
Gradual Verification:
Assuring Software Incrementally

Jonathan Aldrich

October 2023

1

Work done with Jenna (Wise) DiVincenzo, Ian McCormack, Mona Zhang,
Jacob Gorenburg, Hemant Gouni, Conrad Zimmerman, Joshua Sunshine,
and Éric Tanter. Sponsored by the US National Science Foundation.

Naïve Verification Attempt: Dynamic Verification

2

int findMax(Node l)
ensures max(result,l) && contains(result,l)

{
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}
return m;

}

3

int findMax(Node l)
ensures max(result,l) && contains(result,l)

{
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}

return m;
}

assert max(m,l) && contains(m,l);

Naïve Verification Attempt: Dynamic Verification

Challenges:
• Would like to ensure spec for

all executions
• Cost of dynamic checking

may be significant

4

Naïve Verification Attempt: Static Verification

int findMax(Node l)
ensures max(result,l) && contains(result,l)

{
int m = l->val;
Node curr = l->next;
while(curr != null) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}
return m;

}

5

Naïve Verification Attempt: Static Verification

int findMax(Node l)

ensures max(result,l) && contains(result,l)
{
int m = l->val;
Node curr = l->next;

while(curr != NULL) {
if(curr->val > m) { m = curr->val; }
curr = curr->next;

}

return m;
}

FOLDS/UNFOLDS

FOLDS/UNFOLDS

LEMMAS

FOLDS/UNFOLDS
LOOP INVARIANTS

requires l != NULL

6

Gradual Verification to the Rescue

int findMax(Node l)
requires
ensures max(result,l) && contains(result,l)

{
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}

return m;
}

?

?

7

Gradual Verification to the Rescue

int findMax(Node l)
requires
ensures max(result,l) && contains(result,l)

{
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}

return m;
}

? && l != NULL

?

8

Gradual Verification to the Rescue

int findMax(Node l)
requires
ensures max(result,l) && contains(result,l)

{
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}

return m;
}

? && l != NULL

? && LOOP INVARIANTS

9

Gradual Verification to the Rescue

int findMax(Node l)
requires
ensures max(result,l) && contains(result,l)

{
int m = l->val;
Node curr = l->next;

while(curr != NULL) {
if(curr->val > m) { m = curr->val; }
curr = curr->next;

}

return m;
}

FOLDS/UNFOLDS

FOLDS/UNFOLDS

LEMMAS

FOLDS/UNFOLDS
LOOP INVARIANTS

l != NULL

Stop Specification Anytime with Gradual Verification

10

Memory
Safety

13 LoSC

Missing
Lemmas

22 LoSC

Full
Spec

44 LoSC

Summary: The Problem

● Dynamic verification is low-cost to the programmer, but:
○ No feedback at compile time (and no static guarantees)
○ Can slow the program—a lot!

● Static verification pays off only after a ton of work
○ Static verification can be 10x as costly as writing the program (sel4, CompCert)
○ Requires an inductively complete specification

■ Many “false positive” warnings when spec is incomplete
■ No feedback on incorrect specs until there’s a static inconsistency

● What we need:
○ Incremental payoff for incremental specification work

■ Ability to focus on most important properties of most important components
○ Early feedback on mistakes – both compile time checking & running incomplete specs
○ Properties – soundness, conservative extension, gradual guarantee, pay as you go

11

Properties of Gradual Verification

12

Gradual Guarantee
[Siek et al. 2015]

If a specification doesn’t
have ?, and it verifies,
the code is correct

Soundness

All specification violations
are caught either statically
or at run time

Pay as you go

Run time checking cost
• increases as you add specs
• decreases as specs become

statically verifiable

If your specs are a
subset of a correct spec,
you won’t get any errors

Conservative extension

First 3 proved for initial models of gradual verification in [Bader et al. ’18], [Wise et al. ’20]

How does gradual
verification work?

