17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 8

Copyright © 2016 Elsevier

Ben Titzer

Jonathan Aldrich

A “ &
¢
" i LA

ELS

EVIER

Records

* A record has multiple named fields
* Fields may have different types
* Order usually doesn’t matter to semantics

* Layout chosen by compiler
* or fixed by programmer in C — helps match hardware expectations

* Operations

* Create: specify 1nitial value for each field r= { x:5,y:10 }
 Dereference: read a field r.x; // evaluates to 5
* Assign: update a field r.x =7

« We’ll model assignment separately later, using references
« Keeps assignment (and state) orthogonal

* Typing
« Simple, orthogonal approach: a type for each field

e Syntax
 Note shorthand for values — v 1s a subset of e
 Notation: overbar indicates a list

o |{f=e}]ef

nlz:7=el|l{f=v}

| {feT}

* Field initialization and dereference
e — e,
{fiici=viafi=e, firin=¢€xin } = { flici =vii—1. fi=€. fixi.n =€i+1.n }

step-field

®
I

|

-

congruence-record

{ fiici =vii-1, fi = Vi, fits1.n = Vit1.n }-fi = Vi

£

ELSEVIER

Fl—ez—’i‘_
 Typing FE{f=e}:Af:7}

F'ke:{f:7}
I‘I—e.fz-:'rz-

T-record

T-field

* Subtyping
« Depth subtyping example

LT}

<
= S-depth
< 7

T
{ xant, y:nt } < { xireal,y:;real } { f:7}

S-width

« Width subtyping example {f:7,9:7}<{f:7}

{ x:nt, y:nt, z:int } < { x:nt, y:nt }

ELSEVIER

 Memory layout and its impact (structures)
4 bytes/32 bits |

atomic_number

atomic_weight

Milfrz thzpvulp h fn psz pspckEdit baizgf hdp hgwpo b43.ciih bdi pf/Alignn fousftusiupotfbe tpiif!
tibefe BipnftA

£k
ELSEVIER

 Memory layout and its impact (structures)

4 bytes/32 bits

atomic_

metallic

Mjfiz h fn pszibbzpvupsbdlfe hdip hgw sfdpset/The dwp fbgxp ehuand dwp bz hljkwfields are
nonaligned, and can only be read or written (on most machines) viamulti-instruction sequences.

ELSEVIER

 Memory layout and its impact (structures)

4 bytes/32 bits |

atomic_number

atomic_welght

S fbsbohph fdpee fifretip h ph £ Hipnft/By sor ting fields according to the size pgui fgbmhon fou!
dpotisopubtpn gifstbo h Hh £ i £ tgbdf efwpufe ip Hpnft-k i§f 1ffgph ui f fifret brhofe/

ELSEVIER

Unions (a.k.a. datatypes, ...)

* A construct that has 2 or more variants
« Every instance is one variant or the other

* Comes in two forms:
« Tagged: The runtime uses a tag to keep track of which variant you have, allows you
to test the tag; may enforce consistency
« Untagged: You have to know which variant of the union is intended. You can “roll
your own tag” if needed. May be unsafe.

« Example from C * Example from OCaml
struct address {
int is_street; //we use this as a tag // OCaml tracks the tag for us
union | type address =
po box of int

int po_box; .
. | street address of string

char *street address;
} address_details;

v

Formalizing Unions as Sum Types

* Syntax for “sum types” — simple unions with tags
 We model just two possibilities — easy to generalize
» Instead of arbitrary names, we use “right” and “left”
* inr e “injects” a value 1nto a union using the right (r) variant
* A case construct tests the tag and evaluates e, or e,

inl e¢|inr e¢|case ¢ of inl xr = ¢, inr = = ¢,
inl v | inr v
T| + Tr

g = inl e |inr e|case ¢ of inl z = ¢, inr x = e,
v == ...|inl v |inr v
T L= TI + Tyr

« Congruence rules handle evaluation when injecting into a union or evaluating
the input to a case

« The step rules test the tag and run one body or the other—Iike an if statement

e — e
inl ¢ — inl ¢

- congruence-inl

e — ¢
inr ¢ — inr ¢

7 congruence-inr

e — ¢
case ¢ of inl 7= ¢, inr r = ¢, - case ¢ of inl r = ¢, inr = ¢,

congruence-case

- - - step-case-inl
case inl v of inl r = ¢, inr = = ¢, — [v/x]¢

step-case-inr

case inr v of inl 7z = ¢, inr x = e, — [v/x]e,

Example of using sums

* Consider modeling addresses as above. The left variant will be PO boxes and
the right is street addresses. When we ship, we must use USPS for PO boxes.
This function implements that:

ship(address) = case address of inl n => usps(n), of inr a => fedex(a)

ship(inr “5000 Forbes Ave”) // ship to CMU!
—> case (inr “5000 Forbes Ave”) of inl n => usps(n), of inr a => fedex(a)
= fedex(“5000 Forbes Ave”)

ship(inl 1492) // 1492 is the PO box we are shipping to
—> case (inl 1492) of inl n => usps(n), of inr a => fedex(a)
- usps(1492)

Typechecking Sums

« If we inject a value of type int, the sum type can be int + anything
* Inreal languages we know what it is; in the formalism we “guess”
We could avoid “guessing” by annotating the inl with the expected sum type

« The case rule expects e to be a sum, and types the branches assuming the
variable has the left and right type, respectively.

