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Naïve Verification Attempt: Dynamic Verification
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int findMax(Node l)
ensures max(result,l) && contains(result,l)

{  
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}
return m;

}
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int findMax(Node l)
ensures max(result,l) && contains(result,l)

{  
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}

return m;
}

assert max(m,l) && contains(m,l);

Naïve Verification Attempt: Dynamic Verification

Challenges:
• Would like to ensure spec for 

all executions
• Cost of dynamic checking 

may be significant
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Naïve Verification Attempt: Static Verification

int findMax(Node l)
ensures max(result,l) && contains(result,l)

{  
int m = l->val;
Node curr = l->next;
while(curr != null) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}
return m;

}
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Naïve Verification Attempt: Static Verification

int findMax(Node l)

ensures max(result,l) && contains(result,l)
{  
int m = l->val;
Node curr = l->next;

while(curr != NULL) {
if(curr->val > m) { m = curr->val; }
curr = curr->next;

}

return m;
}

FOLDS/UNFOLDS

FOLDS/UNFOLDS

LEMMAS

FOLDS/UNFOLDS
LOOP INVARIANTS

requires l != NULL
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Gradual Verification to the Rescue

int findMax(Node l)
requires
ensures max(result,l) && contains(result,l)

{  
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}

return m;
}

?

?   
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Gradual Verification to the Rescue

int findMax(Node l)
requires
ensures max(result,l) && contains(result,l)

{  
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}

return m;
}

? && l != NULL

?   
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Gradual Verification to the Rescue

int findMax(Node l)
requires
ensures max(result,l) && contains(result,l)

{  
int m = l->val;
Node curr = l->next;
while(curr != NULL) {
if(curr->val > m) {
m = curr->val;

}
curr = curr->next;

}

return m;
}

? && l != NULL

? && LOOP INVARIANTS   
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Gradual Verification to the Rescue

int findMax(Node l)
requires
ensures max(result,l) && contains(result,l)

{  
int m = l->val;
Node curr = l->next;

while(curr != NULL) {
if(curr->val > m) { m = curr->val; }
curr = curr->next;

}

return m;
}

FOLDS/UNFOLDS

FOLDS/UNFOLDS

LEMMAS

FOLDS/UNFOLDS
LOOP INVARIANTS

l != NULL



Stop Specification Anytime with Gradual Verification
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Memory 
Safety

13 LoSC

Missing 
Lemmas

22 LoSC

Full 
Spec

44 LoSC



Summary: The Problem

● Dynamic verification is low-cost to the programmer, but:
○ No feedback at compile time (and no static guarantees)
○ Can slow the program—a lot!

● Static verification pays off only after a ton of work
○ Static verification can be 10x as costly as writing the program (sel4, CompCert)
○ Requires an inductively complete specification

■ Many “false positive” warnings when spec is incomplete
■ No feedback on incorrect specs until there’s a static inconsistency

● What we need:
○ Incremental payoff for incremental specification work

■ Ability to focus on most important properties of most important components
○ Early feedback on mistakes – both compile time checking & running incomplete specs
○ Properties – soundness, conservative extension, gradual guarantee, pay as you go
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Properties of Gradual Verification
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Gradual Guarantee
[Siek et al. 2015]

If a specification doesn’t 
have ?, and it verifies, 
the code is correct

Soundness

All specification violations 
are caught either statically 
or at run time

Pay as you go

Run time checking cost
• increases as you add specs
• decreases as specs become 

statically verifiable

If your specs are a 
subset of a correct spec, 
you won’t get any errors

Conservative extension

First 3 proved for initial models of gradual verification in [Bader et al. ’18], [Wise et al. ’20]



How does gradual 
verification work?
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Preliminaries

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);
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Preliminaries

predicate acyclic(Node root) = 
(root == NULL) ? 

true
:
acc(root->val) * acc(root->next) 
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);
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Preliminaries

predicate acyclic(Node root) = 
(root == NULL) ? 

true
:
acc(root->val) * acc(root->next)
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);

Accessibility 
Predicate -
permission to 
access a heap 

location

Accessibility 
Predicate -
permission to 
access a heap 

location
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Preliminaries

predicate acyclic(Node root) = 
(root == NULL) ? 

true
:
acc(root->val) * acc(root->next) 
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);

Separating 
Conjunction -
predicates refer 
to different heap 

locations

Separating 
Conjunction -
predicates refer 
to different heap 

locations
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Preliminaries

predicate acyclic(Node root) = 
(root == NULL) ?

true
:
acc(root->val) * acc(root->next) 
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);
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Preliminaries

predicate acyclic(Node root) = 
(root == NULL) ? 

true
:
acc(root->val) * acc(root->next)
* acyclic(root->next)

{ acyclic(l) }
l = new Node(3,l);
assert acyclic(l);
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Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

assert acyclic(l);
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Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next) 

* acyclic(l->next) }

assert acyclic(l);
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Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next)

