
Copyright © 2016 Elsevier

Parsing Teaser

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 2 through section 2.2

Parsing

• Terminology:

– context-free grammar (CFG)

– symbols

• terminals (tokens)

• non-terminals

– production

– derivations (left-most and right-most - canonical)

– parse trees

– sentential form

Parsing

• It turns out that for any CFG we can create a
parser that runs in O(n^3) time

• There are two well-known parsing
algorithms that permit this

– Early's algorithm

– Cooke-Younger-Kasami (CYK) algorithm

• O(n^3) time is clearly unacceptable for a
parser in a compiler - too slow

Parsing

• Fortunately, there are large classes of
grammars for which we can build parsers
that run in linear time

– The two most important classes are called  

LL and LR

• LL stands for  

'Left-to-right, Leftmost derivation'.

• LR stands for  

'Left-to-right, Rightmost derivation’

Parsing

• LL parsers are also called 'top-down', or
'predictive' parsers & LR parsers are also called
'bottom-up', or 'shift-reduce' parsers

Parsing

• You will see LL(n) or LR(n)

– This number indicates how many tokens of

look-ahead are required in order to parse

– Almost all real compilers use 1 token of look-

ahead

• The expression grammar (with precedence

and associativity) you saw before is LR(1),
but not LL(1)

LL Parsing

• Here is an LL(1) grammar (Fig 2.15):

1. program 		 → stmt list $$$

2. stmt_list 	 → stmt stmt_list

3. 		 	 | ε

4. stmt 	 → 	 id := expr

5. 		 	 | read id

6. 		 	 | write expr

7. expr	 → 	 term term_tail

8. term_tail → add op term term_tail

9. 		 	 | ε

LL Parsing

• LL(1) grammar (continued)

10. term	 → 	 factor fact_tailt

11. fact_tail → mult_op factor fact_tail

12. 		 	 | ε

13. factor	 → 	 (expr)

14. 		 	 | id

15. 		 	 | number

16. add_op → 	 +

17. 		 	 | -

18. mult_op → *

19. 		 	 | /

LL Parsing

• Table-driven LL parsing: a big loop which
repeatedly looks up an action in a two-
dimensional table based on current leftmost
non-terminal and current input token. The
actions are

(1) match a terminal

(2) predict a production

(3) announce a syntax error

LL Parsing

• LL(1) parse table for parsing for calculator
language

LL Parsing

• To keep track of the left-most non-terminal,
push the as-yet-unseen portions of
productions onto a stack

– for details see Figure 2.21

• The key thing to keep in mind is that the
stack contains all the stuff you expect to see
between now and the end of the program

– what you predict you will see

LL Parsing
• Problems trying to make a grammar LL(1)

– left recursion

• example:

id_list	 → id | id_list , id

	 	 	 equivalently

id_list	 → id id_list_tail

id_list_tail → , id id_list_tail

	 	 	 	 | epsilon

• we can get rid of all left recursion mechanically in any

grammar

LL Parsing

• Problems trying to make a grammar LL(1)

– common prefixes: another thing that LL parsers

can't handle

• solved by "left-factoring”

• example:

	 stmt → id := expr | id
(arg_list)

	 	 	 equivalently

	 stmt → id id_stmt_tail

	 id_stmt_tail → := expr

	 	 	 	 | (arg_list)

• we can eliminate left-factor mechanically

LL Parsing

• Note that eliminating left recursion and
common prefixes does NOT make a
grammar LL

– there are infinitely many non-LL

LANGUAGES, and the mechanical
transformations work on them just fine

– the few that arise in practice, however, can
generally be handled with kludges

LL Parsing

• Problems trying to make a grammar LL(1)

– the"dangling else" problem prevents grammars

from being LL(1) (or in fact LL(k) for any k)

– the following natural grammar fragment is

ambiguous (Pascal)

stmt → if cond then_clause else_clause
	 | other_stuff

then_clause → then stmt

else_clause → else stmt

	 	 	 | epsilon

LR Parsing

• LR parsers are almost always table-driven:

– like a table-driven LL parser, an LR parser uses a

big loop in which it repeatedly inspects a two-
dimensional table to find out what action to take

– unlike the LL parser, however, the LR driver has
non-trivial state (like a DFA), and the table is
indexed by current input token and current state

– the stack contains a record of what has been seen
SO FAR (NOT what is expected)

LR Parsing
• A scanner is a DFA

– it can be specified with a state diagram

• An LL or LR parser is a push-down automaton

(PDA)

– Early's & CYK algorithms do NOT use PDAs

– a PDA can be specified with a state diagram and a

stack

• the state diagram looks just like a DFA state diagram,

except the arcs are labeled with <input symbol, top-of-
stack symbol> pairs, and in addition to moving to a new
state the PDA has the option of pushing or popping a
finite number of symbols onto/off the stack

LR Parsing

LR Parsing

