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Records

• A record has multiple named fields
• Fields may have different types
• Order usually doesn’t matter to semantics
• Layout chosen by compiler

• or fixed by programmer in C – helps match hardware expectations

• Operations
• Create: specify initial value for each field   r = { x:5, y:10 }
• Dereference: read a field    r.x; // evaluates to 5
• Assign: update a field         r.x := 7

• We’ll model assignment separately later, using references
• Keeps assignment (and state) orthogonal

• Typing
• Simple, orthogonal approach: a type for each field



Records

• Syntax
• Note shorthand for values – v is a subset of e
• Notation: overbar indicates a list

• Field initialization and dereference



Records

• Typing

• Subtyping
• Depth subtyping example

{ x:int, y:int } ≤ { x:real, y:real }

• Width subtyping example

{ x:int, y:int, z:int } ≤ { x:int, y:int }



Records (Structures)

• Memory layout and its impact (structures)

Figure 8.1 Likely layout in memory for objects of typeelement on a 32-bit machine.Alignment restrictions lead to the 
shaded “holes.”



Records (Structures)

• Memory layout and its impact (structures)

Figure 8.3 Likely memory layout for packedelement records.The atomic_number and atomic_weight fields are 

nonaligned, and can only be read or written (on most machines) viamulti-instruction sequences. 



Records (Structures)

• Memory layout and its impact (structures)

Figure 8.4 Rearranging record fields to minimize holes.By sor ting fields according to the size of their alignment 
constraint, a compiler can minimize the space devoted to holes, while keeping the fields aligned.



Unions (a.k.a. datatypes, …)

• A construct that has 2 or more variants
• Every instance is one variant or the other
• Comes in two forms:

• Tagged: The runtime uses a tag to keep track of which variant you have, allows you 
to test the tag; may enforce consistency

• Untagged: You have to know which variant of the union is intended.  You can “roll 
your own tag” if needed.  May be unsafe.

• Example from C
struct address {

int is_street;   // we use this as a tag
union {

int po_box;
char *street_address;

} address_details;
}

• Example from OCaml

// OCaml tracks the tag for us
type address =

po_box of int
| street_address of string



Formalizing Unions as Sum Types

• Syntax for “sum types” – simple unions with tags
• We model just two possibilities – easy to generalize
• Instead of arbitrary names, we use “right” and “left”
• inr e “injects” a value into a union using the right (r) variant
• A case construct tests the tag and evaluates el or er



Dynamic Semantics of Sums

• Congruence rules handle evaluation when injecting into a union or evaluating 
the input to a case

• The step rules test the tag and run one body or the other—like an if statement



Example of using sums

• Consider modeling addresses as above.  The left variant will be PO boxes and 
the right is street addresses.  When we ship, we must use USPS for PO boxes.  
This function implements that:

ship(address) = case address of inl n => usps(n), of inr a => fedex(a)

ship(inr “5000 Forbes Ave”) // ship to CMU!
 case (inr “5000 Forbes Ave”) of inl n => usps(n), of inr a => fedex(a)
 fedex(“5000 Forbes Ave”)

ship(inl 1492) // 1492 is the PO box we are shipping to
 case (inl 1492) of inl n => usps(n), of inr a => fedex(a)
 usps(1492)



Typechecking Sums

• If we inject a value of type int, the sum type can be int + anything
• In real languages we know what it is; in the formalism we “guess”
• We could avoid “guessing” by annotating the inl with the expected sum type

• The case rule expects e to be a sum, and types the branches assuming the 
variable has the left and right type, respectively.
• The branches must have the same type as each other – that way the program can use the 

result no matter which branch is chosen



Sum Subtyping

• Just like depth subtyping for records, one sum is a subtype of another if the 
component types are in the same relationship.  “If I’m expecting a dog or a 
cat, and you give me a Poodle or a Siamese, I’ll be OK with that”

• If we were modeling sums with more than 2 variants, then a sum with n
variants would be a subtype of a sum with m>n variants that includes the n 
from the first sum.  “If I’m expecting a cat, dog, or horse, and you give me a 
cat or dog, I’m OK with that.  But not vice versa!”

