
4.6 Reasoning Tools C 1

4.6 Reasoning Tools

The use of proof assistants is now common in work on programming language
semantics. Proof assistants can be used to capture the semantics of languages
as well as proofs about those semantics, and the tool can then automatically
check that those proofs are correct. These tools can also be useful for learning
programming language semantics, because they provide immediate feedback on
whether definitions are well-formed and whether the reasoning in proofs are
correct.

In this section, we show how SASyLF, a proof assistant designed for program-
ming language education, can be used to capture the semantics of portions of
the Calculator language from the text, and automatically check proofs about its
semantics. SASyLF is unique among proof assistants in that it uses a textual syntax
that is as close as possible to the notation we use for definitions nad proofs in this
textbook. That means you don’t have to spend a lot of time learning the syntax for
the tool; you can pick it up quickly based on what you already know from the text.

Earlier in the chapter, we assumed certain things as a starting point, such as
the definition of numbers and arithmetic operators. In proof assistants, we want
to make sure all the definitions we build on are correct, and so it is common
to formalize these ideas in the same framework that we use to formalize the
programming language. Starting with arithmetic will also help in understanding
how to use the proof assistant in a simple setting, before we encounter bound
variables and other challenges.

4.6.1 Formalizing Numbers and Arithmetic

We’ll start by defining natural numbers, i.e. the non-negative integers that we useEXAMPLE 4.23
Representing Numbers to count with: 0, 1, 2, To reason about numbers, we need to represent them

somehow. We will use abstract syntax to do this—defined using the same tools
(abstract grammars) that are using to define the abstract syntax of programming
languages.

Natural numbers can be defined inductively: a number is either zero or a
successor of some other number. For example, the number one is the successor of
zero, and the number two is the successor of one. We can define this syntactically
as follows. Let z represent the number zero. And if n is a number, then s n is the
successor of that number. Using an abstract grammar, this can be written as:

n −→ z | s n

Now we can represent the number 3 with the string ‘‘s s s z.’’ But instead of
thinking about strings, we’d like to think of this as an abstract syntax tree, with
the s elements forming the root and (single) branch, and z at the leaf.

SASyLF provides a way to describe abstract grammars, but must be able to
parse them so the tool can read expressions in the language being formalized. We

C 2 Chapter 4 Program Semantics

describe a language’s syntax to SASyLF by first declaring the set of terminals in the
language, and then a syntax made up of rules in BNF form:

terminals
z s

syntax

n ::= z
| s n

SASyLF checks that the nonterminals defined in the syntax are distinct from the
terminals, and that all symbols used on the right hand side are either nonterminals,
terminals, or symbols like + which are implicitly assumed to be terminals.

■
Now that we have formalized natural numbers, we’d like to reason about them.EXAMPLE 4.24

Formalizing Addition Most interesting properties of numbers rely on operators such as addition. Let’s
start by writing down some formal syntax for relating an addition expression to
its result. We’ll do that with a judgment of the form n1 + n2 = n3, which means
exactly what it looks like: that when you add the number n1 to the number n2, you
get the number n3. Let’s call this judgment ‘‘sum.’’ In SASyLF, we define this using
the judgment keyword, the name of the judgment, and the judgment’s syntax, as
follows:

judgment sum: n + n = n

SASyLF checks to make sure that the name of the judgment is unique and that
the symbols used in the judgment are declared terminals or nonterminals. We
start to define this judgment by writing an axiom for adding zero to a number:

z + n = n
sum-z

This rule states that if you add z (zero) to any number n, the result is n. We
name the rule sum-z, which helps us remember that it defines the sum judgment
for the case where we are adding zero to a number.

Of course, we also need to define addition when we are adding numbers other
than zero. Let’s therefore define another rule:

n1 + n2 = n3

(sn1) + n2 = sn3

sum-s

We’ll call this rule sum-s, because it’s the successor case of sum. If we have
established that n1 + n2 = n3, then we know that we can add 1 to both sides, thus
(sn1) + n2 = sn3.

