially important to get right
• Cheaper to fix earlier on in process

• Many different perspectives are helpful
• Need involvement of multiple stakeholders

• Third, critical or uncertain pieces of code
• Security-critical code
• Safety-critical code

• Start inspections at the earliest stages of process
• Catch mistakes early, when easy to fix
• Allow rest of system to be built with knowledge gained

• Sample segments when there is a large body of work
• Consider what are good “coverage” criteria

Inspection 34Analysis of Software Artifacts
© 2009 Jonathan Aldrich

Questions?

Resources
• Wiegers text

• Peer Reviews in Software: A Practical Guide

• A Microsoft perspective
• http://msdn.microsoft.com/en-us/library/cc265075.aspx