• Exercise: write a rule for this! (assume n-ary sums τ1+…+ τn)



Sum Subtyping

• Just like depth subtyping for records, one sum is a subtype of another if the 
component types are in the same relationship.  “If I’m expecting a dog or a 
cat, and you give me a Poodle or a Siamese, I’ll be OK with that”

• If we were modeling sums with more than 2 variants, then a sum with n
variants would be a subtype of a sum with m>n variants that includes the n 
from the first sum.  “If I’m expecting a cat, dog, or horse, and you give me a 
cat or dog, I’m OK with that.  But not vice versa!”

• Answer to exercise: write a rule for this (assuming n-ary sums τ1+…+ τn)

• Note that this is the “opposite” of width subtyping for records!



Records (Structures) and 
Variants (Unions)

• Memory layout and its impact (unions)

Figure 8.16 (CD) Likely memory layouts for element variants. The value of the naturally_ occurring field (shown here with a double 
border) is intended to indicate which of the interpretations of the remaining space is valid. Field source is assumed to point to a string that 
has been independently allocated.



Pointers

• Pointers serve two purposes:
– Efficient access to objects on the stack (as in C)

– Can be unsafe if not carefully managed
– Rust has a type system that enforces safety

• Dynamic creation of linked data structures, in conjunction 
with a heap storage manager
• Can also be unsafe if dangling pointers are dereferenced
• Garbage collection can ensure safety

• Languages like Java provide a higher level 
“reference” model, “building in” pointers
• We can model references with pointers though



Modeling Pointers

• We model pointers with three constructs:
• A new operation, as in C++ or Java
• A C-style dereference operation, *p
• C-style pointer assignments, *p = e

• Types include pointer types τ* (read from right to left, as in C)
• For modeling execution, we’ll track locations ℓ on the heap
• A store S maps locations to values
• We track the types of locations in the store in a store typing ∑



Pointer Evaluation Rules

• Congruence rules do
the expected thing

• But the program is now
a combination of an
expression and a store!

• Other rules
• Create references and add 

them to the store S, 
creating a new store S’

• Dereference a value, 
looking it up in the store 
S

• Assign a new value,
updating the store



Pointer Typing Rules

• A new expression has 
pointer type

• To type a dereference, 
we look up the type of 
the pointer and take 
away the *

• In an assignment, we
require *p on the left,
where p has pointer type

• The right hand side’s 
type must be a subtype 
of the pointer type



Pointer Subtyping

• As mentioned, we can assign a subtype value to a variable that’s 
a pointer to its supertype:

float *r = new 5.0;
*r = 7; // the compiler will insert a coercion here

• But, we can’t assign an int * to a float *, or vice versa!  That’s 
because int and float have different representations; if we write 
via one pointer and read from the other, the compiler won’t 
know to insert a conversion, and we’ll get garbage.

• Thus, τ1* ≤ τ2* only if τ1 = τ2
• When we study objects, we’ll see that in C++ a Dog* is a 

subtype of an Animal*, but that only works if we use the 
pointers in a limited way as object references, and do not assign 
into them.



Recursive Types

• Recursive types refer to a type inside its definition
• Required to describe recursive data structures

• In practice, combined with other type features
• C structs are records + recursion
• OCaml datatypes are unions + recursion

• Running example (Ocaml) – integer lists
• A datatype with a record in one variant

type IntList =
Cons of { value:int, next:IntList }

|   Nil



Modeling Recursive Types

type IntList =
Cons of { value:int, next:IntList }

|   Nil

• We add named recursive types to our type grammar
• Must also be able to refer to the name

• Now we can model lists as follows
• We use recursive types, sum types, and a record type
• The names Cons and Nil are just right and left branches of the sum type

rec IntList . { value:int, next:IntList } + unit



Semantics of Recursive Types

• There are two ways to model the semantics of recursive types
• Both involve unfolding

• We unfold a type by taking the body of the recursive type, and substituting 
the recursive type for the name everywhere it appears

• The simplest approach, conceptually, is equi-recursive types
• Equi-recursive means the recursive type is equivalent to its unfolding

• An example of this equivalence for IntList:

rec IntList . { value:int, next:IntList } + unit
=
{ value:int, next:rec IntList . { value:int, next:IntList } + unit } + unit



Iso-Recursive Types

• Equi-recursive types are attractive, but hard to implement
• When does the compiler apply the fold/unfold equality?