« The branches must have the same type as each other — that way the program can use the
result no matter which branch is chosen

FI—GZT/ Toinl
'Finl e: 77+ 7, "
I'e:7, _
T-1nr

I'Finr e: 77+ 7,

I'tre:nn+7 Lx:mbe:7 L'x:7bFe T
I'-case e of inl rz=¢.,inr rx = ¢, : T

T-case

Sum Subtyping

« Just like depth subtyping for records, one sum is a subtype of another if the
component types are in the same relationship. “If I’'m expecting a dog or a
cat, and you give me a Poodle or a Siamese, I’ll be OK with that”

ST T 5T,
— S-sum
T+ 7T ST+ 7,

« If we were modeling sums with more than 2 variants, then a sum with n
variants would be a subtype of a sum with m>n variants that includes the n
from the first sum. “If ’m expecting a cat, dog, or horse, and you give me a
cat or dog, I’'m OK with that. But not vice versa!”

* [Exercise: write a rule for this! (assume n-ary sums t,+...+ 1)

Sum Subtyping

« Just like depth subtyping for records, one sum is a subtype of another if the
component types are in the same relationship. “If I’'m expecting a dog or a
cat, and you give me a Poodle or a Siamese, I’ll be OK with that”

ST T 5T,
— S-sum
T+ 7T ST+ 7,

« If we were modeling sums with more than 2 variants, then a sum with n
variants would be a subtype of a sum with m>n variants that includes the n
from the first sum. “If ’m expecting a cat, dog, or horse, and you give me a
cat or dog, I’'m OK with that. But not vice versa!”

* Answer to exercise: write a rule for this (assuming n-ary sums t,+...+ 1)

L Fes o« Ta S TLF se=F T F === T S-sum-width

* Note that this is the “opposite” of width subtyping for records!

 Memory layout and its impact (unions)
4 bytes/32 bits ‘ 4 bytes/32 bits

atomic_number atomic_number

atomic_weight atomic_weight

source lifetime

prevalence

Mifre h fn psztibzpvit tpsififn foulwbspout /U1 £ Wt paid £ bbuwsomz* pddvessph bifre)tipx o L ff &k ji bepvenf !

cpsfsriipufoefe bp lpedouf k 11 gt £ pufsgsfibupot bgid £ 5fn bpph ghdf He Wore /Gifre tpvsdf Hbttvn fe ip gppuip btsph wbu!
ibtkffo pefgfoefour bmpdoute /

ELSEVIER

Pointers

* Pointers serve two purposes:

— Efficient access to objects on the stack (as in C)
— Can be unsafe if not carefully managed

— Rust has a type system that enforces safety

* Dynamic creation of linked data structures, in conjunction
with a heap storage manager
* (an also be unsafe if dangling pointers are dereferenced

« (Garbage collection can ensure safety

* Languages like Java provide a higher level
“reference” model, “building 1n” pointers

* We can model references with pointers though

Modeling Pointers

 We model pointers with three constructs:
* A new operation, as in C++ or Java
* A C-style dereference operation, *p
« (-style pointer assignments, *p =¢
* Types include pointer types t™ (read from right to left, as in C)
* For modeling execution, we’ll track locations £ on the heap
* A store S maps locations to values

* We track the types of locations 1n the store in a store typing X

e = ...|new e|xe|xe:=¢€
v o= .| 4

T = ...|Tx

S Location — Value

> Location — Type

Pointer Evaluation Rules

S,e — S ¢

S.,new ¢ — S’ new ¢

congruence-new

* Congruence rules do
S.e— S ¢

S.xe — S’ xe/

congruence-deref

the expected thing

* But the program is now
S, €1 — Slq 6?/1

S,xe1 = ey — 5, x| == ey

a combination of an congruence-assign-left

: v
expression and a store! S.es— ¢l

* Other rules ST — < —
* C(Create references and add o
{ & domain(S) S'= [l — v]S
them to the store S, . , -
. S.new v— 5/
creating a new store S’
* Dereference a value,

congruence—asszgn-rzght

step-new

S|l = v

step-deref

. . . 6‘!‘ é S\) 1
looking it up in the store ¥ 0,
S S'=1[0—]S s i
: step-ass
 Assign a new value, S+l im0 — S s

updating the store

Pointer Typing Rules

e A new expression has Fhe:r

pointer type TF new c:rx L €W
* To type a dereference, Ph e

we look up the type of TE e~ I-deref

the pointer and take
I'Fer:mx I'Fey:mm 19 <

I'Fxep ;=69 : 1

s

away the * "L Tassign

e In an assignment, we
require *p on the left,
where p has pointer type

* The right hand side’s
type must be a subtype
of the pointer type

Pointer Subtyping

As mentioned, we can assign a subtype value to a variable that’s
a pointer to its supertype:

float *r = new 5.0;

*r="17; //the compiler will insert a coercion here

But, we can’t assign an int * to a float *, or vice versa! That’s
because int and float have different representations; if we write
via one pointer and read from the other, the compiler won’t
know to insert a conversion, and we’ll get garbage.

