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Introduction

• We discussed target code generation
– Typically produces correct but highly suboptimal code

• redundant computations
• inefficient use of the registers, multiple functional units, and cache 

• This chapter takes a look at code optimization: the 
phases of compilation devoted to generating good code
– we interpret “good” to mean fast
– occasionally we also consider program transformations to 

decrease memory requirements
– we say “optimization,” but the code produced is rarely truly 

optimal; “improvement” is more apt, but “optimization”
is ubiquitous



Introduction

• In a very simple compiler, we can use a peephole 
optimizer to peruse already-generated target code for 
obviously suboptimal sequences of adjacent instructions

• At a slightly higher level, we can generate near-optimal 
code for basic blocks
– a basic block is a maximal-length sequence of instructions that 

will always execute in its entirety (assuming it executes at all)
– in the absence of hardware exceptions, control never enters a 

basic block except at the beginning, and never exits except at 
the end



Introduction

• Code optimization at the level of basic blocks is known as 
local optimization
– elimination of redundant operations (unnecessary loads, common sub-

expression calculations)
– effective instruction scheduling and register allocation

• At higher levels of aggressiveness, compilers employ 
techniques that analyze entire subroutines for further speed 
improvements

• These techniques are known as global optimization
– multi-basic-block versions of redundancy elimination
– instruction scheduling, and register allocation
– code modifications designed to improve the performance of loops



Introduction

• Both global redundancy elimination and loop 
optimization typically employ a control flow graph 
representation of the program
– Use a family of algorithms known as data flow analysis 

(flow of information between basic blocks)
• Recent compilers perform various forms of 

interprocedural code optimization
• Interprocedural optimization is difficult

– subroutines may be called from many different places 
• hard to identify available registers, common subexpressions, etc.

– subroutines are separately compiled



Phases of Code Optimization
• We will concentrate in our discussion on the forms of code 

optimization that tend to achieve the largest increases in 
execution speed, and are most widely used
– Compiler phases to implement these optimizations is shown in Figure 

17.1



Phases of Code Optimization



Phases of Code Optimization

• The machine-independent part of the back end 
begins with intermediate code generation
– identifies fragments of the syntax tree that correspond to 

basic blocks
– creates a control flow graph in which each node contains a 

sequence of three-address instructions for an idealized 
machine (unlimited supply of virtual registers)

• The machine-specific part of the back end begins 
with target code generation
– strings the basic blocks together into a linear program

• translates each block into the instruction set of the 
target machine and generating branch instructions that 
correspond to the arcs of the control flow graph



Phases of Code Optimization

• Machine-independent code optimization has 
three separate phases
1. Local redundancy elimination: identifies and 

eliminates redundant loads, stores, and computations 
within each basic block

2. Global redundancy elimination: identifies similar 
redundancies across the boundaries between basic 
blocks (but within the bounds of a single subroutine)

3. Loop optimization: effects several optimizations 
specific to loops
• these are particularly important, since most programs spend 

most of their time in loops. 
• Global redundancy elimination and loop optimization may 

actually be subdivided into several separate phases



Phases of Code Optimization

• Machine-specific code optimization has four separate 
phases
– Preliminary and final instruction scheduling  are essentially 

identical (Phases 1 & 3)
– Register allocation (Phase 2) and instruction scheduling 

tend to interfere with one another
• the instruction schedules minimize pipeline stalls which tend to 

increase the demand for architectural registers (register pressure)
• we schedule instructions first, then allocate architectural registers, 

then schedule instructions again
– If it turns out that there aren’t enough architectural registers, the 

register allocator will generate additional load and store instructions to 
spill registers temporarily to memory

– the second round of instruction scheduling attempts to fill any 
delays induced by the extra loads



Peephole Optimization

• A relatively simple way to significantly improve the 
quality of naive code is to run a peephole optimizer 
over the target code
– works by sliding a several instruction window (a peephole) 

over the target code, looking for suboptimal patterns of 
instructions

– the patterns to look for are heuristic
• patterns to match common suboptimal idioms produced by a 

particular front end
• patterns to exploit special instructions available on a given machine