• A more common approach is iso-recursive types
• Here, a recursive type is isomorphic to its unfolding
• Isomorphic means they behave the same way, but you have to convert 

between them
• The compiler inserts a fold when you create an instance of a recursive type; 

it inserts an unfold when you access it (e.g. with a case or field dereference)

• An operational way to think about fold and unfold:
• fold makes an object into a recursive type, so we can put it in a data 

structure
• unfold converts an object back to a sum or record, so we can get its 

contents



Formalizing Iso-Recursive Types

• We now have fold and unfold in expressions.  A fold around a 
value is a value.  Remember, these are inserted by the compiler—
you don’t write them in any real language.



Formalizing Iso-Recursive Types

• Let’s look at how OCaml IntLists turn into iso-recursive types:

type IntList = Cons of { value:int, next:IntList } | Nil
let list = Cons { value = 3, next = Nil }
in match list with

Cons r => r.value
Nil => 0


let list = foldIList(inl { value = 3, next = foldIntList(inr ()) }
in case unfoldIList(list) of inl r => r.value, of inr u => 0

where I’ve abbreviated the single-unfolded IntList type as
IList = { value:int, next:rec IntList . { value:int, next:IntList } + unit} + unit

Object created; 
compiler inserted folds
Object created; 
compiler inserted folds

datatype match; 
compiler inserts unfold



Formalizing Iso-Recursive Types

• Congruence allows evaluation inside fold/unfold
• When we unfold something that is folded, they cancel:

let list = foldIList(inl { value = 3, next = foldIList(inr ()) }
in case unfoldIList(list) of inl r => r.value, of inr u => 0

case unfoldIList(foldIntList(inl { value = 3, next = foldIList(inr ()) })
of inl r => r.value, of inr u => 0



Formalizing Iso-Recursive Types

• Congruence allows evaluation inside fold/unfold
• When we unfold something that is folded, they cancel:

case unfoldIList(foldIList(inl { value = 3, next = foldIntList(inr ()) })
of inl r => r.value, of inr u => 0

case (inl { value = 3, next = foldIntList(inr ()) }) of inl r => r.value, of inr u => 0

{ value = 3, next = foldIList(inr ()) }.value
 3



Now the typing rules are easy

• So, we can typecheck a folded object as follows:

foldIList(inr ()) } : rec IntList . { value:int, next:IntList } + unit

again, I’ve abbreviated
IList = { value:int, next:rec IntList . { value:int, next:IntList } + unit} + unit



Composite Types

• Today we covered the semantics of a number of
different composite types
• Records
• Unions, datatypes, and sums
• Reference types
• Recursive types





Records (Structures) and 
Variants (Unions)

• Records
– usually laid out contiguously
– possible holes for alignment reasons
– smart compilers may rearrange fields to minimize 

holes (C compilers promise not to)
– implementation problems are caused by records 

containing dynamic arrays
• we won't be going into that in any detail



Records (Structures) and 
Variants (Unions)

• Unions (variant records)
– overlay space
– cause problems for type checking

• Lack of tag means you don't know what is 
there

• Ability to change tag and then access fields 
hardly better
– can make fields "uninitialized" when tag is 

changed (requires extensive run-time support)
– can require assignment of entire variant, as in Ada



Arrays
• Arrays are the most common and important 

composite data types
• Unlike records, which group related fields of 

disparate types, arrays are usually 
homogeneous

• Semantically, they can be thought of as a 
mapping from an index type to a component or 
element type

• A slice or section is a rectangular portion of an 
array (See figure 8.5)



Arrays

Figure 8.5 Array slices(sections) in Fortran90.Much like the values in the header of an enumeration-controlled loop (Section6.5.1), a: b: c in a 

subscript indicates positions a, a+c, a+2c, ...through b. If a or b is omitted, the corresponding bound of the array is assumed. If c is 
omitted, 1 is assumed.  It is even possible to use negative values of c in order to select positions in reverse order. The slashes in 
the second subscript of the lower right example delimit an explicit list of positions. 