Thus, t,* < 1,* only if 1, = 1,

When we study objects, we’ll see that in C++ a Dog* 1s a
subtype of an Animal*, but that only works 1f we use the
pointers in a limited way as object references, and do not assign
into them.

Recursive Types

* Recursive types refer to a type inside its definition
* Required to describe recursive data structures
 In practice, combined with other type features
e (structs are records + recursion
e (OCaml datatypes are unions + recursion
* Running example (Ocaml) — integer lists
* A datatype with a record 1n one variant

type IntList =

Cons of { value:int, next:IntList }
| Nil

Modeling Recursive Types

type IntList =
Cons of { value:int, next:IntList }
| Nil

 We add named recursive types to our type grammar
* Must also be able to refer to the name

T u= ...|reec T.7|T

« Now we can model lists as follows

« We use recursive types, sum types, and a record type
e The names Cons and Nil are just right and left branches of the sum type

rec IntList . { value:int, next:IntList } + unit

Semantics of Recursive Types

* There are two ways to model the semantics of recursive types

Both involve unfolding
 We unfold a type by taking the body of the recursive type, and substituting
the recursive type for the name everywhere 1t appears

unfold(ree T.7) = |rec T.7/T|T

* The simplest approach, conceptually, 1s equi-recursive types
« Equi-recursive means the recursive type 1s equivalent to its unfolding

rec T.71 =[rec T.7/T|7

An example of this equivalence for IntList:

rec IntList . { value:int, next:IntList } + unit

{ value:int, next:rec IntList . { value:int, next:IntList } + unit } + unit

Iso-Recursive Types

* Equi-recursive types are attractive, but hard to implement
 When does the compiler apply the fold/unfold equality?

* A more common approach 1s iso-recursive types
« Here, a recursive type 1s isomorphic to its unfolding
» Isomorphic means they behave the same way, but you have to convert
between them
« The compiler inserts a fold when you create an instance of a recursive type;
it inserts an unfold when you access it (e.g. with a case or field dereference)

* An operational way to think about fold and unfold:
» fold makes an object into a recursive type, so we can put it in a data
structure

« unfold converts an object back to a sum or record, so we can get its
contents

 We now have fold and unfold in expressions. A fold around a
value 1s a value. Remember, these are inserted by the compiler—
you don’t write them 1n any real language.

e == ...|fold;e|unfold ¢
v = ...| fold v
T = ...|reec T.7|T

ELSEVIER

Formalizing Iso-Recursive Types

e Let’s look at how OCaml IntLists turn into 1so-recursive types:

type IntList = Cons of { value:int, next:IntList } | Nil
let list = Cons { value = 3, next = Nil }
in match list with

Cons r => r.value

o Object created,
—> ’
Nil 0 compiler inserted folds

let list = fold,;, (inl { value = 3, next = fold ; (inr ()) }
in case unfold,,, (list) of inl r => r.value, of inr u=> 0

datatype match;
compiler inserts unfold

where I’ve abbreviated the single-unfolded IntList type as
[List = { value:int, next:rec IntList . { value:int, next:IntList } + unit} + unit

Formalizing Iso-Recursive Types

* Congruence allows evaluation inside fold/unfold
 When we unfold something that 1s folded, they cancel:

e — ¢
fold- e — fold, ¢

congruence-fold

e —5 g
unfold e¢ — unfold ¢

congruence-unfold

unfold fold v — v Step-unfold
let list = fold,,; (inl { value = 3, next = fold,, (inr ()) }
in case unfold, . (list) of inl r => r.value, of inr u => 0

9

case unfold,;, (fold, , (inl { value = 3, next = fold, . (inr ()) })
of inl r =>r.value, of inr u=> 0

Formalizing Iso-Recursive Types

* Congruence allows evaluation inside fold/unfold

 When we unfold something that 1s folded, they cancel:
e — e
fold. e — fold, ¢

congruence-fold

e — ¢
unfold e — unfold ¢/

congruence-unfold

infold fold u 3u P woid

case unfold,;, (fold, (inl { value = 3, next = fold,, . (inr ()) })
of inl r =>r.value, of inr u=>0

9

case (inl { value = 3, next = fold,, . (inr ()) }) of inl r => r.value, of inr u=>0

9

{ value = 3, next = fold,,, (inr ()) }.value
-3

I'Fe:|rec T.7/T|T

'+ fold, e :rec 1.7 ol

I'Fe:rec 1.7
T-unfold
'+ unfold e: [rec T.7/T|7 f

« So, we can typecheck a folded object as follows:

fold/List(inr ()) } : rec IntList . { value:int, next:IntList } + unit

again, I’ve abbreviated
[List = { value:int, next:rec IntList . { value:int, next:IntList } + unit} + unit

£k
ELSEVIER

* Today we covered the semantics of a number of

different composite types

« Records

* Unions, datatypes, and sums
« Reference types

* Recursive types

ELSEVIER

