
Copyright © 2016 Elsevier

Parsing Teaser

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 2 through section 2.2

Parsing

• Terminology:
– context-free grammar (CFG)
– symbols

• terminals (tokens)
• non-terminals

– production
– derivations (left-most and right-most - canonical)
– parse trees
– sentential form

Parsing

• It turns out that for any CFG we can create a
parser that runs in O(n^3) time

• There are two well-known parsing
algorithms that permit this
– Early's algorithm
– Cooke-Younger-Kasami (CYK) algorithm

• O(n^3) time is clearly unacceptable for a
parser in a compiler - too slow

Parsing

• Fortunately, there are large classes of
grammars for which we can build parsers
that run in linear time
– The two most important classes are called

LL and LR
• LL stands for

'Left-to-right, Leftmost derivation'.
• LR stands for

'Left-to-right, Rightmost derivation’

Parsing

• LL parsers are also called 'top-down', or
'predictive' parsers & LR parsers are also called
'bottom-up', or 'shift-reduce' parsers

Parsing

• You will see LL(n) or LR(n)
– This number indicates how many tokens of

look-ahead are required in order to parse
– Almost all real compilers use 1 token of look-

ahead
• The expression grammar (with precedence

and associativity) you saw before is LR(1),
but not LL(1)

LL Parsing

• Here is an LL(1) grammar (Fig 2.15):
1. program → stmt list $$$
2. stmt_list → stmt stmt_list
3. | ε
4. stmt → id := expr
5. | read id
6. | write expr
7. expr → term term_tail
8. term_tail → add op term term_tail
9. | ε

LL Parsing

• LL(1) grammar (continued)
10. term → factor fact_tailt
11. fact_tail → mult_op factor fact_tail
12. | ε
13. factor → (expr)
14. | id
15. | number
16. add_op → +
17. | -
18. mult_op → *
19. | /

LL Parsing

• Table-driven LL parsing: a big loop which
repeatedly looks up an action in a two-
dimensional table based on current leftmost
non-terminal and current input token. The
actions are
(1) match a terminal
(2) predict a production
(3) announce a syntax error

LL Parsing

• LL(1) parse table for parsing for calculator
language

LL Parsing

• To keep track of the left-most non-terminal,
push the as-yet-unseen portions of
productions onto a stack
– for details see Figure 2.21

• The key thing to keep in mind is that the
stack contains all the stuff you expect to see
between now and the end of the program
– what you predict you will see

LL Parsing
• Problems trying to make a grammar LL(1)

– left recursion
• example:
id_list → id | id_list , id
 equivalently
id_list → id id_list_tail
id_list_tail → , id id_list_tail
 | epsilon
• we can get rid of all left recursion mechanically in any

grammar

LL Parsing

• Problems trying to make a grammar LL(1)
– common prefixes: another thing that LL parsers

can't handle
• solved by "left-factoring”
• example:
 stmt → id := expr | id
(arg_list)

 equivalently
 stmt → id id_stmt_tail
 id_stmt_tail → := expr
 | (arg_list)
• we can eliminate left-factor mechanically

LL Parsing

• Note that eliminating left recursion and
common prefixes does NOT make a
grammar LL
– there are infinitely many non-LL

LANGUAGES, and the mechanical
transformations work on them just fine

– the few that arise in practice, however, can
generally be handled with kludges

LL Parsing

• Problems trying to make a grammar LL(1)
– the"dangling else" problem prevents grammars

from being LL(1) (or in fact LL(k) for any k)
– the following natural grammar fragment is

ambiguous (Pascal)
stmt → if cond then_clause else_clause
 | other_stuff

then_clause → then stmt
else_clause → else stmt
 | epsilon

LR Parsing

• LR parsers are almost always table-driven:
– like a table-driven LL parser, an LR parser uses a

big loop in which it repeatedly inspects a two-
dimensional table to find out what action to take

– unlike the LL parser, however, the LR driver has
non-trivial state (like a DFA), and the table is
indexed by current input token and current state

– the stack contains a record of what has been seen
SO FAR (NOT what is expected)

LR Parsing
• A scanner is a DFA

– it can be specified with a state diagram
• An LL or LR parser is a push-down automaton

(PDA)
– Early's & CYK algorithms do NOT use PDAs
– a PDA can be specified with a state diagram and a

stack
• the state diagram looks just like a DFA state diagram,

except the arcs are labeled with <input symbol, top-of-
stack symbol> pairs, and in addition to moving to a new
state the PDA has the option of pushing or popping a
finite number of symbols onto/off the stack

LR Parsing

LR Parsing

