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Top-Down Parsing

17-363/17-663: Programming Language Pragmatics

Reading: PLP section 2.3



Parsing

• A context-free grammar (CFG) is a generator for a 
context-free language (CFL)


– A parser is a language recognizer

• There are an infinite number of grammars for 

every context-free language 

– Not all grammars are created equal, however


– Ambiguity

– Understandability

– Performance



Parsing

• It turns out that for any CFG we can create a 
parser that runs in O(n3) time

• E.g. the Generalized LR (GLR) parser used to 

parse expressions in SASyLF

• O(n3) time is clearly unacceptable for a 

parser in a compiler - too slow

• It’s OK in SASyLF because we only write small 

expressions in proofs

• Some real languages do use GLR parsers, but 

only their grammar is still “mostly” LR



Parsing

• Fortunately, there are large classes of 
grammars for which we can build parsers 
that run in linear time

– The two most important classes are called  
LL and LR


• LL stands for  
'Left-to-right, Leftmost derivation'.


• LR stands for  
'Left-to-right, Rightmost derivation’



Leftmost vs. Rightmost Derivations

Leftmost derivation

• Always chooses the left-most nonterminal to 

replace


expr ⇒ expr op expr

        ⇒ expr op expr op expr

        ⇒ id op expr op expr 

        ⇒ id * expr op expr

        ⇒ id * id op expr

        ⇒ id * id + expr

        ⇒ id * id + id


• Note: both derivations produce the same tree!

Rightmost derivation

• Always chooses the right-most nonterminal to 

replace


expr ⇒ expr op expr

        ⇒ expr op id

        ⇒ expr + id

        ⇒ expr op expr + id

        ⇒ expr op id + id

        ⇒ expr * id + id

        ⇒ id * id + id




Parsing

• LL parsers are also called 'top-down', or 'predictive' 
parsers & LR parsers are also called 'bottom-up', or 
'shift-reduce' parsers

• We’ll discuss LL parsers today, and LR parsers in the next 

lecture

• There are several important sub-classes of LR parsers


– SLR

– LALR

• We won't be going into detail on the differences 

between them



Parsing

• You commonly see LL or LR (or whatever) written with a 
number in parentheses after it

– This number indicates how many tokens of look-ahead are required 

in order to parse

– Almost all real compilers use one token of look-ahead


– Some tools let you special-case to look further ahead for certain constructs

• The expression grammar (with precedence and 

associativity) you saw before is LR(1), but not LL(1)

• Every CFL that can be parsed deterministically has an 

SLR(1) grammar (which is LR(1))



LL Parsing Example

• Let’s start with the following statement grammar

• This is not an LL(1) grammar – we’ll see how we need to adapt it


program 	 	 → stmt_list $

stmt_list 	 → stmt stmt_list 

 	 	 	 | ε

stmt 	 	 → id := id 

 	 	 	 | read id 

 	 	 	 | write id

	 	 	 | id ( id_list )

id_list	 	 → id

	 	 	 | id_list , id



LL Parsing Example
program 	 → stmt_list $

stmt_list 	 → stmt stmt_list 

 	 	 | ε

stmt 	 	 → id := id 

 	 	 | read id 

 	 	 | write id

	 	 | id ( id_list )

id_list		 → id

	 	 | id_list , id

• Let’s parse this program:

read A

process(A)

write A


• Here’s the parse sequence


program

stmt_list $

stmt stmt_list $	       // based on lookahead = read

read id stmt_list	$ 	 // based on lookahead = read

stmt_list $ 	      	// accept read and id tokens

	 	 // what to do here?

	 	 // id lookahead => assign or call



LL(1) Parsing Requirements

• Whenever making a choice between two productions of a 
nonterminal…


• It must be possible to predict which is taken based on 1 
lookahead token



LL Parsing

• Problems trying to make a grammar LL(1)

– common prefixes


• solved by "left-factoring”.  Example:

	 stmt		 → id := expr

	 	 	 	 | id ( arg_list )


• This can be expressed instead:

	 stmt		 → id id_stmt_tail

	 id_stmt_tail 	 → := expr 

	 	 	 	 | ( arg_list)

• we can left-factor mechanically



LL Parsing
• Problems trying to make a grammar LL(1)


– left recursion: another thing that LL parsers can't 
handle


• Example of left recursion:

id_list	 → id | id_list , id


• This can be expressed instead:

id_list	 	 → id id_list_tail

id_list_tail → , id id_list_tail

	 	 	 	 | ε

• we can get rid of all left recursion mechanically in any 

grammar



LL Parsing

• Note that eliminating left recursion and 
common prefixes does NOT make a 
grammar LL

– there are infinitely many non-LL 

LANGUAGES, and the mechanical 
transformations work on them just fine


– the few that arise in practice, however, can 
generally be handled with kludges



