
Copyright © 2016 Elsevier

Top-Down Parsing

17-363/17-663: Programming Language Pragmatics

Reading: PLP section 2.3

Parsing

• A context-free grammar (CFG) is a generator for a
context-free language (CFL)

– A parser is a language recognizer
• There are an infinite number of grammars for

every context-free language
– Not all grammars are created equal, however

– Ambiguity
– Understandability
– Performance

Parsing

• It turns out that for any CFG we can create a
parser that runs in O(n3) time
• E.g. the Generalized LR (GLR) parser used to

parse expressions in SASyLF
• O(n3) time is clearly unacceptable for a

parser in a compiler - too slow
• It’s OK in SASyLF because we only write small

expressions in proofs
• Some real languages do use GLR parsers, but

only their grammar is still “mostly” LR

Parsing

• Fortunately, there are large classes of
grammars for which we can build parsers
that run in linear time
– The two most important classes are called
LL and LR

• LL stands for
'Left-to-right, Leftmost derivation'.

• LR stands for
'Left-to-right, Rightmost derivation’

Leftmost vs. Rightmost Derivations

Leftmost derivation
• Always chooses the left-most nonterminal to

replace

expr ⇒ expr op expr
 ⇒ expr op expr op expr
 ⇒ id op expr op expr
 ⇒ id * expr op expr
 ⇒ id * id op expr
 ⇒ id * id + expr
 ⇒ id * id + id

• Note: both derivations produce the same tree!

Rightmost derivation
• Always chooses the right-most nonterminal to

replace

expr ⇒ expr op expr
 ⇒ expr op id
 ⇒ expr + id
 ⇒ expr op expr + id
 ⇒ expr op id + id
 ⇒ expr * id + id
 ⇒ id * id + id

Parsing

• LL parsers are also called 'top-down', or 'predictive'
parsers & LR parsers are also called 'bottom-up', or
'shift-reduce' parsers
• We’ll discuss LL parsers today, and LR parsers in the next

lecture
• There are several important sub-classes of LR parsers

– SLR
– LALR
• We won't be going into detail on the differences

between them

Parsing

• You commonly see LL or LR (or whatever) written with a
number in parentheses after it
– This number indicates how many tokens of look-ahead are required

in order to parse
– Almost all real compilers use one token of look-ahead

– Some tools let you special-case to look further ahead for certain constructs
• The expression grammar (with precedence and

associativity) you saw before is LR(1), but not LL(1)
• Every CFL that can be parsed deterministically has an

SLR(1) grammar (which is LR(1))

LL Parsing Example

• Let’s start with the following statement grammar
• This is not an LL(1) grammar – we’ll see how we need to adapt it

program → stmt_list $
stmt_list → stmt stmt_list
 | ε
stmt → id := id
 | read id
 | write id
 | id (id_list)
id_list → id
 | id_list , id

LL Parsing Example
program → stmt_list $
stmt_list → stmt stmt_list
 | ε
stmt → id := id
 | read id
 | write id
 | id (id_list)
id_list → id
 | id_list , id

• Let’s parse this program:
read A
process(A)
write A

• Here’s the parse sequence

program
stmt_list $
stmt stmt_list $ // based on lookahead = read
read id stmt_list $ // based on lookahead = read
stmt_list $ // accept read and id tokens
 // what to do here?
 // id lookahead => assign or call

LL(1) Parsing Requirements

• Whenever making a choice between two productions of a
nonterminal…

• It must be possible to predict which is taken based on 1
lookahead token

LL Parsing

• Problems trying to make a grammar LL(1)
– common prefixes

• solved by "left-factoring”. Example:
 stmt → id := expr
 | id (arg_list)

• This can be expressed instead:
 stmt → id id_stmt_tail
 id_stmt_tail → := expr
 | (arg_list)
• we can left-factor mechanically

LL Parsing
• Problems trying to make a grammar LL(1)

– left recursion: another thing that LL parsers can't
handle

• Example of left recursion:
id_list → id | id_list , id

• This can be expressed instead:
id_list → id id_list_tail
id_list_tail → , id id_list_tail
 | ε
• we can get rid of all left recursion mechanically in any

grammar

LL Parsing

• Note that eliminating left recursion and
common prefixes does NOT make a
grammar LL
– there are infinitely many non-LL

LANGUAGES, and the mechanical
transformations work on them just fine

– the few that arise in practice, however, can
generally be handled with kludges

This Grammar is LL(1)

program → stmt_list $$$
stmt_list → stmt stmt_list
 | ε
stmt → id id_stmt_tail
 | read id
 | write id
id_stmt_tail → := id
 | (id_list)
id_list → id id_list_tail
id_list_tail → , id id_list_tail
 | ε

