17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 2 through section 2.2

Copyright © 2016 Elsevier ELSEVIER

» Terminology:
— context-free grammar (CFQG)

— symbols
* terminals (tokens)
* non-terminals

— production

— derivations (left-most and right-most - canonical)
— parse trees

— sentential form

ELSEVIER

Parsing

* It turns out that for any CFG we can create a
parser that runs 1n O(n"3) time

* There are two well-known parsing
algorithms that permit this
— Early's algorithm
— Cooke-Younger-Kasami (CYK) algorithm

* O(n"3) time 1s clearly unacceptable for a
parser 1n a compiler - too slow

Parsing

« Fortunately, there are large classes of
grammars for which we can build parsers
that run 1n linear time

— The two most important classes are called
LL and LR

* LL stands for
'Left-to-right, Leftmost derivation'.

* LR stands for
'Left-to-right, Rightmost derivation’

* LL parsers are also called 'top-down', or
'predictive’ parsers & LR parsers are also called

'bottom-up', or 'shift-reduce' parsers

Parsing

* You will see LL(n) or LR(n)

— This number indicates how many tokens of
look-ahead are required in order to parse

— Almost all real compilers use 1 token of look-
ahead
* The expression grammar (with precedence

and associativity) you saw before 1s LR(1),
but not LL(1)

O 0 J o U b W N -

Here 1s an LL(1) grammar (Fig 2.15):

program — stmt list $$S
stmt list — stmt stmt list
| €
stmt — 1d := expr
| read id

| write expr
expr — term term tail
term taill - add op term term tail
| €

10.
11.
12.
13.
14.
15.
lo.
17.
18.
19.

LL(1) grammar (continued)
factor fact tailt
fact tail - mult op factor fact tail

Term N

factor -

add op -

mult op -

|
(

|

|
+

|
*

3

expr)
1d
number

/

LL Parsing

e Table-driven LL parsing: a big loop which
repeatedly looks up an action 1n a two-
dimensional table based on current leftmost
non-terminal and current input token. The
actions are

(1) match a terminal
(2) predict a production
(3) announce a syntax error

* LL(1) parse table for parsing for calculator

language

Top-of-stack Current input token
nonterminal id number read write := () + - *x / $$
program | 1 — 1 1 — = E= = R e 1
stmi_list | 2 - 2 2 - - = = = = = 3
stmt | 4 — 5 6 — == = m= s Ex == e
expr | T 7 — - — T = = = e
term_tail | 9 - 9 9 - -9 8 8 - - 9
term | 10 10 - - - 10 - - - - - -
factor_tail | 12 — 12 12 - - 12 12 12 11 11 12
factor | 14 15 - - = 8 = oms = s ww e
add_op | — - - - - - - 16 17 - - -
mult_op | — - - - - - - - = 18 19 -

ELSEVIER

LL Parsing

* To keep track of the left-most non-terminal,
push the as-yet-unseen portions of
productions onto a stack

— for details see Figure 2.21

* The key thing to keep 1n mind 1s that the
stack contains all the stuff you expect to see
between now and the end of the program

— what you predict you will see

* Problems trying to make a grammar LL(1)

— left recursion
e example:

1d list - 1d | 1d list , 1id
B equil valentl Y
1d 1list - 1d 1d list tail
1id list tail - , 1d 1d list tail
| epsilon
« we can get rid of all left recursion mechanically 1n any
grammar

Rt o s
EER %
A.n‘:‘"'i '

i
Y ri,..}': :
L\)

ELSEVIER

* Problems trying to make a grammar LL(1)
— common prefixes: another thing that LL parsers

can't handle
* solved by "left-factoring”
e example:
stmt - 1d := expr | 1d
(arg list)
equivalently
stmt - 1d 1d stmt tail
1d stmt tail - := expr
| (arg list)
« we can eliminate left-factor mechanically

MG
A
i PR
S rotle 25
i
A
) ‘ H "
e 4
Py
RS L

ELSEVIER

LL Parsing

* Note that eliminating left recursion and
common prefixes does NOT make a
grammar LL

— there are infinitely many non-LL
LANGUAGES, and the mechanical
transformations work on them just fine

— the few that arise in practice, however, can
generally be handled with kludges

LL Parsing

* Problems trying to make a grammar LL(1)

— the"dangling else" problem prevents grammars
from being LL(1) (or in fact LL(k) for any k)

— the following natural grammar fragment 1s

ambiguous (Pascal)
stmt - 1f cond then clause else clause
| other stuff
then clause — then stmt
else clause - else stmt
| epsilon

LR Parsing

* LR parsers are almost always table-driven:

— like a table-driven LL parser, an LR parser uses a
big loop 1n which 1t repeatedly inspects a two-
dimensional table to find out what action to take

— unlike the LL parser, however, the LR driver has
non-trivial state (like a DFA), and the table 1s
indexed by current input token and current state

— the stack contains a record of what has been seen
SO FAR (NOT what 1s expected)

LR Parsing

* A scanner i1s a DFA
— 1t can be specified with a state diagram

 An LL or LR parser 1s a push-down automaton
(PDA)

— Early's & CYK algorithms do NOT use PDAs

— a PDA can be specified with a state diagram and a
stack

* the state diagram looks just like a DFA state diagram,
except the arcs are labeled with <input symbol, top-of-
stack symbol> pairs, and 1n addition to moving to a new
state the PDA has the option of pushing or popping a_..
finite number of symbols onto/off the stack

id term o
Start (0 read o id

write

Figure 221 Pictorial representation of the CFSM of Figure 2.26. Reduce actions are not
shown.

ELSEVIER

Top-of-stack Current input symbol

state sl s e t f a mo did lit r w = () + - x /33
0 s2 b3 - - - - - 83 - sl s4 - - - - - - - -
1 - - = - - - = b5 - - - - - - - - - - -
2 - b2 - - - - - 83 - sl s4 - - - - - - — bl
3 - - - - - - - - - - - 8 - - - - - - -
4 - — s6 s7 b9 - - bl2 b13 - - - s8 - - - - - -
5 - - 89 s7 b9 - - bl2 bI3 - - - s8§ - - - - - -
6 - - - - - sl0 - 16 - 16 r6 - - — bl4 bl5 - - 16
7 - - = - - - sl r7 - 17 7 - — 7 7 7 bl6e bl7 r7
8 - — s12 s7 b9 - - bl2 b13 - - - s8 - - - - - -
9 - - - - - sl0 - r4 - ™41 r4 - - — Dbl4 bl5 - - r4

10 - — — 813 b9 - - bl2 b13 - - - s8 - - - - - -
11 - - - - bl0 - — b12 b13 - - - s8 - - - - - -
12 - - - - - sl0 - - - - — — — bll bl4 bl5 - - -
13 - - = - - — sl1 r8 - ™8 8 - —- 8 r8 r8 bl6e bl7 r8

Figure 228 SLR(l) parse table for the calculator language. Table entries indicate whether to shift (s), reduce (r), or shift
and then reduce (b). The accompanying number is the new state when shifting, or the production that has been recognized
when (shifting and) reducing. Production numbers are given in Figure 2.25. Symbol names have been abbreviated for the sake
of formatting. A dash indicates an error. An auxiliary table, not shown here, gives the left-hand-side symbol and right-hand-side
length for each production. i

K e

ELSEVIER