• Dimensions, Bounds, and Allocation
– global lifetime, static shape — If the shape of an array is 

known at compile time, and if the array can exist 
throughout the execution of the program, then the compiler 
can allocate space for the array in static global memory

– local lifetime, static shape — If the shape of the array is 
known at compile time, but the array should not exist 
throughout the execution of the program, then space can be 
allocated in the subroutine’s stack frame at run time.

– local lifetime, shape bound at elaboration time

Arrays



Arrays

Figure 8.7 Elaboration-time allocation of arrays in Ada or C99.



Arrays

• Contiguous elements (see Figure 8.8)
– column major - only in Fortran
– row major

• used by everybody else
• makes array [a..b, c..d] the same as array [a..b] of array 

[c..d]



Arrays

Figure 8.8 Row- and column-major memory layout for two-dimensional arrays. In row-major order, the elements of a row are contiguous in memory; in 
column-major order, the elements of a column are contiguous. The second cache line of each array is shaded, on the assumption that each element is an 
eight-byte floating-point number, that cache lines are 32 bytes long (a common size), and that the array begins at a cache line boundary. If the array is 
indexed from A[0,0] to A[9,9], then in the row-major case elements A[0,4] through A[0,7] share a cache line; in the column-majorcase elements A[4,0] 
through A[7,0] share a cache line.



Arrays

• Two layout strategies for arrays (Figure 8.9):
– Contiguous elements
– Row pointers

• Row pointers
– an option in C
– allows rows to be put anywhere - nice for big arrays on 

machines with segmentation problems   
– avoids multiplication
– nice for matrices whose rows are of different lengths

• e.g. an array of strings
– requires extra space for the pointers



Arrays

Figure 8.9 Contiguous array allocation v. row pointers in C. The declaration on the left is a tr ue two-dimensional array. The slashed boxes are 
NUL bytes; the shaded areas are holes. The declaration on the right is a ragged array of pointers to arrays of character s. In both cases, we have 
omitted bounds in the declaration that can be deduced from the size of the initializer (aggregate). Both data structures permit individual 
characters to be accessed using double subscripts, but the memory layout (and corresponding address arithmetic) is quite different. 



Arrays

• Example 8.25 Indexing a contiguous array: 
Suppose

A : array [L1..U1] of array [L2..U2] of array 
[L3..U3] of elem;
D1 = U1-L1+1

D2 = U2-L2+1

D3 = U3-L3+1

Let

S3 = size of elem
S2 = D3 * S3
S1 = D2 * S2



Arrays

Figure 8.10 Virtual location of an array with nonzero lower bounds. By computing the constant portions of an array index at compile time,
we effectively index into an array whose starting address is offset in memory, but whose lower bounds are all zero.



Arrays

• Example 8.25 (continued)
We could compute all that at run time, but we can make 
do with fewer subtractions:

== (i * S1) + (j * S2) + (k * S3)

+ address of A

- [(L1 * S1) + (L2 * S2) + (L3 * S3)]
The stuff in square brackets is compile-time constant 
that depends only on the type of A 



Strings

• In some languages, strings are really just
arrays of characters

• In others, they are often special-cased, to 
give them flexibility (like polymorphism
or dynamic sizing) that is not available for 
arrays in general
– It's easier to provide these things for strings than 

for arrays in general because strings are one-
dimensional and (more importantly) non-circular



Sets

• We learned about a lot of possible 
implementations
– Bitsets are what usually get built into 

programming languages
– Things like intersection, union, membership, etc. 

can be implemented efficiently with bitwise 
logical instructions

– Some languages place limits on the sizes of sets to 
make it easier for the implementor

• There is really no excuse for this



Pointers And Recursive Types 

Figure 8.12 Implementation of a tree in Lisp.A diagonal slash through a box indicates a null pointer. The C and A tags serve to distinguish the two kinds 

of memory blocks: cons cells and blocks containing atoms.



Pointers And Recursive Types 

Figure 8.13 Typical implementation of a tree in a language with explicit pointers.As in Figure 8 .12, a diagonal slash through a box indicates a null pointer.



