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Names, Scopes, and Bindings

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 3



Name, Scope, and Binding

• Consider this example of a variable binding:

{

	 S1

	 int x = e;

	 S2

}

• x is a name

• int x = e; is a binding


– associates x with a variable

– assigns the result of evaluating e to the variable


• The scope of x is where the binding is active

– typically the statements S2 that follow the binding



Binding

• Scope rules control bindings (of variables, functions, etc.)

– Fundamental to all programming languages is the ability to 

name data, i.e., to refer to data using symbolic identifiers 
rather than addresses


– Not all data is named!  For example, dynamic storage in C is 
referenced by pointers, not names.  But the pointers are 
ultimately stored in variables that are named.



Name, Scope, and Binding

• Some notation for scope:

– S2[x] indicates that x is bound in S2


{

	 S1

	 int x = e;

	 S2[x]

}

• In most languages, using x in S1 or in e is a 

compile-time error



Name, Scope, and Binding
• What happens if the scope of x is the entire block?

{

	 S1[x]

	 var x = e[x];

	 S2[x]

}

• This is true in JavaScript!


– x will have the value undefined if used in S1  or e



Name, Scope, and Binding
• In C, you can declare a variable without defining it

{

	 S1

	 var x;

	 S2[x]

	 x = e[x]

	 S3[x]

}

• x is in scope in S2, e, and S3

• But if x is used in S2 or e, the compiler will report a use 

before initialization warning

– If the program is run anyway, x may have an arbitrary value 

(typically whatever was in the memory location being used)



Name, Scope, and Binding
• Haskell allows recursive definitions!  This is OK as long 

as the variable being bound is used inside a function or list

let x = e1[x] in e2[x] 	 -- general form

let x = x in x+1	 -- run time error (black hole)

let x = 1 : x in … 	 -- OK: x is a cyclic list of 1s


let f = \n -> if n == 1 then 1 else n * f(n-1) in … : x

	 	 	  -- OK: defines factorial



Lifetime and Storage Management

• Lifetime of an entity (e.g. variable)

• From when space is allocated to when it is reclaimed


• Lifetime of a binding (e.g. the variable’s name)

• From when it is associated with the entity to when the 

association ends

• What if the lifetime of a binding is different from the 

lifetime of the entity being bound?



Lifetime and Storage Management

• Lifetime of an entity (e.g. variable)

• From when space is allocated to when it is reclaimed


• Lifetime of a binding (e.g. the variable’s name)

• From when it is associated with the entity to when the 

association ends

• If binding outlives the entity, we have a dangling reference


• Dangling references don’t usually exist as names per se, but we can 
create them with pointers 

int* f() {

	 int x = 5;

	 return &x;

}

int *p = f(); // returns a dangling reference



Lifetime and Storage Management

• Lifetime of an entity (e.g. variable)

• From when space is allocated to when it is reclaimed


• Lifetime of a binding (e.g. the variable’s name)

• From when it is associated with the entity to when the 

association ends

• If binding ends before the entity, we have garbage


• Can happen in functional languages

let f(x) =

	 let y = x + 1 in

	 fn z => y + z // have to keep y around when f returns

in let g = f(1)  // y is used in the returned function g

in let h = g(2) in

… // at this point y is garbage



Lifetime and Storage Management

• Lifetime of an entity (e.g. variable)

• From when space is allocated to when it is reclaimed


• Lifetime of a binding (e.g. the variable’s name)

• From when it is associated with the entity to when the 

association ends

• If binding outlives the entity, we have a dangling reference

• If binding ends before the entity, we have garbage


• A binding is active whenever it can be used

• A scope is the largest program region where no 

bindings are changed

• Typically from a variable’s declaration to the end of a block



Lifetime and Storage Management

• What does this C code print?


 
// example C code


int x = 5;

if (y>0) {

    int x = 7;

    print(x);

}



Lifetime and Storage Management

• Bindings may be (temporarily) deactivated

• When one variable is shadowed by another with the same name


 
// example C code


int x = 5;

if (y>0) {

    int x = 7;   // shadows the x=5 binding

    print(x);     // will print 7

}


• When calling another function, while that function executes

• For static variables, when the containing function is not running



Lifetime and Storage Management

• Typical timeline (e.g. for variables)

– creation of entities – e.g. at function entry, alloc stmt

– creation of bindings – at variable declaration

– use of variables (via their bindings)

– (temporary) deactivation/shadowing of bindings

– reactivation of bindings

– destruction of bindings – at end of scope

– destruction of entities – at end of scope, free stmt
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Lifetime and Storage Management

•  Storage Allocation mechanisms

–Static – fixed location in program memory

–Stack – follows call/return of functions

–Heap – allocated at run time, independent of call structure


•  Static allocation for

–code

–globals

–static variables

–explicit constants (including strings, sets, etc.)