This Grammar is LL(1)

program 	 	 → stmt_list $$$

stmt_list 	 → stmt stmt_list 

 	 	 	 | ε

stmt 	 	 → id id_stmt_tail

 	 	 	 | read id 

 	 	 	 | write id

id_stmt_tail	 → := id

	 	 	 | ( id_list )

id_list	 	 → id id_list_tail

id_list_tail	 → , id id_list_tail

	 	 	 | ε



• Let’s parse this program:

read A

process(A)

write A


• Here’s the parse sequence

program

read id stmt_list $ 	 // several steps here, shown earlier

stmt_list $ 	 	 // accept read and id tokens

stmt stmtlist $ 	 // based on id lookahead

id id_stmt_tail stmtlist $     // based on id lookahead

id_stmt_tail stmtlist	$        // accept id token

( id_list ) stmtlist	 $        // based on ( lookahead

id id_list_tail ) stmtlist $   // accept ( token, expand id_list

id_list_tail ) stmtlist $      // accept id token

) stmtlist $ 	  	 // id_list_tail=ε based on ) lookahead

stmtlist $ 	  	 // accept (, id, and ) tokens

LL Parsing Example
program 	 → stmt_list $

stmt_list 	 → stmt stmt_list | ε

stmt 	 	  → id id_stmt_tail

 	 	 | read id 

 	 	 | write id

id_stmt_tail	 → := id

	 	 | ( id_list )

id_list		 → id id_list_tail

id_list_tail	 → , id id_list_tail | ε



• Let’s parse this program:

read A

process(A)

write A


• Here’s the parse sequence

program

stmtlist $ 	 	 // several steps...shown in previous slides

write id stmtlist $ 	 // two steps, based on id lookahead

stmtlist $ 	 	 // accept write and id tokens

$ 	 	 	 // based on $$$ lookahead


LL Parsing Example
program 	 → stmt_list $ 

stmt_list 	 → stmt stmt_list | ε

stmt 	 	  → id id_stmt_tail

 	 	 | read id 

 	 	 | write id

id_stmt_tail	 → := id

	 	 | ( id_list )

id_list		 → id id_list_tail

id_list_tail	 → , id id_list_tail | ε



• Convert the following grammar to LL(1) form


• What are the advantages/disadvantages of your LL(1) grammar compared 
to the original one (which was LR(1))?

Exercise: LL Grammar Conversion

program 	 → expr $ 

expr	  	 → term | expr + term

term 	 	 → id | id ( expr )



LL Parsing

• Like the bottom-up grammar, this one captures 
associativity and precedence, but most people 
don't find it as pretty

– for one thing, the operands of a given operator aren't in a 

RHS together!  

– however, the simplicity of the parsing algorithm often 

makes up for this weakness

program 	 → expr $ 

expr	 	 → term expr_tail

expr_tail 	 → + term expr_tail 

 	 	 | ε

term	 	 → id term_tail

term_tail	 → ( expr )

 	 	 | ε



Top-Down Parsing Implementations

• There are two approaches to LL top-down parsing

• Recursive Descent – typically handwritten

• Parse table – typically generated



Recursive descent parsers



Recursive descent parsers



LL Parsing

• Table-driven LL parsing:  main parsing loop 
which repeatedly looks up an action in a 
two-dimensional table based on current 
leftmost non-terminal and current input 
token.  The actions are 

(1) match a terminal

(2) predict a production

(3) report a syntax error



LL Parsing

• LL(1) parse table for parsing for calculator 
language



LL Parsing

• To keep track of the left-most non-terminal, 
you push the as-yet-unseen portions of 
productions onto a stack

– As we did in the earlier example of LL parsing

– see also Figure 2.21 in book


• The key thing to keep in mind is that the 
stack contains all the stuff you expect to see 
between now and the end of the program 

– what you predict you will see 



LL Parsing

• How to know which production to choose?

• Use PREDICT sets for each production


• set of terminals that predict this production is taken

• PREDICT sets for different productions of the same 

nonterminal are disjoint



LL Parsing

• The algorithm to build PREDICT sets is 
tedious (for a "real" sized grammar), but 
relatively simple


• It consists of three stages:

– (1) compute FIRST sets for symbols

– (2) compute FOLLOW sets for non-terminals 

(this requires computing FIRST sets for some 
strings)


– (3) compute PREDICT sets or table for all 
productions



LL Parsing

• It is conventional in general discussions of grammars to use 

– c: lower case letters near the beginning of the alphabet for terminals

– x: lower case letters near the end of the alphabet for strings of terminals

– A: upper case letters near the beginning of the alphabet for non-terminals

– X: upper case letters near the end of the alphabet for arbitrary symbols

– α: Greek letters for arbitrary strings of symbols



LL Parsing

• Algorithm First/Follow/Predict:

– FIRST(α) == {c : α ⇒* c β} 

– FOLLOW(A) == {c : S ⇒+ α A c β} 

– PREDICT (A → X1 ... Xm) == 

   FIRST (X1 ... Xm) 

   ∪ (if X1, ..., Xm ⇒* ε	 then FOLLOW (A) 

	 	 	 	 	 	 else ∅)


– EPS (A) == A ⇒* ε


• Example following…



LL Parsing – Interactive Fill-In
• FIRST


• FOLLOW


• PREDICT



LL Parsing



LL Parsing



LL Parsing

• If any token belongs to the predict set of 
more than one production with the same 
LHS, then the grammar is not LL(1)


• A conflict can arise because 

– the same token can begin more than one RHS

– it can begin one RHS and can also appear after 

the LHS in some valid program, and one 
possible RHS is ε


