
Assignment 2 (Written/Programming):
Dataflow Analysis

15-819M: Program Analysis
Jonathan Aldrich (jonathan.aldrich@cs.cmu.edu)

Due: Monday, February 1, 2010 (1:30 pm)

100 points total

Turn in a zip file electronically in the Blackboard drop box. The zip file
should contain the following files:

• answers.xxx - the answers to text questions in txt, pdf, or Word (doc)
format. At the top of the document, state your name and andrew ID.

• output.xxx - either analysis output in .txt format or a screenshot in
some common graphics format.

• project.zip - a zipped-up Eclipse project with your analysis imple-
mentation.

Assignment Objectives:

• Precisely define an analysis using a lattice and flow functions.

• Simulate analysis execution on a program using the worklist algo-
rithm.

• Implement a dataflow analysis in a code framework built based on
the concepts of flow functions and lattices.

1



1 Sign Analysis Definition (60 points)

Integer sign analysis tracks whether each integer in the program is positive,
negative, or zero. The results of this analysis can be used to optimize a
program or to circumvent errors like using a negative index into an array.
The analysis is broadly similar to the zero analysis discussed in class. For
the purposes of this assignment, we will ignore the possibility of integer
overflow (i.e. consider mathematical integers).

Question 1.1 (10 points).

Design a ”precise” lattice for a single variable. Your lattice
should track whether a value is less than zero, greater than zero,
equal to zero, greater than or equal to zero, less than or equal
to zero, non-zero, or unknown. Define the lattice by giving (a)
the set of lattice elements and (b) the ordering relation between
them, (c) the top element and (d) the bottom element.

Question 1.2 (6 points).

Design a ”less precise” lattice for a single variable. This lattice
should only track whether a value is less than zero, greater than
zero, equal to zero, or unknown (which in this case will include
cases like greater than or equal to zero). Define the lattice by
giving (a) the set of lattice elements and (b) the ordering relation
between them, (c) the top element and (d) the bottom element.

Question 1.3 (3 points).

What is the initial analysis information before the first statement
of each function? Justify your choice (more than one answer
may be correct, so long as it is justified).

Question 1.4 (15 points).

Define a flow function for a multiplication of two variables as-
signed to a third variable, i.e. of the form x = y ∗ z. Your
flow function should be based on the second, simpler lattice. It
should be as precise as possible given the analysis information
available. You may define the flow function in any notation you
like (e.g. mathematics, code, pseudo-code) as long as it is un-
ambiguous.

2



Question 1.5 (6 points).

Assume you had an implementation of your sign analysis, as
specified above. Explain how you would errors due to a neg-
ative array index. Specifically, assume a 3-address code opera-
tion of the form x = y[z], and describe what condition on the
analysis results just before such an operation would yield (a) a
definite negative array index error and (b) a possible negative
array index error (e.g. in cases where the analysis is too impre-
cise to tell if there is definitely an error).

Question 1.6 (20 points).

Simulate your analysis on the following program using a table
as done in class. Your table should have a column for the pro-
gram point, a column for the worklist, and a column for the ab-
stract value of each variable. Each row should track the value
after the execution of the corresponding statement. The rows
should show how the analysis executes, examining one state-
ment at a time:

1: x = 0;
2: y = 5;
3: z = -3;

if (...)
4: w = y * x;

else
5: w = x * z;

while (...)
6: z = y * z;
7: y = w;

3



2 Sign Analysis Implementation (40 points)

Next, you will implement your valid pointer analysis for the Java program-
ming language using Crystal’s dataflow analysis capabilities.

In Java, integer variables are separate from variables that hold refer-
ences, booleans, floating point values, etc. Your implementation need only
track information for variables of type int. Your analysis only needs to track
the sign of local variables. Any use of fields, arrays, method parameters or
results should be considered to have unknown sign.

You should implement your analysis by defining a class to represent
your simple lattice (i.e. the sign of a single variable), then use this with
the TupleLatticeElement to build a tuple lattice. You will need to de-
fine operations on your lattice in a subclass of SimpleLatticeOperations
(there is a corresponding class TupleLatticeOperations for your tuple lat-
tice). You should define your transfer functions using a subclass of Ab-
stractingTransferFunction. Finally, you should write a subclass of Ab-
stractCrystalMethodAnalysis that creates a SimpleTACFlowAnalysis with
your lattice and transfer function. An example of all of this is the
edu.cmu.cs.crystal.analysis.npe.simpleflow package from the Crystal tuto-
rial.

In order to drive the flow analysis, create a visitor that visits array in-
dexing operations and produces a message using the text ”error” or ”warn-
ing” if the array index will definitely, or might possibly, be less than zero.

Your analysis should produce exactly one warning in the Eclipse errors
window for each of the errors marked with comments in the test file Test-
Sign.java and no additional warnings.

Your analysis should cover variable copies, integer constants, addition,
subtraction, and multiplication as precisely as possible given your lattice.
You are not required to correctly analyze other operations, though your
analysis should not crash.

4



Question 2.1 (10 points).

Run your analysis on TestSign.java. Turn in a screenshot of the
problems window, or the text produced by your analysis if you
wrote to the Crystal console. When capturing the screenshot,
resize the window if necessary to show all the errors. Do not
change TestSign.java.

Question 2.2 (30 points).

Turn in your analysis code. Your code should follow the basic
design described above.

We reserve the right to run your analysis code on examples
other than TestSign.java, looking both for accuracy of the anal-
ysis and its robustness (i.e. it should not throw unexpected ex-
ceptions when run on a larger codebase).

5


