
Homework 1 (Programming): Simple Static
Analysis

17-355/17-665/17-819O: Program Analysis
Claire Le Goues and Jonathan Aldrich

clegoues@cs.cmu.edu, aldrich@cs.cmu.edu

Due: Thursday, January 25, 2018 (11:59 PM) 100 points total

Assignment Objectives:
• Set up the Soot analysis infrastructure in your environment and success-

fully compile and run an analysis
• Understand intermediate representations in the Soot tool
• Implement simple analyses based on visiting different parts of the inter-

mediate representation

Handin Instructions Place all your homework files in your private GitHub
repository in a folder called hw1. The directory should contain the same
content as the download, but with your analyses implemented. Running
ant in the hw1 directory should automatically compile and test the anal-
yses, including the new analysis that you write from scratch. After the
deadline, we will clone your repository and run the ant script. You can
test that you did everything correctly by running the following in a tempo-
rary directory:

git clone https://github.com/CMU-program-analysis/<YOUR-ANDREW-ID >

cd <YOUR-ANDREW-ID>/hw1

ant

1 Setup and Tool Information

Clone your GitHub repository and create a new folder called hw1. Down-
load hw1.zip from the course website and unzip it in the hw1 directory.

1

http://www.cs.cmu.edu/~aldrich/courses/17-355-18sp/resources/hw1.zip


Ensure you have installed the Java Development Kit version 7 or 8. Also
ensure that you have ant installed and running. Note that Andrew Unix
machines, unix.andrew.cmu.edu, have both the JDK and ant already
installed for you.

To make sure everything is running, run ant build in the hw1 direc-
tory. The project should compile successfully and report:
BUILD SUCCESSFUL.

Next, type ant, which will both build the project and run the tests. This
time, after compilation succeeds, you will get a BUILD FAILED message
indicating that the tests failed. That is expected, since in doing the assign-
ment you will implement the analyses so that the tests pass.

After compiling with ant, you can also run Soot manually. to produce
Jimple output for a class such as edu.cmu.se355.hw1.Shifty, go to the
hw1 directory and run:

java -cp lib/soot-trunk.jar soot.Main -cp "build:lib/rt.jar" -f J
edu.cmu.se355.hw1.Shifty

To run the example PrintAnalysis on the same class, use:

java -cp "build:lib/soot-trunk.jar"
edu.cmu.se355.hw1.PrintAnalysisMain -cp

"build:lib/rt.jar" -p jap.printanalysis on
edu.cmu.se355.hw1.Shifty

The main analysis files for bad shift analysis and unread field analysis
also specify unit tests, using the JUnit framework. The unit tests are run
by the ant build script (build.xml), but you can also run them manually.
The command for the bad shift analysis unit test is:

java -cp "build:lib/soot-trunk.jar:lib/junit-4.11.jar:
lib/hamcrest-core-1.3.jar" org.junit.runner.JUnitCore
edu.cmu.se355.hw1.ShiftAnalysisMain

The above command lines have been tested on Linux, but they will be
different if you are using Windows: you will need to replace / with and
replace : with ;

Useful documentation for Soot include the Soot Survivor’s Guide as
well as the API Javadocs.

2 Analysis Implementation

In this assignment, you will implement three simple static analyses. The
first two are specified in the assignment: bad shift analysis and unread

2

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://ant.apache.org/bindownload.cgi
http://junit.org/junit4/
http://www.brics.dk/SootGuide/sootsurvivorsguide.pdf
https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-develop/jdoc/


field analysis. We have provided starter code and test cases for these two
analyses, along with some hints to get you started. You will design and
implement a third analysis from scratch.

We recommend you use the Soot analysis tool, as described in the first
recitation section. However, you may choose to use some other program
analysis engine and even some other language for implementing and test-
ing your analysis; if you want to do so, contact the instructor to discuss
whether any aspects of the assignment need to be adapted.

Question 1, Shift Analysis, (25 points).

Complete the code in ShiftAnalysis.java in order to iden-
tify and report warnings about bit shift operations that shift by
a constant that is greater than 31 or less than 0. You can report
an error using the Utils.reportWarning (element,message),
where message is one of the enumerated error message constants
in the class ErrorMessage, and element is the Soot represen-
tation of the thing causing the error (e.g., a SootField or a
Stmt).

Question 2, Unread Field Analysis, (25 points).

Complete the code in UnreadAnalysis.java in order to iden-
tify and report fields that are declared but never read. You
should report fields that are written but not read from.

We have provided a test case, which you can run with the ant
command; passing the test case is an indication that you are
on the right path, though earning credit for the assignment re-
quires implementing your own analysis in a general way so that
it will also work correctly with other test programs.

Note: in some cases the javac compiler may replace reads of a
variable that acts like constant with the constant itself. It’s OK if
your analysis warns about these situations. This does not occur
in the test case we provide, though.

Question 3, Describe Your Own Analysis, (10 points).

3



Secify another simple analysis, similar to those above, that finds
some kind of bug. You may choose what kind of bug on which
to focus; the list of bugs covered by FindBugs may give you
some ideas:

http://findbugs.sourceforge.net/bugDescriptions.html

It’s OK if the bug you discuss is relatively simple; we have not
yet discussed program analysis techniques that are capable of
finding deep bugs.

Include a README.md file in your hw1 folder describing pre-
cisely under what conditions your analysis should report a bug.

Question 4, Implement Your Own Analysis, (40 points).

Implement the analysis you specified above. Test it on a sample
program that has at least 3 different instances of the bug, as well
as 2 instances of code that is similar to code that would trigger
the bug, but which is correct. You will need to add a new enu-
merated constant to the ErrorMessage class. Write a JUnit test
similar to the test cases provided for ShiftAnalysis and Unread-
Analysis that specifies what warnings should be generated for
the sample program you provide. Extend build.xml so that
your test case is automatically run when ant is invoked; this
should be as simple as adding another <fileset> tag under
<batchtest>.

Note: We reserve the right to run your analysis code on examples other
than the test code we give you, looking both for accuracy of the analysis
and its robustness (i.e., it should not throw unexpected exceptions when
run on a larger codebase). Of course, any problems that are due to external
libraries such as Soot are not your problem, as long as you are not misusing
the library.

4

http://findbugs.sourceforge.net/bugDescriptions.html

	Setup and Tool Information
	Analysis Implementation

