Types and Type Checking

17-363/17-663: Programming Language Pragmatics

Ben Titzer

Reading: PLP chapter 7

Copyright © 2016 Elsevier

Data Types

- What is a type? 3 views:
 - Denotational: a collection of values from a domain
 - e.g. the 32-bit integers (int), or the real numbers representable as IEEE single-precision floats (float)
 - Structural: a description of a data structure in terms of fundamental constructs
 - e.g. a point is a record made up of fields x and y, both of type **int**
 - Behavioral: the set of operations that can be applied to an object
 - e.g. a Stack has operations push(v) and pop()
 - Similar to structural, but the structure is a set of methods, not fields

Data Types

- What are types good for?
 - Documentation
 - What do I need to pass to this library function?
 - Implicit context for compilation
 - Is this + an integer add or a floating point add?
 - Checking meaningless operations do not occur
 - e.g. "hello, world" 5 does not make sense
 - Type checking cannot prevent all meaningless operations
 - It catches enough of them to be useful

Terminology

- Type safety
 - The language ensures that only type-appropriate operations are applied to an object
- Strong vs. weak typing
 - The degree to which the language enforces typing invariants and prevents accidental errors
- Static vs. dynamic typing
 - Whether types are checked at compile time or run time

Type Systems

- Examples
 - Java is type safe, strongly and statically typed
 - Common Lisp is type safe, strongly and dynamically typed
 - C and C++ are statically and strongly typed, but are not (fully) type safe
 - JavaScript is type safe and dynamically typed, but allows many implicit conversions between types, some of which are surprising. It would be considered more weakly typed than the above languages.

Fun with JavaScript

• What does it mean to be weakly typed?

```
[] == ![];
"b" + "a" + +"a" + "a";
null == 0;
null > 0;
null >= 0;
```


Type Examples and Terminology

- Discrete types countable
 - integer
 - boolean
 - char
 - enumeration
 - subrange
- Scalar types one-dimensional
 - All discrete types
 - real

Type Systems

- Composite types:
 - records
 - datatypes/unions
 - arrays
 - strings
 - sets
 - pointers
 - lists
 - files

Orthogonality in Type Systems

- Orthogonality is a desirable property
 - There are no restrictions on the way types can be combined
- Type theory typically studies orthogonal type constructs
 - e.g. we provide a grammar for types, they can be constructed in any way
- Most languages restrict orthogonality
 - Often for practical reasons, e.g. minimizing syntactic overhead or making type checking decidable
 - Example: ML only allows polymorphism at a **let**
 - Example: Java classes combine records with recursive types

Subtyping

- When one type can be safely used as another type
 - e.g. in most languages an integer can be used as a real
 - The "operational" definition of subtyping
- Other definitions
 - Intuitive: A<:B if A is a B
 - e.g. a StreetAddress is an Address
 - Denotational: A <: B if A describes a subset of the values that B describes
 - e.g. the integers are a subset of the reals
 - Structural: A <: B if A has all of the structure of B (and maybe more)
 - Behavioral: A <: B if A has all the operations that B does, and they behave as we'd expect for a B

Subtyping Rules

• Subsumption - a subtype can be treated as a supertype:

$$\frac{\Gamma \vdash e : \tau_1 \quad \tau_1 \leq \tau_2}{\Gamma \vdash e : \tau_2} \ T\text{-subsume}$$

• Subtyping is reflexive and transitive:

$$\frac{1}{\tau \leq \tau}$$
 S-reflexive

$$\frac{\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3}{\tau_1 \leq \tau_3} S$$
-transitive

• We can capture some of Java's subtyping rules as follows:

$$\frac{1}{1} \text{int} \leq 1 \text{ong} \quad S\text{-int-long}}{\frac{1}{1} \text{S-long-float}}$$

$$long \leq float$$

float \leq **double** *S*-float-double

Subtyping Practice

• Show a derivation that types the expression 1 + 2.5

 $\Gamma \vdash e_1 + e_2 : \texttt{double}$

- A TYPE SYSTEM has rules for
 - type compatibility (when can a value of type A be used in a context that expects type B?)
 - Similar to the first definition of subtyping
 - But sometimes languages break this for convenience,
 e.g. allowing reals to be implicitly converted to
 integers, or integers to be implicitly truncated
 - Type equivalence: when two types are mutually compatible
 - type inference (what is the type of an expression, given the types of the operands?)

