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Data Types 

• What is a type?  3 views:
• Denotational: a collection of values from a domain

• e.g. the 32-bit integers (int), or the real numbers representable as 
IEEE single-precision floats (float)

• Structural: a description of a data structure in terms of 
fundamental constructs
• e.g. a point is a record made up of fields x and y, both of type int

– Behavioral: the set of operations that can be applied to an 
object

– e.g. a Stack has operations push(v) and pop()
– Similar to structural, but the structure is a set of methods, not fields



Data Types 

• What are types good for?
– Documentation

– What do I need to pass to this library function?
– Implicit context for compilation

– Is this + an integer add or a floating point add?
– Checking - meaningless operations do not occur

• e.g. “hello, world” ‐ 5 does not make sense
• Type checking cannot prevent all meaningless 

operations
• It catches enough of them to be useful



Terminology

• Type safety
• The language ensures that only type-appropriate 

operations are applied to an object

• Strong vs. weak typing
• The degree to which the language enforces 

typing invariants and prevents accidental errors

• Static vs. dynamic typing
• Whether types are checked at compile time or 

run time



Type Systems

• Examples
– Java is type safe, strongly and statically typed

– Common Lisp is type safe, strongly and dynamically 
typed

– C and C++ are statically and strongly typed, but are 
not (fully) type safe

– JavaScript is type safe and dynamically typed, but 
allows many implicit conversions between types, some 
of which are surprising.  It would be considered more 
weakly typed than the above languages.



Fun with JavaScript

• What does it mean to be weakly typed?

[] == ![];

"b" + "a" + +"a" + "a";

null == 0;
null > 0;
null >= 0;



Type Examples and Terminology

– Discrete types – countable
• integer
• boolean
• char
• enumeration
• subrange

– Scalar types - one-dimensional
• All discrete types
• real



Type Systems

• Composite types:
– records
– datatypes/unions
– arrays

• strings
– sets
– pointers
– lists
– files



Orthogonality in Type Systems

• Orthogonality is a desirable property
• There are no restrictions on the way types can be 

combined
• Type theory typically studies orthogonal type 

constructs
• e.g. we provide a grammar for types, they can be 

constructed in any way
• Most languages restrict orthogonality

• Often for practical reasons, e.g. minimizing syntactic 
overhead or making type checking decidable

• Example: ML only allows polymorphism at a let
• Example: Java classes combine records with recursive 

types



Subtyping

• When one type can be safely used as another type
• e.g. in most languages an integer can be used as a real
• The “operational” definition of subtyping

• Other definitions
• Intuitive: A<:B if A is a B

• e.g. a StreetAddress is an Address
• Denotational: A <: B if A describes a subset of the 

values that B describes
• e.g. the integers are a subset of the reals

• Structural: A <: B if A has all of the structure of B (and 
maybe more)

• Behavioral: A <: B if A has all the operations that B 
does, and they behave as we’d expect for a B



Subtyping Rules

• Subsumption - a subtype can be treated as a supertype:

• Subtyping is reflexive
and transitive:

• We can capture some of 
Java’s subtyping rules as 
follows:



Subtyping Practice

• Show a derivation that types the expression 1 + 2.5



Type Checking

• A TYPE SYSTEM has rules for
– type compatibility (when can a value of type A 

be used in a context that expects type B?)
– Similar to the first definition of subtyping

– But sometimes languages break this for convenience, 
e.g. allowing reals to be implicitly converted to 
integers, or integers to be implicitly truncated

– Type equivalence: when two types are mutually 
compatible

– type inference (what is the type of an 
expression, given the types of the operands?)



Structural vs. Name Equivalence

• Are these equivalent?
struct person {
string name;
string address;

}
struct school {
string name;
string address;

}
• Some languages let you choose.  E.g. in Ada:
type Score is integer; // structural equivalence; equiv to integer

type Fahrenheit is new integer; // name equivalence
type Celsius is new integer; // can’t assign Fahrenheit to Celsius 



Type Checking

• Two major approaches: structural 
equivalence and name equivalence
– Name equivalence is based on declarations 

– Advantage: captures the programmer’s intent
– Typical in imperative & OO languages

– Structural equivalence is based on some notion 
of meaning behind those declarations
– Advantage: more flexible
– Disadvantage: can “accidentally” equate types
– Common in functional languages (but they usually 

have ways to support nominal equivalence also)



Type Checking

• Structural equivalence depends on simple 
comparison of type descriptions substitute 
out all names 
– expand all the way to built-in types

• Original types are equivalent if the 
expanded type descriptions are the same



Type Checking

• Coercion
– When an expression of one type is used in a 

context where a different type is expected, one 
normally gets a type error

– But what about
var a : integer; b, c : real;

...
c := a + b;



Type Checking

• Coercion
– Many languages allow things like this, and 

COERCE an expression to be of the proper type
– Coercion can be based just on types of 

operands, or can take into account expected 
type from surrounding context as well