* acyclic(l->next) }

assert acyclic(l);
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Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next) 

* acyclic(l->next) }

assert acyclic(l);
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Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next)

* acyclic(l->next) }

assert acyclic(l);

predicate acyclic(Node l) = 
(l == NULL) ? true :
acc(l->val) * acc(l->next)
* acyclic(l->next)



25

Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next) 

* acyclic(l->next) }

fold acyclic(l);

assert acyclic(l);
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Static Verification of Daisy’s List Insertion Program

{ acyclic(l) }

l = new Node(3,l);

{ l != NULL * acc(l->val) * acc(l->next) 

* acyclic(l->next) }

fold acyclic(l);

{ l != NULL * acyclic(l) }

assert acyclic(l);
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Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

fold acyclic(l);

assert acyclic(l);
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Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);
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Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);
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Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);
predicate acyclic(Node l) = 

(l == NULL) ? true :
acc(l->val) * acc(l->next)
* acyclic(l->next)
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Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);
predicate acyclic(Node l) = 

(l == NULL) ? true :
acc(l->val) * acc(l->next) 
* acyclic(l->next)
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Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

assert acyclic(l);

? optimistically provides 
acyclic(l->next)

for the fold
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Gradual Verification of Daisy’s List Insertion Program

{ ? }

l = new Node(3,l);

{ ? * l != NULL * acc(l->val) * acc(l->next) }

fold acyclic(l);

{ l != NULL * acyclic(l) }

assert acyclic(l);

? optimistically provides 
acyclic(l->next)

for the fold



Semantics of Gradual Formulas
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int withdraw(int balance, int amount)
requires (balance >= amount) ∧ ?
ensures (result >= 0) ∧ ?

{
return balance - amount;

}

What does a gradual formula mean?
�𝜙𝜙 ∷= 𝜙𝜙 | 𝜙𝜙 ∧ ?

𝛾𝛾 𝜙𝜙 = 𝜙𝜙
𝛾𝛾(𝜙𝜙 ∧ ?) = satisfiable 𝜙𝜙′ 𝜙𝜙′ ⇒ 𝜙𝜙 }

𝛾𝛾
�Formula Galois Connection        𝒫𝒫(Formula)

𝛼𝛼

result >= 0
result >= 1
result == balance – amount
...

Must be satisfiable so we don’t 
accept a procedure by making 
the precondition false



● Adapts the Abstracting Gradual Typing methodology 
[Garcia et al. 2016]

Checking approach, conceptually

35

Verification tool

Gradual postcondition
(result >= 0) ∧ ?

𝛾𝛾

set of all
postcondition

concretizationssymbolic
execution

set of possible
postcondition

concretizations

Gradual precondition
(balance < amount) ∧ ?

𝛾𝛾

set of all
precondition

concretizations

Is at least one 
postcondition 
possible?



● In practice, no tool can deal with (possibly
infinite) concretization sets

● Our approach:
○ Underapproximate what we definitely know
○ Statically overapproximate what postconditions can be 

satisfied by what we know in combination with ?
■ In practice: warn about contradictions

○ Use the difference to generate dynamic checks
■ “assert any conjuncts you can’t prove statically”

Checking approach, concretely

36

Verification tool

set of all
postcondition

concretizationssymbolic
execution

set of possible
postcondition

concretizations

set of all
precondition

concretizations

Is at least one 
postcondition 
possible?



Ensuring all specifications are executable

● acc(x.f)
○ Keep track of what the currently executing method owns - a set of (object, field) pairs
○ Verify we own this field
○ Ensure owned state on both sides of a * does not overlap

● Disjunction: support “if cond then X else Y” instead of “X or Y”
○ checking X or Y is exponential in practice – must try all combinations to see if 

ownership works
● Quantification – not supported yet

○ Future: support some kind of finite quantification
● Recursive predicates

○ Executed as functions
○ Must terminate

■ Our approach: each recursive call must assert ownership of at least one heap cell
37



Example: producing dynamic checks

38

l := new Node(3,l);

assert noncyclic(l);

{ ? }

fold acyclic(l);
{ ? * l != null * acc(l.val) * acc(l.next) }

assert acyclic(l);

predicate noncyclic(Node root) =
if root == null then true else acc(root.val)   
* acc(root.next) * noncyclic(root.next)

predicate acyclic(l) =
acc(l.val) * acc(l.next) * 
acyclic(l.next)



Dynamically Verifying Predicates
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l := new Node(3,l);

assert noncyclic(l);

{ ? }

{ ? * l != null * acyclic(l) }
fold acyclic(l);
{ ? * l != null * acc(l.val) * acc(l.next) }

Runtime check:
acyclic(l.next)

assert acyclic(l);

Equi-recursive



Dynamically Verifying Accessibility Predicates
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x

main

y

Ownership Set

list y

list x

Heap Locations



Dynamically Verifying Accessibility Predicates
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x

length

main

main

y

length(Node x)
requires 
acyclic(x)

Ownership Set Ownership Sets

list y

list x

Heap Locations



Dynamically Verifying Accessibility Predicates
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x

length

main

main

y

length(Node x)
requires 
acyclic(x)

Ownership Set Ownership Sets

list y

list x

Heap Locations



Dynamically Verifying Accessibility Predicates
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x

length

main

length

main

main

y

length(Node x)
requires 
acyclic(x)

length(Node x)
requires ?