13

14

Preliminaries

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);

15

Preliminaries

predicate acyclic(Node root) =
(root == NULL) ?

true
:
acc(root->val) * acc(root->next)
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);

16

Preliminaries

predicate acyclic(Node root) =
(root == NULL) ?

true
:
acc(root->val) * acc(root->next)
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);

Accessibility
Predicate -
permission to
access a heap

location

Accessibility
Predicate -
permission to
access a heap

location

17

Preliminaries

predicate acyclic(Node root) =
(root == NULL) ?

true
:
acc(root->val) * acc(root->next)
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);

Separating
Conjunction -
predicates refer
to different heap

locations

Separating
Conjunction -
predicates refer
to different heap

locations

18

Preliminaries

predicate acyclic(Node root) =
(root == NULL) ?

true
:
acc(root->val) * acc(root->next)
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);

19

Preliminaries

predicate acyclic(Node root) =
(root == NULL) ?

true
:
acc(root->val) * acc(root->next)
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);

20

Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

assert acyclic(l);

21

Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next)

* acyclic(l->next) }

assert acyclic(l);

22

Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next)

* acyclic(l->next) }

assert acyclic(l);

23

Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next)

* acyclic(l->next) }

assert acyclic(l);

24

Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next)

* acyclic(l->next) }

assert acyclic(l);

predicate acyclic(Node l) =
(l == NULL) ? true :
acc(l->val) * acc(l->next)
* acyclic(l->next)

25

Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next)

* acyclic(l->next) }

fold acyclic(l);

assert acyclic(l);

26

Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next)

* acyclic(l->next) }

fold acyclic(l);

{ l != NULL * acyclic(l) }

assert acyclic(l);

27

Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

fold acyclic(l);

assert acyclic(l);

28

Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);

29

Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);

30

Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);
predicate acyclic(Node l) =

(l == NULL) ? true :
acc(l->val) * acc(l->next)
* acyclic(l->next)

31

Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);
predicate acyclic(Node l) =

(l == NULL) ? true :
acc(l->val) * acc(l->next)
* acyclic(l->next)

32

Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);

? optimistically provides
acyclic(l->next)

for the fold

33

Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

{ l != NULL * acyclic(l) }

assert acyclic(l);

? optimistically provides
acyclic(l->next)

for the fold

Semantics of Gradual Formulas

34

int withdraw(int balance, int amount)
requires (balance >= amount) ∧ ?
ensures (result >= 0) ∧ ?

{
return balance - amount;

}

What does a gradual formula mean?
�𝜙𝜙 ∷= 𝜙𝜙 | 𝜙𝜙 ∧ ?

𝛾𝛾 𝜙𝜙 = 𝜙𝜙
𝛾𝛾(𝜙𝜙 ∧ ?) = satisfiable 𝜙𝜙′ 𝜙𝜙′ ⇒ 𝜙𝜙 }

𝛾𝛾
�Formula Galois Connection 𝒫𝒫(Formula)

𝛼𝛼

result >= 0
result >= 1
result == balance – amount
...

Must be satisfiable so we don’t
accept a procedure by making
the precondition false

● Adapts the Abstracting Gradual Typing methodology
[Garcia et al. 2016]

Checking approach, conceptually

35

Verification tool

Gradual postcondition
(result >= 0) ∧ ?

𝛾𝛾

set of all
postcondition

concretizationssymbolic
execution

set of possible
postcondition

concretizations

Gradual precondition
(balance < amount) ∧ ?

𝛾𝛾

set of all
precondition

concretizations

Is at least one
postcondition
possible?

● In practice, no tool can deal with (possibly
infinite) concretization sets

● Our approach:
○ Underapproximate what we definitely know
○ Statically overapproximate what postconditions can be

satisfied by what we know in combination with ?
■ In practice: warn about contradictions

○ Use the difference to generate dynamic checks
■ “assert any conjuncts you can’t prove statically”

Checking approach, concretely

36

Verification tool

set of all
postcondition

concretizationssymbolic
execution

set of possible
postcondition

concretizations

set of all
precondition

concretizations

Is at least one
postcondition
possible?

Ensuring all specifications are executable

● acc(x.f)
○ Keep track of what the currently executing method owns - a set of (object, field) pairs
○ Verify we own this field
○ Ensure owned state on both sides of a * does not overlap

● Disjunction: support “if cond then X else Y” instead of “X or Y”
○ checking X or Y is exponential in practice – must try all combinations to see if

ownership works
● Quantification – not supported yet

○ Future: support some kind of finite quantification
● Recursive predicates

○ Executed as functions
○ Must terminate

■ Our approach: each recursive call must assert ownership of at least one heap cell
37

Example: producing dynamic checks

38

l := new Node(3,l);

assert noncyclic(l);

{ ? }

fold acyclic(l);
{ ? * l != null * acc(l.val) * acc(l.next) }

assert acyclic(l);

predicate noncyclic(Node root) =
if root == null then true else acc(root.val)
* acc(root.next) * noncyclic(root.next)

predicate acyclic(l) =
acc(l.val) * acc(l.next) *
acyclic(l.next)