Type Checking

• C has lots of coercion, too, but with simpler rules:
– all floats in expressions become doubles
– short, int, and char become int in 

expressions
– if necessary, precision is removed when 

assigning into LHS



Coercion Rules

•Coercion and conversions can be added in an 
elaboration pass within the compiler

–Elaboration makes implicit things explicit
•Coercions are inserted when subsumption is 
used but the types have different representions

•Conversions are inserted where the user adds 
casts



Type Checking

• Make sure you understand the difference 
between
– type conversions (explicit)
– type coercions (implicit)
– in C and derived languages, the word 'cast' is 

often used for conversions



Implementing Type Checkers
function typecheck_expr(scope : Scope, a : AST) : Type
case a of

int_lit(n) : return integer
real_lit(r) : return real
var(x) : return symbol_table.get_type(x, scope, a)
float(a1) :

typ : Type := typecheck_expr(scope, a1)
if typ  {integer, error_type} then error(‘‘already a real’’, a)
return float

trunc(a1) :
typ : Type := typecheck_expr(scope, a1)
if typ  {real, error_type} then error(‘‘already an integer’’, a)
return integer

bin_op(a1, op, a2) :
typ1 : Type := typecheck_expr(scope, a1)
typ2 : Type := typecheck_expr(scope, a2)
if typ1 = typ2 then return typ1
else if typ1 = error_type then return typ2
else if typ2 = error_type then return typ1
else error(‘‘mismatched types’’, a); return error_type

if x is not found, get_type will call 
error(‘‘variable not declared’’, a)
and add x to scope with error_type, 
to avoid cascading messages



Implementing Type Checkers
function typecheck_stmt(scope : Scope, a : AST)
case a of
    int_decl(x, s) :
        symbol_table.add(x, integer, scope, a)
        typecheck_stmt(scope, s)
    real_decl(x, s) : . . . –– analogous to int_decl
    assign(x, e, s) :
        typ_expr := typecheck_expr(scope, e)
        typ_x := symbol_table.get_type(x, scope, a) –– see notes on get_type on prior slide
        if typ_expr ̸= typ_x and type_expr ̸= error_type and type_x ̸= error type
            error(‘‘mismatched types’’)
        typecheck_stmt(scope, s)
    read(x, s) :
        typ_x := symbol_table.get_type(x, scope, a) –– see notes on get_type on prior slide
        typecheck_stmt(scope, s)
    write(e, s) :
        typecheck_expr(scope, e)
        typecheck_stmt(scope, s)
    null : return

if x is already present and not of 
error_type, add willcall error(‘‘variable 
already declared in scope’’, a) and set 
the type of x to error_type if the two 
declarations differ



Polymorphism

• Polymorphism allows one piece of code to work with 
multiple types

• Example: Polymorphism in Java
static <T> bool isMember(T value, T[] array) {

for (int i = 0; i < array.length; ++i)
if (T[i].equals(value)) return true;

return false;
}
Integer[] a1 = { 1, 2, 3 };
String[] a2 = { “hello”, “world” };
bool result = isMember(a1, 5); // returns false
bool result2 = isMember(a2, “hello”); // returns true
bool error = isMember(a2, 5); // type error



Thinking about Polymorphic Types

• Example: Polymorphism in Java
static <T> bool isMember(T value, T[] array) { ... }

// typing: isMember: T(T, T[]) ‐> bool

bool result = isMember(a, 5)

// think: bool result = isMember[int](a, 5)
// (the compiler figures out the [int] part)
// so we substitute T with int and we have
// isMember[int] : (int, int[]) ‐> bool



Polymorphism Typing Rules

<T> bool isMember(T value, T[] array) { … }
 T . (value: T, array: T[]) => …

bool result = isMember(a, 5)
 isMember[int](a, 5)
 (body of isMember, where T is replaced with int)(a, 5)



Polymorphism Practice

Show a typing derivation for the program:

let id = T. x:T => x
in id[int](3)

Also show the steps this program takes in reducing:



Local Type Inference

• In C++ (and many other languages)

auto x = 3.5+1;

• x will have type double since the right-hand side 
expression has that type



Global Type Inference
1 ‐‐ fib :: int ‐> int
2 let fib n =
3   let rec helper f1 f2 i =
4     if i = n then f2
5     else helper f2 (f1 + f2) (i + 1) in
6   helper 0 1 0;;
• i is int, because it is added to 1 at line 5
• n is int, because it is compared to i at line 4
• all three args at line 6 are int consts, so f1 and f2 are int
• also, the 3rd argument is consistent with the known int type of i

(good!)
• and the types of the arguments to the recursive call at line 5 are 

similarly consistent
• since helper returns f2 (known to be int) at line 4, the result of the call 

at line 6 will be int
• Since fib immediately returns this result as its own result, the return 

type of fib is int
• For more details re: type inference in ML, read about Algorithm W