You might think that we need more rules–what if the second number is zero?
But in fact these are all the rules we need to define addition for natural numbers.
As we will see, we can use inductive reasoning to show other interesting properties
of addition, such as that for all numbers n, n + z = n.

4.6.2 Derivations and Simple Theorems C 3

In SASyLF, we define the rules for a judgment immediately after declaring the
judgment. The rules are given as a line of two or more dashes, with premises on
separate lines above the dashed line, the conclusion underneath, and the name
of the rule to the right. Whenever a rule uses a nonterminal, we use the name
of the nonterminal, with numbers or primes appended to distinguish it from
others. SASyLF figures out the type of the nonterminal from its name, so that a
nonterminal named n3 must be an instance of the nonterminal n for numbers.

--------- sum-z
z + n = n

n1 + n2 = n3
----------------- sum-s
s n1 + n2 = s n3

SASyLF checks to make sure that each of the rules has a conclusion that is an
instance of the judgment we are defining, and that each premise of each rule can
be parsed as some judgment (not necessarily the one we are defining). ■

4.6.2 Derivations and Simple Theorems

EXAMPLE 4.25
Derivation of 1 + 2 = 3 How can we prove concrete facts like 1 + 2 = 3 using this system? First

of all, let’s encode the numbers in our system. 1 + 2 = 3 can be written as
s z + s s z = s s s z. Now we can use inference rules to conclude what we
need. We’ll build a derivation tree, which has the thing we want to prove at the
bottom, and applies rules to each judgment until we get to axioms at the leaves of
the tree. For our example fact, the derivation will look like this:

z + s s z = s s z
sum-z

s z + s s z = s s s z
sum-s

You can read the reasoning from the top down. We can apply the axiom sum-z,
instantiating the number n with s s z, to conclude that z + s s z = s s z. We
can then use that as a premise of the rule sum-s: n1 will be z, n2 will be s s z, and
n3 will be s s z. If we plug n1, n2, and n3 into the conclusion of the sum-s rule,
we get the desired result: s z + s s z = s s s z.

Unfortunately SASyLF doesn’t have syntax that directly mimics derivations,
mainly because capturing the branching structure of derivation trees in a literal
syntax isn’t practical. Instead, you can declare a simple theorem stating that
a fact is true. To prove the theorem, instead of giving a derivation, you state
the intermediate facts in the tree one at a time, starting with the leaves of the
derivation, and giving a justification for each fact. For example, we can write the
above derivation as a theorem and its proof in SASyLF as follows:

C 4 Chapter 4 Program Semantics

theorem one-plus-two-is-three:
exists s z + s s z = s s s z.
d1: z + s s z = s s z by rule sum-z
d2: s z + s s z = s s s z by rule sum-s on d1

end theorem

The above theorem simply states that there exists a derivation of s z + s s z = s s s z.
It is proved by giving the derivation. Each line of the proof is an assertion of a fact,
a justification, and a name for the derivation of that fact. The name comes first;
we often use names starting with d (for derivation) and with sequential numbers,
so d1, d2, etc. Then there is the fact being asserted, and finaly the justification.
Here we are justifying by rule. We give the name of the rule and, if the rule has any
premises, we give the name of the derivation of each premise. So the justification
by rule sum-s on d1 means that we are applying rule sum-s using d1 as its
one and only premise. When we run SASyLF, the tool checks that the judgment
asserted in the exists clause is well-formed. It then verifies each line of the proof,
making sure that applying the given rule to the given premises yields the given
result. Finally, it checks that the last line of the proof is exactly the judgment whose
existence the theorem asserts. ■

4.6.3 Mathematical Induction

Now, we’d like to prove some properties! Let’s start with the property we men-
tioned earlier: for all n, n + z = n. This is ‘‘obviously’’ true in mathematics, but is
it true in our formalization of addition? Let’s find out!

We’ll use a technique called mathematical induction to do this. Mathematical
induction is a technique for properties about natural numbers. One such property
is the one above: that adding zero to any number n yields that same number, n.