Dynamically Verifying Predicates

39

l := new Node(3,l);

assert noncyclic(l);

{ ? }

{ ? * l != null * acyclic(l) }
fold acyclic(l);
{ ? * l != null * acc(l.val) * acc(l.next) }

Runtime check:
acyclic(l.next)

assert acyclic(l);

Equi-recursive

Dynamically Verifying Accessibility Predicates

40

x

main

y

Ownership Set

list y

list x

Heap Locations

Dynamically Verifying Accessibility Predicates

41

x

length

main

main

y

length(Node x)
requires
acyclic(x)

Ownership Set Ownership Sets

list y

list x

Heap Locations

Dynamically Verifying Accessibility Predicates

42

x

length

main

main

y

length(Node x)
requires
acyclic(x)

Ownership Set Ownership Sets

list y

list x

Heap Locations

Dynamically Verifying Accessibility Predicates

43

x

length

main

length

main

main

y

length(Node x)
requires
acyclic(x)

length(Node x)
requires ?

Ownership Set Ownership Sets

Ownership Sets

list y

list x

Heap Locations

Dynamically Verifying Accessibility Predicates

44

x

length

main

length

main

main

y

length(Node x)
requires
acyclic(x)

length(Node x)
requires ?

Ownership Set

list y

list x

Ownership Sets

Ownership SetsHeap Locations

Gradual Viper: Prototype Design & Implementation

Viper
[Müller et al.’16]

Symbolic
Execution

Static
Verifier
(Silicon)

Intermediate
Language

(Silver)

45

Gradual Viper: Prototype Design & Implementation

Viper
[Müller et al.’16]

Symbolic
Execution

Static
Verifier
(Silicon)

Intermediate
Language

(Silver)

Optimistic
Silicon

(Gradual
Silicon)

Silver

𝝓𝝓 | ? ∗ 𝝓𝝓

46

Gradual Viper: Prototype Design & Implementation

Viper
[Müller et al.’16]

Symbolic
Execution

Static
Verifier
(Silicon)

Intermediate
Language

(Silver)

Optimistic
Silicon

(Gradual
Silicon)

Silver

𝝓𝝓 | ? ∗ 𝝓𝝓

Dynamic
Checks

Gradual Viper

47

Gradual Viper: Prototype Design & Implementation

Viper
[Müller et al.’16]

Symbolic
Execution

Static
Verifier
(Silicon)

Intermediate
Language

(Silver)

Optimistic
Silicon

(Gradual
Silicon)

Silver

𝝓𝝓 | ? ∗ 𝝓𝝓

Dynamic
Checks

Gradual Viper

C0 Frontend

48

Gradual Viper: Prototype Design & Implementation

Viper
[Müller et al.’16]

Symbolic
Execution

Static
Verifier
(Silicon)

Intermediate
Language

(Silver)

Optimistic
Silicon

(Gradual
Silicon)

Silver

𝝓𝝓 | ? ∗ 𝝓𝝓

Dynamic
Checks

Gradual Viper

C0 Frontend

49

Gradual Viper: Prototype Design & Implementation

Viper
[Müller et al.’16]

Symbolic
Execution

Static
Verifier
(Silicon)

Intermediate
Language

(Silver)

Optimistic
Silicon

(Gradual
Silicon)

Silver

𝝓𝝓 | ? ∗ 𝝓𝝓

Gradual Viper

C0 Frontend

50

Dynamic
Checks

Research Questions

[RQ1] Qualitatively, is gradual verification helpful in specifying code?

[RQ2] As specifications are made more precise, can more verification
conditions be eliminated statically?

[RQ3] Does gradual verification result in less run-time overhead than a fully
dynamic approach?

[RQ4] Are there types of specification constructs that significantly impact
run-time performance?

51

[RQ1] Can Gradual Verification Help with Specifying Code?

● Case study: verifying AVL trees
● Found an implementation of AVL trees in C
● Started with ? everywhere
● Added specifications incrementally

○ “Natural” order: specify data structure invariant, then
“rotate” helper functions

○ Wikipedia helpfully provides a diagram expressing the pre-
and post-conditions of rotateLeft

● Demo time!
○ run avlja-demo.c0
○ run -x avlja-demo.c0

52

Oops! rotateRight is used twice. Compare:

● Our original spec only
considered the first use
of rotateRight

● The second use is part
of a double rotation

● A more generic
precondition is
required!