Structural vs. Name Equivalence

- Are these equivalent?
 struct person {
 string name;
 string address;
 }
 struct school {
 string name;
 string address;
 }
 }
- Some languages let you choose. E.g. in Ada: type Score is integer; // structural equivalence; equiv to integer

type Fahrenheit is new integer; type Celsius is new integer;

// name equivalence// can't assign Fahrenheit to Celsius

- Two major approaches: structural equivalence and name equivalence
 - Name equivalence is based on declarations
 - Advantage: captures the programmer's intent
 - Typical in imperative & OO languages
 - Structural equivalence is based on some notion of meaning behind those declarations
 - Advantage: more flexible
 - Disadvantage: can "accidentally" equate types
 - Common in functional languages (but they usually have ways to support nominal equivalence also)

- Structural equivalence depends on simple comparison of type descriptions substitute out all names
 - expand all the way to built-in types
- Original types are equivalent if the expanded type descriptions are the same

- Coercion
 - When an expression of one type is used in a context where a different type is expected, one normally gets a type error
 - But what about

c := a + b;

- Coercion
 - Many languages allow things like this, and
 COERCE an expression to be of the proper type
 - Coercion can be based just on types of operands, or can take into account expected type from surrounding context as well

- C has lots of coercion, too, but with simpler rules:
 - all **float**s in expressions become **double**s
 - short, int, and char become int in expressions
 - if necessary, precision is removed when assigning into LHS

Coercion Rules

 $\frac{\Gamma \vdash e: \texttt{int}}{\Gamma \vdash e \rightsquigarrow \texttt{float}(e): \texttt{real}} \ \textit{coerce-real}$

 $\frac{\Gamma \vdash e : \texttt{real}}{\Gamma \vdash (\texttt{int})e \leadsto \texttt{trunc}(e) : \texttt{int}} \ \textit{convert-int}$

- Coercion and conversions can be added in an *elaboration* pass within the compiler
 –Elaboration makes implicit things explicit
- Coercions are inserted when subsumption is used but the types have different representions
- Conversions are inserted where the user adds casts

- Make sure you understand the difference between
 - type conversions (explicit)
 - type coercions (implicit)
 - in C and derived languages, the word 'cast' is often used for conversions

Implementing Type Checkers

```
if x is not found, get_type will call
function typecheck expr(scope : Scope, a : AST) : Type
case a of
                                                                 error("variable not declared", a)
  int_lit(n) : return integer
                                                                 and add x to scope with error type,
                                                                 to avoid cascading messages
  real lit(r) : return real
  var(x) : return symbol table.get type(x, scope, a)
  float(a1):
     typ : Type := typecheck expr(scope, a1)
     if typ \notin {integer, error type} then error("already a real", a)
     return float
  trunc(a1):
     typ : Type := typecheck_expr(scope, a1)
     if typ \notin {real, error_type} then error("already an integer", a)
     return integer
   bin_op(a1, op, a2):
     typ1 : Type := typecheck_expr(scope, a1)
    typ2 : Type := typecheck_expr(scope, a2)
     if typ1 = typ2 then return typ1
     else if typ1 = error type then return typ2
     else if typ2 = error_type then return typ1
     else error("mismatched types", a); return error_type
```

Implementing Type Checkers

<pre>function typecheck_stmt(scope : Scope, a : AST)</pre>	if x is already present and not of	
case a of	error_type, add willcall error("variabl	e
int_decl(x, s) :	already declared in scope", a) and set	
<pre>symbol_table.add(x, integer, scope, a)</pre>	the type of x to error_type if the two	
typecheck_stmt(scope, s)	declarations differ	
<pre>real_decl(x, s) : — analogous to int_decl</pre>		
assign(x, e, s) :		
<pre>typ_expr := typecheck_expr(scope, e)</pre>		
<pre>typ_x := symbol_table.get_type(x, scope, a) — see</pre>	notes on get_type on prior slide	
if typ_expr ⊨ typ_x and type_expr ⊨ error_type and error(''mismatched types'')	l type_x ⊨ error type	
<pre>typecheck_stmt(scope, s)</pre>		
read(x, s):		
<pre>typ_x := symbol_table.get_type(x, scope, a) — see</pre>	notes on get_type on prior slide	
<pre>typecheck_stmt(scope, s)</pre>		
write(e, s):		
typecheck_expr(scope, e)		4442788
<pre>typecheck_stmt(scope, s)</pre>		
null : return		
	1	ъIJ