• A few examples are presented in what follows



Peephole Optimization

• Elimination of redundant loads and stores
– The peephole optimizer can often recognize that the 

value produced by a load instruction is already available 
in a register
r2 := r1 + 5
i := r2
r3 := i
r3 := r3 × 3

becomes
r2 := r1 + 5
i := r2
r3 := r2 × 3



Peephole Optimization

• Constant folding
• A naive code generator may produce code that 

performs calculations at run time that could 
actually be performed at compile time
– A peephole optimizer can often recognize such code

r2 := 3 × 2

becomes 
r2 := 6



Peephole Optimization
• Constant propagation

– Sometimes we can tell that a variable will have a constant value at 
a particular point in a program

– We can then replace occurrences of the variable with occurrences 
of the constant
r2 := 4
r3 := r1 + r2
r2 := . . .

becomes
r2 := 4
r3 := r1 + 4
r2 := . . .

and then 
r3 := r1 + 4
r2 := . . .



Peephole Optimization

• Common subexpression elimination
– When the same calculation occurs twice within the 

peephole of the optimizer, we can often eliminate the 
second calculation:
r2 := r1 × 5
r2 := r2 + r3
r3 := r1 × 5

becomes
r4 := r1 × 5
r2 := r4 + r3
r3 := r4

– Often, as shown here, an extra register will be needed to 
hold the common value



Peephole Optimization

• It is natural to think of common subexpressions as 
something that could be eliminated at the source 
code level, and programmers are sometimes 
tempted to do so 

• The following, for example,
x = a + b + c;
y = a + b + d;

could be replaced with
t = a + b;
x = t + c;
y = t + d;



Peephole Optimization
• Copy propagation

– Even when we cannot tell that the contents of register b will be 
constant, we may sometimes be able to tell that register b will 
contain the same value as register a

• replace uses of b with uses of a, so long as neither a nor b is modified
r2 := r1
r3 := r1 + r2
r2 := 5

becomes
r2 := r1
r3 := r1 + r1
r2 := 5

and then 
r3 := r1 + r1
r2 := 5



Peephole Optimization

• Strength reduction
– Numeric identities can sometimes be used to replace a 

comparatively expensive instruction with a cheaper one
• In particular, multiplication or division by powers of two can be 

replaced with adds or shifts:

r1 := r2 × 2
becomes 

r1 := r2 + r2 or r1 := r2 << 1

r1 := r2 / 2
becomes 

r1 := r2 >> 1



Peephole Optimization
• Filling of load and branch delays

– For example, a value that is loaded may not be usable for 
several cycles

r2 := r1 + r2

r3 := A –– load

r3 := r3 + r2 –– pipeline stall before r3 can be used

– Since different registers are used, we can schedule the load 
earlier, avoiding the pipeline stall

r3 := A –– load

r2 := r1 + r2

r3 := r3 + r2 –– use is late enough to avoid stall

– This optimization is unnecessary on machines with out of order 
execution

• Most computers and smartphones, but not necessarily embedded devices



Peephole Optimization

• Elimination of useless instructions
– Instructions like the following can be dropped 

entirely:
r1 := r1 + 0
r1 := r1 × 1

• Exploitation of the instruction set
– Particularly on CISC machines, sequences of simple 

instructions can often be replaced by a smaller 
number of more complex instructions



Optimization Correctness

• Criterion: does the optimized program compute the 
same result as the original program, for all inputs?

• Soundness theorem: If p ~> p’ then input I, p(I) = 
p’(I)

– You’ll prove a version of this for a simple constant 
propagation analysis in Homework 8



Analysis Correctness

• Optimizations often rely on analysis information
– Value numbering: correspondences between expressions and 

values in registers

• Rough guide to correctness: when you replace 
symbolic information in the analysis with concrete 
information from particular executions, does the result 
hold?

– Becomes a lemma in the proof of soundness for the “client” 
optimization



Redundancy Elimination in Basic Blocks
• Throughout the remainder of this chapter we will trace 

the optimization of code for a specific subroutine: 
calculates into an array the binomial coefficients



Redundancy Elimination in Basic Blocks
• Let’s look at improving intermediate code generated from this C program 

for binomial coefficients:



Redundancy Elimination in Basic Blocks
• We employ a medium 

level intermediate form 
(IF) for control flow
– Every calculated value is 

placed in a separate 
register

– To emphasize virtual 
registers (of which there 
is an unlimited supply), 
we name them v1, v2, . . .