● Demo!
○ run -x avlja.c0

53

h

h+1 h

h or h-1!

Observations

● Our initial spec wasn’t general enough
○ But it was sufficient to statically verify rotateRight()
○ Notice: no annoying (“false positive”) warnings because the spec is incomplete

● The ability to run the spec demonstrated an error
○ The precondition was violated on some calls to rotateRight()

● Delayed identification of the error could be costly
○ Might have verified getBalance(), rotateLeft() & much of insert() before finding the

problem
○ Then, we’d have to modify these proofs after fixing the rotateRight() spec

● Old story: finding errors early is good!
● New story: running your spec can help find errors early!

54

[RQ2] Does making specs more precise enable discharging more VCs
statically?

● “Performance Lattice” study methodology adapted from Takikawa et al., “Is
Sound Gradual Typing Dead?”

● We follow a path from no specifications (all ?) to full specifications (no ?)
○ Each step adds a specification conjunct, or removes ? from a spec that is complete

● Takikawa explored the complete lattice
○ But our lattices have ~2100 elements, so we sample paths

55

Thousands of Partial Specifications Evaluated

56

Benchmark # of Sampled Partial
Specifications

Linked List 1728

Binary Search Tree 3344

Composite Tree 2577

AVL Tree 3056

[RQ2] Does making specs more precise enable discharging more VCs
statically?

57

[RQ3] Does gradual verification reduce run-time overhead, compared
to dynamic analysis?

58

Summary: Performance

● Costs are greatly reduced by gradual verification!
● Costs can still be high, though!
● Our paths are randomly chosen, but you can be smart

○ avoid high-cost dynamic checks in hot code
○ avoid transitioning between statically and dynamically-checked components in hot

code when there's a substantial footprint

59

[RQ4] What changes cause execution time to jump?

60

61

Jenna (Wise)
DiVincenzo

(CMU)

Éric Tanter
(University of Chile)

Joshua Sunshine
(CMU)

Ian McCormack
(CMU)

Mona Zhang
(Columbia University)

Jacob Gorenburg
(Haverford College)

Hemant Gouni
(University of

Minnesota)

Conrad Zimmerman
(Brown University)

Thanks to my Awesome Collaborators!

Gradual Verification Helps Bring Engineering to Verification

● Makes partial / missing specs explicit with ?
● Checks specs statically where possible and dynamically where necessary
● Interesting theory

○ Soundness, conservative extension, gradual guarantee, pay as you go
○ Connection between static iso-recursive checking and dynamic equi-recursive checking

● Interesting implementation
○ Representations and algorithms for optimized run-time checking

● Lots more research to do!
○ More powerful specifications (higher-order, quantification, concurrency, …)
○ Case studies, human subjects experiments to evaluate practical value
○ Further optimization in implementation

62

	Gradual Verification:�Assuring Software Incrementally
	Naïve Verification Attempt: Dynamic Verification
	Naïve Verification Attempt: Dynamic Verification
	Naïve Verification Attempt: Static Verification
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Stop Specification Anytime with Gradual Verification
	Summary: The Problem
	Properties of Gradual Verification
	How does gradual verification work?
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Semantics of Gradual Formulas
	Checking approach, conceptually
	Checking approach, concretely
	Ensuring all specifications are executable
	Example: producing dynamic checks
	Dynamically Verifying Predicates
	Dynamically Verifying Accessibility Predicates
	Dynamically Verifying Accessibility Predicates
	Dynamically Verifying Accessibility Predicates
	Dynamically Verifying Accessibility Predicates
	Dynamically Verifying Accessibility Predicates
	Gradual Viper: Prototype Design & Implementation
	Gradual Viper: Prototype Design & Implementation
	Gradual Viper: Prototype Design & Implementation
	Gradual Viper: Prototype Design & Implementation
	Gradual Viper: Prototype Design & Implementation
	Gradual Viper: Prototype Design & Implementation
	Research Questions
	[RQ1] Can Gradual Verification Help with Specifying Code?
	Oops! rotateRight is used twice. Compare:
	Observations
	[RQ2] Does making specs more precise enable discharging more VCs statically?
	Thousands of Partial Specifications Evaluated
	[RQ2] Does making specs more precise enable discharging more VCs statically?
	[RQ3] Does gradual verification reduce run-time overhead, compared to dynamic analysis?
	Summary: Performance
	[RQ4] What changes cause execution time to jump?
	Thanks to my Awesome Collaborators!
	Gradual Verification Helps Bring Engineering to Verification