ELSEVIER

Polymorphism

- Polymorphism allows one piece of code to work with multiple types
- Example: Polymorphism in Java

```
static <T> bool isMember(T value, T[] array) {
    for (int i = 0; i < array.length; ++i)
        if (T[i].equals(value)) return true;
    return false;
}
Integer[] a1 = { 1, 2, 3 };
String[] a2 = { "hello", "world" };
bool result = isMember(a1, 5); // returns false
bool result2 = isMember(a2, "hello"); // returns true
bool error = isMember(a2, 5); // type error</pre>
```


Thinking about Polymorphic Types

• Example: Polymorphism in Java

```
static <T> bool isMember(T value, T[] array) { ... }
```

```
// typing: isMember: \begin{bmatrix} T(T, T[]) -> bool
```

```
bool result = isMember(a, 5)
```

```
// think: bool result = isMember[int](a, 5)
// (the compiler figures out the [int] part)
// so we substitute T with int and we have
// isMember[int] : (int, int[]) -> bool
```


Polymorphism Typing Rules

$$e ::= \dots | \Lambda T.e | e[\tau]$$

$$\tau ::= \dots | \forall T.\tau | T$$

$$\Gamma ::= \dots | \Gamma, T$$

$$\overline{(\Lambda T.e)[\tau]} \rightarrow [\tau/T]e$$
 step-type-apply

$$\frac{\Gamma, T \vdash e : \tau}{\Gamma \vdash \Lambda T.e : \forall T.\tau} \text{ } T\text{-type-abstract}$$

$$\frac{\Gamma \vdash e : \forall T.\tau}{\Gamma \vdash e[\tau'] : [\tau'/T]\tau} \ T-type-apply$$

$$\frac{e \to e'}{e[\tau'] \to e'[\tau']} \text{ congruence-type-abstract}$$

 bool isMember(T value, T[] array) { ... }
$$\approx \Lambda T$$
 . (value: T, array: T[]) => ...

Polymorphism Practice

$$e ::= \dots | \Lambda T.e | e[\tau]$$

$$\tau ::= \dots | \forall T.\tau | T$$

$$\Gamma ::= \dots | \Gamma, T$$

$$\overline{(\Lambda T.e)[\tau]} \rightarrow [\tau/T]e$$
 step-type-apply

$$\frac{e \to e'}{e[\tau'] \to e'[\tau']} \text{ congruence-type-abstract}$$

Show a typing derivation for the program:

let id = ΛT. x:T => x **in** id[**int**](3)

Also show the steps this program takes in reducing:

$$\frac{\Gamma, T \vdash e : \tau}{\Gamma \vdash \Lambda T.e : \forall T.\tau} T\text{-type-abstract}$$

$$\frac{\Gamma \vdash e : \forall T.\tau}{\Gamma \vdash e[\tau'] : [\tau'/T]\tau} \text{ T-type-apply}$$

Local Type Inference

• In C++ (and many other languages)

auto x = 3.5 + 1;

• x will have type double since the right-hand side expression has that type

Global Type Inference

- 1 -- fib :: int -> int
 2 let fib n =
 3 let rec helper f1 f2 i =
 4 if i = n then f2
 5 else helper f2 (f1 + f2) (i + 1) in
 6 helper 0 1 0;;
 i is int, because it is added to 1 at line 5
- n is int, because it is compared to i at line 4
- all three args at line 6 are int consts, so f1 and f2 are int
- also, the 3rd argument is consistent with the known int type of i (good!)
- and the types of the arguments to the recursive call at line 5 are similarly consistent
- since helper returns f2 (known to be int) at line 4, the result of the call at line 6 will be int
- Since fib immediately returns this result as its own result, the return type of fib is int
- For more details re: type inference in ML, read about Algorithm W