– We use r1, r2, . . . to 
represent architectural 
registers in Section 17.8.



Redundancy Elimination in Basic Blocks

• To improve the code within basic blocks, we need to
– minimize loads and stores
– identify redundant calculations

• There are two techniques usually employed
1. translate the syntax tree for a basic block into an 

expression DAG (directed acyclic graph) in which 
redundant loads and computations are merged into 
individual nodes with multiple parents

2. similar functionality can also be obtained without an 
explicitly graphical program representation, through a 
technique known as local value numbering 

• We describe the last technique below



Redundancy Elimination in Basic Blocks

• Value numbering assigns the same name (a “number”) 
to any two or more symbolically equivalent 
computations (“values”), so that redundant instances 
will be recognizable by their common name

• Our names are virtual registers, which we merge 
whenever they are guaranteed to hold a common value

• While performing local value numbering, we will also 
implement 
– local constant folding
– constant propagation, copy propagation
– common subexpression elimination
– strength reduction
– useless instruction elimination



Value Numbering

• Keep track of a table: replace e with reg/imm
– Replacements are virtual registers or immediates

• Virtual registers are numbered v1, v2, v3, …
– Origin of the term “value numbering” – we give each virtual register a 

number
• Immediate values

– i.e. value small enough to fit in the immediate operand of an instruction
– MIPS architecture: 16 bits (unsigned value smaller than 65536)

– Expressions e to replace include:
• Program variables that are already in a register (x  v1)
• An operand applied to small constants or register (v1 + 3  v2)
• A register that duplicates another register (v3 v2)

or holds a small constant value (v4 1)
• “large” constants (100000  v5)

– i.e. too big to fit in the immediate operand of an instruction



Value Numbering

• Keep track of a table: replace e with reg/imm
– Invariants:

• Large (non-immediate) values appear alone only on the left
• Small (immediate) values appear in an expression on the left, or alone 

on the right

• Procedure
– Replace expressions with reg/imm according to the table
– Add what we learn to the table
– Perform simple optimizations along the way

• constant folding, strength reduction, useless instruction removal
– Delay stores (mark variable dirty in table)

• At end of basic block, store dirty variables
• Rationale: avoid double-stores



Redundancy Elimination in Basic Blocks
• Let’s do value numbering for the basic block for the main loop:
v13 := t
v14 := n
v15 := 1
v16 := v14 + v15
v17 := i
v18 := v16 - v17
v19 := v13 * v18
v20 := i
v21 := v19 / v20
t := v21
v22 := A
v23 := i
v24 := 4
v25 := v23 * v24
v26 := v22 + v25

v27 := t
*v26 := v27
v28 := A
v29 := n
v30 := i
v31 := v29 – v30
v32 := 4
v33 := v31 * v32
v34 := v28 + v33
v35 := t
*v34 := v35
v36 := i
v37 := 1
v38 := v36 + v37
i := v38



Redundancy Elimination in Basic Blocks
• Let’s do value numbering for a simple example:
v1 := x
v2 := 1
v3 := v1 + v2
y := v3
v4 := x
v5 := 1
v6 := v4 + v5
v7 := 3
v8 := 1
v9 := v7 + v8
v10 := v6 * v9
v11 := 1
v12 := v11 * v10
v13 := 100000
v14 := v12 + v13
y := v14

What the source might look like:

y := x + 1;
y := (x+1) * (3+1) * 1 + 100000;



Your Turn: Value Numbering
• Perform value numbering optimization on the following:
v1 := x
v2 := 3
v3 := v1 + v2
y := v3
v4 := 1
v5 := x
v6 := 2
v7 := v4 + v6
v8 := v5 + v7
v9 := v8 - v3
y := v9



Value Numbering & Aliasing

• Aliasing: x and y might refer to the same location
– Distinguish x and y must alias from x and y may alias

• Concerns
– If x may alias y:

• store to x  remove knowledge of y
 can’t move below a load of y

– If x must alias y:
• store to x  update knowledge of y in table
• load of x  can replace with existing load of y