In a proof by induction, we show that some property P is true in two parts. In
the first part, called the base case, we show that the property is true for the number
0—which we can write as P(0).1

In the second part, called the inductive case, we show that when the property is
true for some number k, then it must be true for the number k + 1. More formally,
we show that P(k) implies P(k + 1). Together, these show that the property is true
for every natural number n. We know this must be true because for a given n
we can apply the base case plus n instances of the inductive case to show that the
property is true. The nice thing is that we do not have to actually construct the
concrete proofs for each individual n (which is good because there are an infinite
number of such n’s, and the concrete proofs get larger with each n). One generic
proof suffices to prove the property for all numbers.

1 Sometimes we want to prove a property for all numbers greater than 1, in which case our base case
is P(1). In general induction can start with any fixed number, in which case we prove the property
for all numbers greater than or equal to the starting number.

4.6.3 Mathematical Induction C 5

To illustrate induction, let’s prove a property from algebra: the sum of numbersEXAMPLE 4.26
Proof that the sum of
numbers 1 . . . n is n(n+1)

2

from 1 to n, which we can write formally as
∑n

i=1 i, is equal to n(n+1)
2 . We want to

prove this property for all n ≥ 1. In a proof by induction, we can start from either
0 or 1; since the property we want to prove is about natural numbers grater than
or equal to 1, our base case will be n = 1.

We check the property for the base case P(1), which we can get by substituting
1 for n in the statement of the property. Here, the sum of numbers from 1 to 1,
written

∑1
i=1 i, is just 1, so the property we need to prove is 1 =

1(1+1)
2 . We can

simplify 1 =
1(1+1)

2 =
1(2)

2 = 2
2 = 1 and we are done with the base case.

Now for the inductive case, we assume that the property holds for some arbitrary
number k, and we need to prove it for the number k + 1. We assume P(k), which is
that

∑k
i=1 i = k(k+1)

2 . We need to prove P(k+1), which is that
∑k+1

i=1 i = (k+1)(k+2)
2 .

Starting with our assumption, we can add k+1 to both sides to get
∑k

i=1 i+k+1 =
k(k+1)

2 +k+1. on the left we merge k+1 into the sum to get
∑k+1

i=1 i = k(k+1)
2 +k+1.

On the right we rewrite k + 1 as the fraction 2k+2
2 and combine it with the existing

fraction to get
∑k+1

i=1 i = k(k+1)+2k+2
2 . Now we multiply out k(k + 1) on the right

to get
∑k+1

i=1 i = k2+k+2k+2
2 . We simplify to get

∑k+1
i=1 i = k2+3k+2

2 . Now we factor

to get
∑k+1

i=1 i = (k+1)(k+2)
2 . which is what we had to show, so we have proved the

inductive case and also finished the proof. ■
The example above motivates and explains mathematical induction well, but

it’s too complex for an initial example with a proof assistant, so we’ll start with
simpler examples to illustrate the basic ideas.

For reasoning about programming languages—as well as the simpler case of
addition for natural numbers—we’ll use a variant of induction called structural
induction. Structural induction works over some inductively defined structure:
like our natural number syntax. The base cases are the base case of our syntax:
for natural numbers, that’s z. So to prove some property P(n) for all n, the base
case will be to show that P(z) holds. Then, for the inductive case, we show that
we can prove that P(n) holds if we assume P(n′) holds for all n′ that are smaller
than n. What does it mean for n′ to be smaller than n? In structural induction,
n′ is smaller than n if n′ is a substructure of n. In the case of natural numbers, if
n = sn′, then n′ is clearly a substructure of n, in the sense that it is a subtree of
the abstract syntax tree that represents n. This also matches our intuition from
mathematical intuition over natural numbers: sn′ means n′ + 1 and so n is greater
than n′. Just as in mathematical induction we reason from smaller numbers to
larger ones, in structural induction we reason from smaller structures to larger
structures.