Pointers And Recursive Types 

• C pointers and arrays
int *a == int a[]

int **a == int *a[]

• BUT equivalences don't always hold
– Specifically, a declaration allocates an array if it 

specifies a size for the first dimension
– otherwise it allocates a pointer
int **a, int *a[] pointer to pointer to int
int *a[n], n-element array of row pointers
int a[n][m], 2-d array



Pointers And Recursive Types 

• Compiler has to be able to tell the size of the 
things to which you point
– So the following aren't valid:

int a[][] bad

int (*a)[] bad

– C declaration rule: read right as far as you can (subject to 
parentheses), then left, then out a level and repeat

int *a[n], n-element array of pointers to integer
int (*a)[n], pointer to n-element array of integers



Pointers And Recursive Types 

• Problems with dangling pointers are due 
to
– explicit deallocation of heap objects

• only in languages that have explicit deallocation

– implicit deallocation of elaborated objects
• Two implementation mechanisms to catch 

dangling pointers
– Tombstones
– Locks and Keys



Pointers And Recursive Types 

Figure 8.17 (CD) Tombstones. A valid pointer refers to a tombstone that in turn refers to an object. A dangling reference refers to an 
“expired” tombstone.



Pointers And Recursive Types 

Figure 8.18 (CD) Locks and Keys. A valid pointer contains a key that matches the lock on an object in the heap. A dangling reference is 
unlikely to match.



Pointers And Recursive Types 

• Problems with garbage collection
– many languages leave it up to the programmer to 

design without garbage creation - this is VERY 
hard

– others arrange for automatic garbage collection
– reference counting

• does not work for circular structures
• works great for strings
• should also work to collect unneeded tombstones



Pointers And Recursive Types 

• Garbage collection with reference counts

Figure 8.14 Reference counts and circular lists.The list shown here cannot be found via any program variable, but because it is circular, every cell 
contains a nonzero count.



Pointers And Recursive Types 
• Mark-and-sweep

– commonplace in Lisp dialects
– complicated in languages with rich type structure, 

but possible if language is strongly typed
– achieved successfully in Java, C#, Scala, Go
– complete solution impossible in languages that are 

not strongly typed
– conservative approximation possible in almost any 

language (Xerox Portable Common Runtime 
approach)



Pointers And Recursive Types 

Figure 8.15 Heap exploration via pointer reversal.



Lists 

• A list is defined recursively as either the 
empty list or a pair consisting of an object 
(which may be either a list or an atom) and 
another (shorter) list
– Lists are ideally suited to programming in 

functional and logic languages
• In Lisp, in fact, a program is a list, and can extend 

itself at run time by constructing a list and executing it
– Lists can also be used in imperative programs



Files and Input/Output 
• Input/output (I/O) facilities allow a program to 

communicate with the outside world
– interactive I/O and I/O with files

• Interactive I/O generally implies communication 
with human users or physical devices 

• Files generally refer to off-line storage 
implemented by the operating system

• Files may be further categorized into
– temporary
– persistent


	Slide Number 1
	Records
	Records
	Records
	Records (Structures)
	Records (Structures)
	Records (Structures)
	Unions (a.k.a. datatypes, …)
	Formalizing Unions as Sum Types
	Dynamic Semantics of Sums
	Example of using sums
	Typechecking Sums
	Sum Subtyping
	Sum Subtyping
	Records (Structures) and �Variants (Unions)
	Pointers
	Modeling Pointers
	Pointer Evaluation Rules
	Pointer Typing Rules
	Pointer Subtyping
	Recursive Types
	Modeling Recursive Types
	Semantics of Recursive Types
	Iso-Recursive Types
	Formalizing Iso-Recursive Types
	Formalizing Iso-Recursive Types
	Formalizing Iso-Recursive Types
	Formalizing Iso-Recursive Types
	Now the typing rules are easy
	Composite Types
	Slide Number 31
	Records (Structures) and �Variants (Unions)
	Records (Structures) and �Variants (Unions)
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Strings
	Sets
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Pointers And Recursive Types 
	Lists 
	Files and Input/Output 