• Let’s parse this program:
read A
process(A)
write A

• Here’s the parse sequence
program
read id stmt_list $ // several steps here, shown earlier
stmt_list $ // accept read and id tokens
stmt stmtlist $ // based on id lookahead
id id_stmt_tail stmtlist $ // based on id lookahead
id_stmt_tail stmtlist $ // accept id token
(id_list) stmtlist $ // based on (lookahead
id id_list_tail) stmtlist $ // accept (token, expand id_list
id_list_tail) stmtlist $ // accept id token
) stmtlist $ // id_list_tail=ε based on) lookahead
stmtlist $ // accept (, id, and) tokens

LL Parsing Example
program → stmt_list $
stmt_list → stmt stmt_list | ε
stmt → id id_stmt_tail
 | read id
 | write id
id_stmt_tail → := id
 | (id_list)
id_list → id id_list_tail
id_list_tail → , id id_list_tail | ε

• Let’s parse this program:
read A
process(A)
write A

• Here’s the parse sequence
program
stmtlist $ // several steps...shown in previous slides
write id stmtlist $ // two steps, based on id lookahead
stmtlist $ // accept write and id tokens
$ // based on $$$ lookahead

LL Parsing Example
program → stmt_list $
stmt_list → stmt stmt_list | ε
stmt → id id_stmt_tail
 | read id
 | write id
id_stmt_tail → := id
 | (id_list)
id_list → id id_list_tail
id_list_tail → , id id_list_tail | ε

• Convert the following grammar to LL(1) form

• What are the advantages/disadvantages of your LL(1) grammar compared
to the original one (which was LR(1))?

Exercise: LL Grammar Conversion

program → expr $
expr → term | expr + term
term → id | id (expr)

LL Parsing

• Like the bottom-up grammar, this one captures
associativity and precedence, but most people
don't find it as pretty
– for one thing, the operands of a given operator aren't in a

RHS together!
– however, the simplicity of the parsing algorithm often

makes up for this weakness

program → expr $
expr → term expr_tail
expr_tail → + term expr_tail
 | ε
term → id term_tail
term_tail → (expr)
 | ε

Top-Down Parsing Implementations

• There are two approaches to LL top-down parsing
• Recursive Descent – typically handwritten
• Parse table – typically generated

Recursive descent parsers

Recursive descent parsers

LL Parsing

• Table-driven LL parsing: main parsing loop
which repeatedly looks up an action in a
two-dimensional table based on current
leftmost non-terminal and current input
token. The actions are
(1) match a terminal
(2) predict a production
(3) report a syntax error

LL Parsing

• LL(1) parse table for parsing for calculator
language

LL Parsing

• To keep track of the left-most non-terminal,
you push the as-yet-unseen portions of
productions onto a stack
– As we did in the earlier example of LL parsing
– see also Figure 2.21 in book

• The key thing to keep in mind is that the
stack contains all the stuff you expect to see
between now and the end of the program
– what you predict you will see

LL Parsing

• How to know which production to choose?
• Use PREDICT sets for each production

• set of terminals that predict this production is taken
• PREDICT sets for different productions of the same

nonterminal are disjoint

LL Parsing

• The algorithm to build PREDICT sets is
tedious (for a "real" sized grammar), but
relatively simple

• It consists of three stages:
– (1) compute FIRST sets for symbols
– (2) compute FOLLOW sets for non-terminals

(this requires computing FIRST sets for some
strings)

– (3) compute PREDICT sets or table for all
productions

LL Parsing

• It is conventional in general discussions of grammars to use
– c: lower case letters near the beginning of the alphabet for terminals
– x: lower case letters near the end of the alphabet for strings of terminals
– A: upper case letters near the beginning of the alphabet for non-terminals
– X: upper case letters near the end of the alphabet for arbitrary symbols
– α: Greek letters for arbitrary strings of symbols

LL Parsing

• Algorithm First/Follow/Predict:
– FIRST(α) == {c : α ⇒* c β}

– FOLLOW(A) == {c : S ⇒+ α A c β}

– PREDICT (A → X1 ... Xm) ==

 FIRST (X1 ... Xm)

 ∪ (if X1, ..., Xm ⇒* ε then FOLLOW (A)

 else ∅)

– EPS (A) == A ⇒* ε

• Example following…

LL Parsing – Interactive Fill-In
• FIRST

• FOLLOW

• PREDICT

LL Parsing

LL Parsing

LL Parsing

• If any token belongs to the predict set of
more than one production with the same
LHS, then the grammar is not LL(1)

• A conflict can arise because
– the same token can begin more than one RHS
– it can begin one RHS and can also appear after

the LHS in some valid program, and one
possible RHS is ε