Another way to look at this is that we are doing induction over trees. We
complete an inductive proof by first proving base cases that cover all the possible
leaves of the tree (our numbers form trees with a single linear branch, so there is
only one leaf, i.e. z) and then proving inductive cases that apply to interior notes
(in the case of numbers, this is the case where we assume the property for a subtree

C 6 Chapter 4 Program Semantics

n and prove it for one node up the tree, sn). The inductive case moves the proof
up the tree one step at a time, until we’ve proved the property for a whole number
such as s s s z. The nice thing is, we can write a generic case of the proof for sn,
without knowing exactly what n is, and then apply that case multiple times. Thus
we can prove a property of s s s z with only two cases (one for z and one for
s), rather than four—the case for s can conceptually be ‘‘applied’’ three times to
work up first to s z, then s s z, and finally s s s z.

Later, when we prove properties of expressions that have numbers, variables,
addition, and multiplication, we can work in a similar way: proving base cases
for numbers and variables and inductive cases for addition (which adds two
subexpressions) and multiplication (which multiplies two subexpressions) we have
proved a property for expressions of arbitrary size that are build out of these parts.

Let’s take the simple case of zero/successor numbers first, and prove the propertyEXAMPLE 4.27
Proof that n + z = z that for all n, n + z = n. We can give this property a name, sum-z-rh, for it is a

property of the sum judgment when you add z on the right hand side of +. The
proof is by structural induction on n:

Base case (n = z): We need to show that z+ z = z. We can prove this by applying
the sum-z rule where n = z:

z + z = z
sum-z

Inductive case (n = sn′): We need to show that n + z = n. Rewriting in terms of
n′, we have sn′ + z = sn′. Now, we are allowed to assume that the property we
are proving is true for substructures of n. We call this assumption the induction
hypothesis. One such substructure is n′. Thus we have n′ + z = n′ by applying
the induction hypothesis to n′. Now we can finish the proof by applying the rule
sum-s:

n′ + z = n′

sn′ + z = sn′ sum-s

Of course, this is not a complete derivation, but that’s OK. When we assume
the induction hypothesis, we are really assuming there is some derivation D that
can be used to prove that n′ + z = n′. What we did in the last step is apply the
rule sum-s with the conclusion of the entire derivation D as its premise, giving us
an extended derivation with the desired conclusion. This kind of proof is often
called an constructive proof because the proof conceptually constructs a complete
derivation of the thing that is being proved.

Now let’s look at how this proof can be expressed in SASyLF:

4.6.4 Induction Over Derivations C 7

theorem sum-z-rh:
forall n
exists n + z = n.
proof by induction on n:

case z is
d1: z + z = z by rule sum-z

end case
case s n' is

d1: n' + z = n' by induction hypothesis on n'
d2: s n' + z = s n' by rule sum-s on d1

end case
end innduction

end theorem

This time, we’re stating a theorem that must be true for all numbers n. Therefore,
the theorem states that for all n there exists a derivation that n + z = n. In general,
SASyLF proves forall-exists theorems: that is, theorems that start with zero or more
forall clauses and end with one or more exists clauses. This time, we can’t prove the
theorem simply by giving a derivation, because there will be different derivations
for different input numbers n. Instead, we prove the theorem by induction on n,
just like the paper version of the proof. There are two cases, one for each syntax
of n. In the first case we prove the result with the sum-z rule, as expected. In the
second case, we assume that n is of the form s n'. Note that we name the number
n' differently from n so that we distinguish them; SASyLF keeps track of the fact
that n is equivalent to s n'. In fact, if we use n later in this case, SASyLF will
substitute n with s n' in its internal reasoning.

Now we prove the second case. We first use the induction hypothesis; the syntax
for doing is is like a rule, but we have to provide a ‘‘premise’’ for the induction
hypothesis. This ‘‘premise’’ is just the input to the theorem. The ‘‘premise’’ must
be a subtree of n, the thing we are doing induction on, in order for this to be a
valid use of the induction hypothesis. In this case, it is valid; n is equivalent to
s n' so n' is a subtree of n. We finish the case by applying the sum-s rule.

