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Top-Down Parsing

17-363/17-663: Programming Language Pragmatics

Reading: PLP section 2.3



Parsing

• A context-free grammar (CFG) is a generator for a 
context-free language (CFL) 

– A parser is a language recognizer 
• There are an infinite number of grammars for 

every context-free language  
– Not all grammars are created equal, however 

– Ambiguity 
– Understandability 
– Performance



Parsing

• It turns out that for any CFG we can create a 
parser that runs in O(n3) time 
• E.g. the Generalized LR (GLR) parser used to 

parse expressions in SASyLF 
• O(n3) time is clearly unacceptable for a 

parser in a compiler - too slow 
• It’s OK in SASyLF because we only write small 

expressions in proofs 
• Some real languages do use GLR parsers, but 

only their grammar is still “mostly” LR



Parsing

• Fortunately, there are large classes of 
grammars for which we can build parsers 
that run in linear time 
– The two most important classes are called  
LL and LR 

• LL stands for  
'Left-to-right, Leftmost derivation'. 

• LR stands for  
'Left-to-right, Rightmost derivation’



Leftmost vs. Rightmost Derivations

Leftmost derivation 
• Always chooses the left-most nonterminal to 

replace 

expr ⇒ expr op expr 
        ⇒ expr op expr op expr 
        ⇒ id op expr op expr  
        ⇒ id * expr op expr 
        ⇒ id * id op expr 
        ⇒ id * id + expr 
        ⇒ id * id + id 

• Note: both derivations produce the same tree!

Rightmost derivation 
• Always chooses the right-most nonterminal to 

replace 

expr ⇒ expr op expr 
        ⇒ expr op id 
        ⇒ expr + id 
        ⇒ expr op expr + id 
        ⇒ expr op id + id 
        ⇒ expr * id + id 
        ⇒ id * id + id 



Parsing

• LL parsers are also called 'top-down', or 'predictive' 
parsers & LR parsers are also called 'bottom-up', or 
'shift-reduce' parsers 
• We’ll discuss LL parsers today, and LR parsers in the next 

lecture 
• There are several important sub-classes of LR parsers 

– SLR 
– LALR 
• We won't be going into detail on the differences 

between them



Parsing

• You commonly see LL or LR (or whatever) written with a 
number in parentheses after it 
– This number indicates how many tokens of look-ahead are required 

in order to parse 
– Almost all real compilers use one token of look-ahead 

– Some tools let you special-case to look further ahead for certain constructs 
• The expression grammar (with precedence and 

associativity) you saw before is LR(1), but not LL(1) 
• Every CFL that can be parsed deterministically has an 

SLR(1) grammar (which is LR(1))



LL Parsing Example

• Let’s start with the following statement grammar 
• This is not an LL(1) grammar – we’ll see how we need to adapt it 

program   → stmt_list $ 
stmt_list  → stmt stmt_list  
    | ε 
stmt   → id := id  
    | read id  
    | write id 
   | id ( id_list ) 
id_list  → id 
   | id_list , id



LL Parsing Example
program  → stmt_list $ 
stmt_list  → stmt stmt_list  
   | ε 
stmt   → id := id  
   | read id  
   | write id 
  | id ( id_list ) 
id_list  → id 
  | id_list , id

• Let’s parse this program: 
read A 
process(A) 
write A 

• Here’s the parse sequence 

program 
stmt_list $ 
stmt stmt_list $       // based on lookahead = read 
read id stmt_list $  // based on lookahead = read 
stmt_list $        // accept read and id tokens 
  // what to do here? 
  // id lookahead => assign or call



LL(1) Parsing Requirements

• Whenever making a choice between two productions of a 
nonterminal… 

• It must be possible to predict which is taken based on 1 
lookahead token



LL Parsing

• Problems trying to make a grammar LL(1) 
– common prefixes 

• solved by "left-factoring”.  Example: 
 stmt  → id := expr 
    | id ( arg_list ) 

• This can be expressed instead: 
 stmt  → id id_stmt_tail 
 id_stmt_tail  → := expr  
    | ( arg_list) 
• we can left-factor mechanically



LL Parsing
• Problems trying to make a grammar LL(1) 

– left recursion: another thing that LL parsers can't 
handle 

• Example of left recursion: 
id_list → id | id_list , id 

• This can be expressed instead: 
id_list  → id id_list_tail 
id_list_tail → , id id_list_tail 
    | ε 
• we can get rid of all left recursion mechanically in any 

grammar



LL Parsing

• Note that eliminating left recursion and 
common prefixes does NOT make a 
grammar LL 
– there are infinitely many non-LL 

LANGUAGES, and the mechanical 
transformations work on them just fine 

– the few that arise in practice, however, can 
generally be handled with kludges



This Grammar is LL(1)

program   → stmt_list $$$ 
stmt_list  → stmt stmt_list  
    | ε 
stmt   → id id_stmt_tail 
    | read id  
    | write id 
id_stmt_tail → := id 
   | ( id_list ) 
id_list  → id id_list_tail 
id_list_tail → , id id_list_tail 
   | ε