–scalars may be stored in the instructions
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Lifetime and Storage Management

•Stack allocation for

–parameters

–local variables

–temporaries


•Why a stack?

–allocate space for recursive routines 
(not necessary in FORTRAN – no recursion)


–reuse space (in all programming languages)

–Why not a stack?


–We already saw that closures can be an exception



Lifetime and Storage Management



Lifetime and Storage Management

•  Maintenance of stack is responsibility of calling 
sequence and subroutine prologue and epilogue


–Save space by putting as much as possible in the 
callee’s prologue and epilogue, rather than in the calling 
sequence (i.e. in the caller)…why?



Lifetime and Storage Management

•  Maintenance of stack is responsibility of calling 
sequence and subroutine prologue and epilogue


–Save space by putting as much as possible in the 
callee’s prologue and epilogue, rather than in the calling 
sequence (i.e. in the caller)…why?


–Because most procedures have multiple callers

–Moving a line of “administrative code” to the callee saves a 

line in every caller



Lifetime and Storage Management

• Heap for dynamic allocation



Declarations and Definitions

• Declarations

• Introduce a name; give its type (if in a typed language)


• Definitions

• Fully define an entity


• Specify value for variables, function body for functions

• Common rules


• Declaration before use

• Definition before use

• Why might we care about these?



Declarations and Definitions

• Declarations

• Introduce a name; give its type (if in a typed language)


• Definitions

• Fully define an entity


• Specify value for variables, function body for functions

• Declaration before use


• Makes it possible to write a one-pass compiler

• When you call a function, you know its signature

• In C, this requires separating declarations from definitions to support 

recursion

• Definition before use


• Avoids accessing an undefined variable

• Java relaxes both of these for classes, fields, and methods


• But not for local variables



Static Scoping
– What does this Java code print?

class Outer {

    int x = 1;

    class Inner {

        int x = 2;

        void foo() {

            if (flag) {

                int x = 3;

            }

            System.out.println(“x = ” + x);  // what do I print?

}  }   }

• With static (or lexical) scope rules, a scope is defined in terms of the lexical structure of the program


– The determination of scopes can be made by the compiler

– Bindings for identifiers are resolved by examining code

– Typically, the most recent binding in an enclosing scope

– Most compiled languages, C and Pascal included, employ static scope rules

Most recent 
binding of x in 
an enclosing 

scope



Scope Rules

• The classical example of static scope rules is 
the most closely nested rule used in block 
structured languages such as Algol 60 and 
Pascal 

– An identifier is known in the scope in which it is 

declared and in each enclosed scope, unless it is re-
declared in an enclosed scope 


– To resolve a reference to an identifier, we examine 
the local scope and statically enclosing scopes until 
a binding is found



Static Links

• Access non-local variables via static links

– Each frame points to the frame of the (correct 

instance of)  the routine inside which it was declared

– In the absence of passing functions as parameters, 

correct means closest to the top of the stack

– You access a variable in a scope k levels out by 

following k static links and then using the known 
offset within the frame thus found



Static Chains



Dynamic Scope

• No static links – just look up the latest binding 
of a variable in the stack

• This may be a variable from unrelated code!

• Makes reasoning based on program text hard



function scopes(input, output) {

  var a;

  function first() {

    a = 1;

  }

  function second() { 

 var a; 
 first();


  }

  a = 2; second(); print(a);

}

Practice with Scope Rules  
Static vs. Dynamic 

• What is printed under static scoping?


• What is printed under dynamic scoping?



Practice with Scope Rules  
Static vs. Dynamic 

• What is printed under static scoping?

• 1

• What is printed under dynamic scoping?

• 2

function scopes(input, output) {

  var a;

  function first() {

    a = 1;

  }

  function second() { 

 var a; 
 first();


  }

  a = 2; second(); print(a);

}



Dynamic Scope

• Dynamic scope rules are usually encountered in 
interpreted languages

– Early LISP dialects used dynamic scope

– Can be useful for “implicit parameters”


• Languages with dynamic scope don’t usually 
have static typechecking

• The compiler can’t determine what variable a name 

refers to!