■

4.6.4 Induction Over Derivations

Syntax definitions are inductive structures–but so are derivations. That means weEXAMPLE 4.28
Proving that if we add one
to the right of a sum, we
add one to the result

can do induction over them. This is useful to prove many properties. For example,
consider the property that’s symmetric to sum-s: for all n1, n2, and n3 such that
n1 + n2 = n3, we have n1 + s n2 = s n3. Let’s call this sum-s-rh (it’s a property
of the sum judgment when you add an s to the right hand side of the +) You can
actually prove this by induction on n1, but it’s a bit complicated to do so. Let’s
instead assume there is some derivation D of n1 + n2 = n3, and do induction over
that derivation. The derivation D must end with the application of some rule:
either sum-z or sum-s, since those are the only two rules that can be used to derive
a sum judgement. We’ll finish the proof by considering each rule as a case.

C 8 Chapter 4 Program Semantics

Case z + n = n
sum-z

: If we are applying rule sum-z, then n1 must be z, and
n2 and n3 must be the same number n, because otherwise it doesn’t match the rule.
Plugging the substituion [z/n1, n/n2, n/n3] into the thing we have to show, we get
z + s n = s n as the desired result. Here the notation [z/n1, n/n2, ...] means
substitute z for n1, n for n2, etc. But we can just use the sum-z rule to show this:

z + s n = s n
sum-z

which finishes our case.

Case
n1

′ + n2 = n3
′

s n1
′ + n2 = s n3

′ sum-s : Once again, we have a substitution: if we are

using the sum-s rule to derive n1 + n2 = n3, then n1 must be s n1
′ (for some

number n1
′) and similarly n3 must be some number s n3

′. Now, notice that if
the derivation D ended with the above application of sum-s, there must be some
derivationD′ of the property n1

′+n2 = n3
′ that is in the premise of the rule. D′ is a

subderivation of D: it’s a part of the derivation of D. We are doing induction on the
derivation D, so we can assume the induction hypothesis about any subderivation,
in particular the subderivation D′. Thus we have n1

′ + s n2 = s n3
′ by applying

the induction hypothesis to D′.
Notice that now we can use rule sum-s as follows:

n1
′ + s n2 = s n3

′

s n1
′ + s n2 = s s n3

′ sum-s

But notice that this result, s n1
′ + s n2 = s s n3

′, is exactly what you get
if you apply the substitution [s n1

′/n1, s n3
′/n3] to the thing we were trying to

prove, which was n1 + s n2 = s n3. Thus we are done!
Let’s look at how we can prove this theorem in SASyLF:

4.6.4 Induction Over Derivations C 9

theorem sum-s-rh:
forall d: n1 + n2 = n3
exists n1 + s n2 = s n3.
proof by induction on d:

case rule
--------------- sum-z
d1: z + n2 = n2
where n1 := z and n3 := n2

is
_: z + s n2 = s n2 by rule sum-z

end case
case rule

d1: n1' + n2 = n3'
----------------------- sum-s
d: s n1' + n2 = s n3'
where n1 := s n1' and n3 := s n3'

is
d3: n1' + s n2 = s n3' by induction hypothesis on d1
proof by rule sum-s on d3

end case
end induction

end theorem

Now the theorem assumes not just a number n but a judgment n1 + n2 = n3,
so we put that in the forall clause and also give the derivation of that input
judgment a name d. The proof is by induction on that derivation. Now the cases
are rules instead of syntax; we put the entire rule in the case, labeling each premise
and conclusion with a name like d1 and appropriately substituting variables into
the rule so that the rule makes sense. In particular, the conclusion should match
the input derivation, except that some parts of it might be constrained by the rule.
For example, in the first case, the rule constrains n1 to be z and n3 to be the same as
n2. We therefore write the conclusion as z + n2 = n2. It is helpful to remember
that n1 from the input derivation is z in this case, and we can document this with
a where clause; similarly the where clause documents that n3 is n2. Where clauses
are optional because SASyLF can infer these based on how the rule was given, but
they make the proof more readable and so they are recommended. SASyLF checks
each case to make sure it is a valid instantiation of the rule. It also checks that the
conclusion of the rule matches the input derivation in as general a way as possible
given that this rule is being used. Finally, SASyLF checks that the where clauses are
correct. In the remainder of the case, the variables n1 and n3 that appear on the
left side of a where clause are substituted with the right hand side. For clarity, we
do that already when we write down the proof for this case. The proof of the first
case is easy; we just apply the sum-z rule. In cases like this one where we do not
care about the name of a derivation, we can use the wildcard _ for the name.