• Let’s parse this program: 
read A 
process(A) 
write A 

• Here’s the parse sequence 
program 
read id stmt_list $  // several steps here, shown earlier 
stmt_list $   // accept read and id tokens 
stmt stmtlist $  // based on id lookahead 
id id_stmt_tail stmtlist $     // based on id lookahead 
id_stmt_tail stmtlist $        // accept id token 
( id_list ) stmtlist $        // based on ( lookahead 
id id_list_tail ) stmtlist $   // accept ( token, expand id_list 
id_list_tail ) stmtlist $      // accept id token 
) stmtlist $    // id_list_tail=ε based on ) lookahead 
stmtlist $    // accept (, id, and ) tokens

LL Parsing Example
program  → stmt_list $ 
stmt_list  → stmt stmt_list | ε 
stmt    → id id_stmt_tail 
   | read id  
   | write id 
id_stmt_tail → := id 
  | ( id_list ) 
id_list  → id id_list_tail 
id_list_tail → , id id_list_tail | ε



• Let’s parse this program: 
read A 
process(A) 
write A 

• Here’s the parse sequence 
program 
stmtlist $   // several steps...shown in previous slides 
write id stmtlist $  // two steps, based on id lookahead 
stmtlist $   // accept write and id tokens 
$    // based on $$$ lookahead 

LL Parsing Example
program  → stmt_list $  
stmt_list  → stmt stmt_list | ε 
stmt    → id id_stmt_tail 
   | read id  
   | write id 
id_stmt_tail → := id 
  | ( id_list ) 
id_list  → id id_list_tail 
id_list_tail → , id id_list_tail | ε



• Convert the following grammar to LL(1) form 

• What are the advantages/disadvantages of your LL(1) grammar compared 
to the original one (which was LR(1))?

Exercise: LL Grammar Conversion

program  → expr $  
expr   → term | expr + term 
term   → id | id ( expr )



LL Parsing

• Like the bottom-up grammar, this one captures 
associativity and precedence, but most people 
don't find it as pretty 
– for one thing, the operands of a given operator aren't in a 

RHS together!   
– however, the simplicity of the parsing algorithm often 

makes up for this weakness

program  → expr $  
expr  → term expr_tail 
expr_tail  → + term expr_tail  
   | ε 
term  → id term_tail 
term_tail → ( expr ) 
   | ε



Top-Down Parsing Implementations

• There are two approaches to LL top-down parsing 
• Recursive Descent – typically handwritten 
• Parse table – typically generated



Recursive descent parsers



Recursive descent parsers



LL Parsing

• Table-driven LL parsing:  main parsing loop 
which repeatedly looks up an action in a 
two-dimensional table based on current 
leftmost non-terminal and current input 
token.  The actions are  
(1) match a terminal 
(2) predict a production 
(3) report a syntax error



LL Parsing

• LL(1) parse table for parsing for calculator 
language



LL Parsing

• To keep track of the left-most non-terminal, 
you push the as-yet-unseen portions of 
productions onto a stack 
– As we did in the earlier example of LL parsing 
– see also Figure 2.21 in book 

• The key thing to keep in mind is that the 
stack contains all the stuff you expect to see 
between now and the end of the program  
– what you predict you will see 



LL Parsing

• How to know which production to choose? 
• Use PREDICT sets for each production 

• set of terminals that predict this production is taken 
• PREDICT sets for different productions of the same 

nonterminal are disjoint



LL Parsing

• The algorithm to build PREDICT sets is 
tedious (for a "real" sized grammar), but 
relatively simple 

• It consists of three stages: 
– (1) compute FIRST sets for symbols 
– (2) compute FOLLOW sets for non-terminals 

(this requires computing FIRST sets for some 
strings) 

– (3) compute PREDICT sets or table for all 
productions



LL Parsing

• It is conventional in general discussions of grammars to use  
– c: lower case letters near the beginning of the alphabet for terminals 
– x: lower case letters near the end of the alphabet for strings of terminals 
– A: upper case letters near the beginning of the alphabet for non-terminals 
– X: upper case letters near the end of the alphabet for arbitrary symbols 
– α: Greek letters for arbitrary strings of symbols



LL Parsing

• Algorithm First/Follow/Predict: 
– FIRST(α) == {c : α ⇒* c β} 

– FOLLOW(A) == {c : S ⇒+ α A c β} 

– PREDICT (A → X1 ... Xm) == 

   FIRST (X1 ... Xm) 

   ∪ (if X1, ..., Xm ⇒* ε then FOLLOW (A) 

       else ∅) 

– EPS (A) == A ⇒* ε 

• Example following…



LL Parsing – Interactive Fill-In
• FIRST 

• FOLLOW 

• PREDICT



LL Parsing



LL Parsing



LL Parsing

• If any token belongs to the predict set of 
more than one production with the same 
LHS, then the grammar is not LL(1) 

• A conflict can arise because  
– the same token can begin more than one RHS 
– it can begin one RHS and can also appear after 

the LHS in some valid program, and one 
possible RHS is ε