• Dynamic scope is now considered a bad design


• Use static variables or default parameters instead



Binding of Referencing Environments

• A referencing environment of a statement at 
run time is the set of active bindings


• A referencing environment corresponds to a 
collection of scopes that are examined (in 
order) to find a binding



First Class Functions

• Consider the following OCaml code:

let plus_n n = fun k -> n + k;;
let plus_3 = plus_n 3;;
let apply_to_2 f = f 2;;

apply_to_2 plus3 => 5

• Let’s look at how this executes 
(on the whiteboard)

Lambda 
expression



Closures

• A closure is a pair of a function and a referencing 
environment


plus_3

• Created when a function is passed, returned, or stored

• Necessary to implement static scoping correctly


– Otherwise the variable referenced might not be around anymore!  
Variable lifetime exceeds binding lifetime.


• Languages with dynamic scoping don’t need them

– Just use the caller’s environment!


• Also called “shallow binding” – closures implement “deep binding”

– But Lisp supports closure creation if programmer asks

fun k -> n + k

n=3



Closures

• A closure is a pair of a function and a referencing 
environment


plus_3

• Several implementations

– Allocate all referencing environments on the heap, copy a pointer 

into the closure

• This is what most functional language implementations do—with 

optimizations when no closure will be created


– Allocate referencing environments on the stack, copy the bindings 
that are used into the closure

• This can work well if there are few captured variables 

and the data is immutable and small in size

fun k -> n + k

n=3



Hiding Names with Modules

• Consider the following OCaml code:

module Set : sig
  type 'a set
  val make : unit -> 'a set
  val union : 'a set -> 'a set -> 'a set
end = struct
  type 'a set = 'a list
  let make () = ...
  let union_helper(...) = ...
  let union(set1, set2) = 
union_helper(...)

end

Signature shows 
what module clients 

can see

Signature hides the 
implementation type for set

Private helper functions are 
also hidden by leaving them 

out of the signature



Hiding Names with Modules

• Related facilities in other languages

• Java: hide elements with private keyword

• C: put public members into header file


• These handle the most common cases, but are not 
as expressive/elegant as OCaml (or ML) modules

• Module signatures make public interface explicit

• Types can be partially hidden in a way that’s hard to 

express in other languages



The Meaning of Names within a Scope

Aliasing: when two names refer to the same entity

•Benefits


• Expressing linked data structures

• Asymptotically more efficient algorithms


• e.g. union-find

•Drawbacks


• Make optimization more difficult

• FORTRAN prohibits aliasing between procedure arguments


• Thus for a long time FORTRAN compilers produced faster code than C 
compilers


• Now C has a strict modifier to do the same thing

– Confusing to programmers


• Changing data through one name affects accesses through another

• Must be used carefully 



The Meaning of Names within a Scope

• Overloading: functions with the same name that 
take arguments of different types

– Almost every language overloads operators


• integer + vs. real +

• choose which one to invoke by types of arguments

• treat name as if it included the argument types 

(was literally true in translation from C++ to C)

– Some languages (e.g. C++) support programmer-

defined overloading:


int norm (int a) { return a>0 ? a : -a; }

complex norm (complex c ) { // ...



Binding Time

• Binding Time is the point at which a binding is 
created or, more generally, the point at which 
any implementation decision is made

– language design time


• language constructs, built-in types

– language implementation time


• I/O, arithmetic overflow, … (if unspecified in manual)



Binding Time

• Implementation decisions (continued):

–program writing time


•algorithms, names

–compile time


•data layout

–link time


•layout of whole program in memory

–load time


•choice of physical addresses



Binding Time

• Implementation decisions (continued):

– run time


• values of variables, sizes of strings and arrays

• subsumes


– program start-up time

– module entry time

– procedure entry time

– statement execution time



Binding Time

• The terms static and dynamic are generally 
used to refer to things bound before run time 
and at run time, respectively

– “static” is a coarse term; so is "dynamic"



Binding Time
• What improves efficiency—early or late binding?


• Early binding times are associated with greater efficiency

• Later binding times are associated with greater flexibility


• “Compiled” vs. “interpreted” languages

• Not a hard distinction—can implement any PL either way

• Easier to implement compiler when things are bound early 

(e.g. C)

• Languages that bind many things late (e.g. Python) are 

easier to implement with an interpreter



Conclusions

• The morals of the story:

– language features can be surprisingly subtle

– designing languages to make life easier for the 

compiler writer can be a GOOD THING

– most of the languages that are easy to 

understand are easy to compile, and vice versa 



Conclusions

• A language that is easy to compile often 
leads to

– a language that is easy to understand

– more good compilers on more machines 

(compare Pascal and Ada!)

– better (faster) code

– fewer compiler bugs

– smaller, cheaper, faster compilers

– better diagnostics