The second case is only a little bit more interesting. We apply the induction
hypothesis; since the theorem we are proving takes a judgment as input, we pass in
a derivation of that judgment as the premise of the induction hypothesis. SASyLF

C 10 Chapter 4 Program Semantics

checks that we are using the induction hypothesis on a subtree of the derivation d
that we are doing induction over; in this case, d1 is indeed a subtree because it is a
premise of the sum-s case that is coming from a case analysis of d. Using the rule
sum-s completes the proof. As a convenience, the keyword proof always means
the derivation that we are trying to prove; this makes the last line in the proof of
the case a bit shorter.

■
Once we have proved a property like sum-s-rh, we can use it just like a rule

to prove other theorems. For example, we might want to prove that + is com-
mutative. We can do so using structural induction, the rules sum-z and sum-s,
and the theorems above: sum-z-rh and sum-s-rh. In fact, theorems like ‘‘+ is
commutative’’ are the interesting ones; properties like sum-z-rh are mostly useful
to prove commutativity, and so we call them lemmas: properties that are useful in
proving a more interesting theorem.

4.6.5 Proofs by Induction Over Syntax

Proofs about numbers are fun, but can we prove things about programs? Consider
the following grammar for expressions:

e −→ n | x | e + e | e ∗ e

Let’s define the literals of an expression to be all the n’s and x’s within it, and
let’s define the operators to be all the +’s and ∗’s within it. An interesting property
is that the number of literals is always the number of operators plus one. Can we
prove it?

First, let’s define some rules that formalize the notion of literals and operators.EXAMPLE 4.29
Defining example
properties of expressions:
how many literals and
operators they contain

First of all, we have a judgment Lit(e) = n for defining the literals of an expression
e. The rules are:

Lit(n) = 1
Lit-n

Lit(x) = 1
Lit-x

Lit(e1) = n1 Lit(e2) = n2 n1 + n2 = n3

Lit(e1 + e2) = n3
Lit+

Lit(e1) = n1 Lit(e2) = n2 n1 + n2 = n3

Lit(e1 ∗ e2) = n3
Lit*

We can also define rules for an operator judgment, Ops(e) = n:

4.6.5 Proofs by Induction Over Syntax C 11

Ops(n) = 0
Ops-n

Ops(x) = 0
Ops-x

Ops(e1) = n1 Ops(e2) = n2 n1 + n2 + 1 = n3

Ops(e1 + e2) = n3
Ops+

Ops(e1) = n1 Ops(e2) = n2 n1 + n2 + 1 = n3

Ops(e1 ∗ e2) = n3
Ops*

If we assume that numbers n are defined as before, we can take 0 as an abbrevia-
tion for z and 1 as an abbreviation for s z. In the rest of this subsection, I’ll use
numbers as in math, but remember that we could define and reason about them
entirely using rules like sum-s. ■

Now let’s prove the property. For all expressions e, Lit(e) = Ops(e) + 1. We’llEXAMPLE 4.30
Proving that in any
expression, the number of
literals is one greater than
the number of operators

prove it by induction on e. This induction is a bit more interesting because e is
tree-structured...the syntax e1 + e2 has two smaller bits of syntax within it, e1 and
e2. So when we do the inductive step for the case of e1 + e2, we can apply the
induction hypothesis twice: once for e1 and once for e2. This is OK because both e1

and e2 are subtrees of e1 + e2. The proof goes by case analysis on the last syntactic
production used to construct e:

Case e = x:
Lit(x) = 1 by rule Lit-x
Ops(x) = 0 by rule Ops-x
So Lit(x) = 1 = Ops(x) + 1 = 0 + 1 = 1 (as mentioned above, we are doing

the math in one step, rather than appealing to the judgments defining +)

Case e = n: Lit(n) = 1 by rule Lit-n
Ops(n) = 0 by rule Ops-n
So Lit(n) = 1 = Ops(n) + 1 = 0 + 1 = 1 (note: this case is analogous to that

for e = x)

Case e = e1 + e2: Lit(e1) = Ops(e1) + 1 by the induction hypothesis applied to e1

Lit(e2) = Ops(e2) + 1 by the induction hypothesis applied to e2

Lit(e1 + e2) = Lit(e1) + Lit(e2) by the rule Lit+
Ops(e1 + e2) = Ops(e1) + Ops(e2) + 1 by the rule Ops+
So Lit(e1+e2) = Lit(e1)+Lit(e2) = Ops(e1)+1+Ops(e2)+1 = Ops(e1+e2)+1

which is the result we needed to prove.

Case e = e1 ∗ e2: The proof is analogous to the case for e1 + e2, above.
This concludes the proof. ■
Let’s see how one can prove slightly more complicated and interesting theorems

in SASyLF, and look at the process by which one proves theorems in practice. OneEXAMPLE 4.31
Proving that addition is
deterministic

example is proving that addition is deterministic. To formalize this we need a

C 12 Chapter 4 Program Semantics

way to formalize equality. We can do so with a judgment expressed in SASyLF as
follows:

judgment equal: n = n

----- eq
n = n

Now we can state the theorem as follows: if two numbers n1 and n2 sum to n3
and also to n4, then n3 and n4 must be the same. To prove it, we can use induction
over either of the input forall derivations in the theorem—we arbitrarily pick
the first:

theorem add-deterministic:
forall d1: n1 + n2 = n3
forall d2: n1 + n2 = n4
exists n3 = n4.
proof by induction on d1:
end induction

end theorem

Given the above input, SASyLF issues an error that we have not considered all
the cases in the induction. We can write the cases ourselves, and initially it may be
good practice to do so. After learning how to do this, however, it’s very convenient
to use the Eclipse plugin for SASyLF and apply a quick fix (right-click on the error,
choose quick fix, and press ‘‘Finish’’ when the dialog comes up for the ‘‘insert
missing cases’’ fix) to automatically generate all the necessary cases.

To fill in the proof, we need a high-level strategy. If you are not yet comfortable
writing fluidly in SASyLF, it may be helpful to outline a proof strategy on paper
first, and then see how to write it in the tool; later, it may be natural to go right to
the tool. In this case, to prove the theorem, we need to show that the derivation d2
identically mirrors the derivation d1 that we are doing induction over; this will
then imply that n4 is the same as n3. The first case that was generated for us is:

case rule
--------------- sum-z
_: z + n3 = n3

is
proof by unproved

end case

It may be helpful to add a clause where n1 := z and n2 := n3 to document
what we know about n1 and n2 as a result of the assumption that the sum-z rule
was applied. We need to show the derivation d2 is also of the form z + n3 = n3.
To do that, we can case-analyze on d2, as follows:

4.6.5 Proofs by Induction Over Syntax C 13

proof by case analysis on d2:
case rule

--------------- sum-z
_: z + n4 = n4

is
proof by unproved

end case
end case analysis

Here, the case in the case analysis can also be generated by the SASyLF quick fix
once we write the proof by case analysis on d2: ... end case analysis
part. It may seem that we have not made any progress. But think about the substi-
tution implicit in this case. The case uses n4 for where the original derivation d2
used both n2 and n4, meaning that in this case we have substituted n4 for n2. If
we write the obvious where n2 := n4 SASyLF says this is redundant, as n2 has
already been replaced with n3, as per the where clause above. Instead, we need to
reflect that n3, which was the replacement for n2, has itself been replaced with n4.
So the appropriate where clause is where n3 := n4. This is exactly what we need
to show: that n3 and n4 are the same. To fulfill our proof obligation, we produce a
witness of this fact by constructing a judgment n3 = n4 as follows:

proof by case analysis on d2:
case rule

--------------- sum-z
_: z + n4 = n4
where n3 := n4

is
_: n3 = n4 by rule eq

end case
end case analysis

This completes the case. The next case is:

case rule
d3: n0 + n2 = n5
----------------------- sum-s
_: (s n0) + n2 = (s n5)
where n1 := s n0 and n3 := s n5

is
proof by unproved

end case

Once again we need to do case analysis on d2 to show that it exactly mirrors the
derivation d1. There is only one case possible in the inner case analysis. We get:

C 14 Chapter 4 Program Semantics

proof by case analysis on d2:
case rule

d4: n0 + n2 = n6
----------------------- sum-s
_: (s n0) + n2 = (s n6)
where n4 := s n6

is
proof by unproved

end case
end case analysis

It turns out we can clean this up a little bit. This case analysis is degenerate, in
the sense that there is only one case, and all we really need from the case is what
the premise is (i.e. d4) and the substitutions in the where clause generated (i.e.
where n4 := s n6). SASyLF provides a convenient construct for this. We use the
principle of inversion to get the premise(s) of a rule, along with substitutions, in a
case analysis that has only one case. It’s call ‘‘inversion’’ because we are using case
analysis to ‘‘invert’’ the rule, going from the conclusion to the premises (rather
than the other way around, which is the way we usually work when constructing a
derivation). The syntax looks like this:

d4: n0 + n2 = n6 by inversion on d2 where n4 := s n6
proof by unproved

This means exactly the same thing as the previous proof snippet, but it is 2 lines
long instead of 10 and avoids adding extra indentation levels to the proof when
there is only one case. We work towards finishing the proof by adding a use of
induction, which will allow us to conclude that the derivation d4 is equivalent to
the earlier derivation d3:

d4: n0 + n2 = n6 by inversion on d2 where n4 := s n6
d5: n5 = n6 by induction hypothesis on d3, d4
proof by unproved

Now we have a judgment that states that n5 equals n6. But there’s nothing
special about the n5 = n6 judgment that would automatically tell SASyLF that n5
and n6 are identical as variables. We can, however, argue to SASyLF that they must
be by doing a case analysis on d5, the equality judgment. There will be only one
case and the conclusion is n6 = n6, meaning that n5 has been substituted with n6.
We can write this formally as:

4.6.5 Proofs by Induction Over Syntax C 15

d4: n0 + n2 = n6 by inversion on d2 where n4 := s n6
d5: n5 = n6 by induction hypothesis on d3, d4
proof by case analysis on d5:

case rule
----------- eq
_: n6 = n6
where n5 := n6

is
proof by unproved

end case
end case analysis

Once again, we have a case analysis with only one case, so can we use inversion?
Yes, but it’s slightly awkward because there is no premise that we ‘‘get’’ from
applying inversion; instead, all we really care about is the knowledge that n5 := n6.
There’s another form of the inversion construct, use inversion, where all we get
out is the where clause, for expressing this:

d4: n0 + n2 = n6 by inversion on d2 where n4 := s n6
d5: n5 = n6 by induction hypothesis on d3, d4
use inversion on d5 where n5 := n6
proof by unproved

Again, this is equivalent to the immediately preceeding proof snippet. Finally,
we can finish the proof by using the eq rule to show that n3 (i.e. the successor of
n5) is equal to n4 (i.e. the succcesor of n6). Here’s the entire proof:

C 16 Chapter 4 Program Semantics

theorem add-deterministic:
forall d1: n1 + n2 = n3
forall d2: n1 + n2 = n4
exists n3 = n4.
proof by induction on d1:

case rule
--------------- sum-z
_: z + n3 = n3
where n1 := z and n2 := n3

is
proof by case analysis on d2:

case rule
--------------- sum-z
_: z + n4 = n4
where n3 := n4

is
_: n3 = n4 by rule eq

end case
end case analysis

end case

case rule
d3: n0 + n2 = n5
----------------------- sum-s
_: (s n0) + n2 = (s n5)
where n1 := s n0 and n3 := s n5

is
d4: n0 + n2 = n6 by inversion on d2 where n4 := s n6
d5: n5 = n6 by induction hypothesis on d3, d4
use inversion on d5 where n5 := n6
_: s n5 = s n6 by rule eq

end case
end induction

end theorem

We can see that the use of the inversion construct saved us from writing down a
lot of cases, but the underlying ideas are the same ones we’ve been using in prior
proofs: induction, case analysis, substitutions, and inference rules.

■