Ownership Set Ownership Sets

Ownership Sets

list y

list x

Heap Locations



Dynamically Verifying Accessibility Predicates
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x

length

main

length

main

main

y

length(Node x)
requires 
acyclic(x)

length(Node x)
requires ?

Ownership Set

list y

list x

Ownership Sets

Ownership SetsHeap Locations



Gradual Viper: Prototype Design & Implementation

Viper 
[Müller et al.’16]

Symbolic 
Execution 

Static 
Verifier 
(Silicon)

Intermediate 
Language 

(Silver)

45



Gradual Viper: Prototype Design & Implementation

Viper 
[Müller et al.’16]

Symbolic 
Execution 

Static 
Verifier 
(Silicon)

Intermediate 
Language 

(Silver)

Optimistic 
Silicon 

(Gradual 
Silicon)

Silver

𝝓𝝓 | ? ∗ 𝝓𝝓
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Gradual Viper: Prototype Design & Implementation

Viper 
[Müller et al.’16]

Symbolic 
Execution 

Static 
Verifier 
(Silicon)

Intermediate 
Language 

(Silver)

Optimistic 
Silicon 

(Gradual 
Silicon)

Silver

𝝓𝝓 | ? ∗ 𝝓𝝓

Dynamic 
Checks

Gradual Viper
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Gradual Viper: Prototype Design & Implementation

Viper 
[Müller et al.’16]

Symbolic 
Execution 

Static 
Verifier 
(Silicon)

Intermediate 
Language 

(Silver)

Optimistic 
Silicon 

(Gradual 
Silicon)

Silver

𝝓𝝓 | ? ∗ 𝝓𝝓

Gradual Viper

C0 Frontend
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Dynamic 
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Research Questions

[RQ1] Qualitatively, is gradual verification helpful in specifying code?

[RQ2] As specifications are made more precise, can more verification 
conditions be eliminated statically?

[RQ3] Does gradual verification result in less run-time overhead than a fully 
dynamic approach?

[RQ4] Are there types of specification constructs that significantly impact
run-time performance?

51



[RQ1] Can Gradual Verification Help with Specifying Code?

● Case study: verifying AVL trees
● Found an implementation of AVL trees in C
● Started with ? everywhere
● Added specifications incrementally

○ “Natural” order: specify data structure invariant, then 
“rotate” helper functions

○ Wikipedia helpfully provides a diagram expressing the pre-
and post-conditions of rotateLeft

● Demo time!
○ run avlja-demo.c0
○ run -x avlja-demo.c0

52



Oops!  rotateRight is used twice.  Compare:

● Our original spec only 
considered the first use 
of rotateRight

● The second use is part 
of a double rotation

● A more generic 
precondition is 
required!

● Demo!
○ run -x avlja.c0

53

h

h+1 h

h or h-1!



Observations

● Our initial spec wasn’t general enough
○ But it was sufficient to statically verify rotateRight()
○ Notice: no annoying (“false positive”) warnings because the spec is incomplete

● The ability to run the spec demonstrated an error
○ The precondition was violated on some calls to rotateRight()

● Delayed identification of the error could be costly
○ Might have verified getBalance(), rotateLeft() & much of insert() before finding the 

problem
○ Then, we’d have to modify these proofs after fixing the rotateRight() spec

● Old story: finding errors early is good!
● New story: running your spec can help find errors early!

54



[RQ2] Does making specs more precise enable discharging more VCs 
statically?

● “Performance Lattice” study methodology adapted from Takikawa et al., “Is 
Sound Gradual Typing Dead?”

● We follow a path from no specifications (all ?) to full specifications (no ?)
○ Each step adds a specification conjunct, or removes ? from a spec that is complete

● Takikawa explored the complete lattice
○ But our lattices have ~2100 elements, so we sample paths

55



Thousands of Partial Specifications Evaluated
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Benchmark # of Sampled Partial 
Specifications

Linked List 1728

Binary Search Tree 3344

Composite Tree 2577

AVL Tree 3056



[RQ2] Does making specs more precise enable discharging more VCs 
statically?
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[RQ3] Does gradual verification reduce run-time overhead, compared 
to dynamic analysis?
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Summary: Performance

● Costs are greatly reduced by gradual verification!
● Costs can still be high, though!
● Our paths are randomly chosen, but you can be smart

○ avoid high-cost dynamic checks in hot code
○ avoid transitioning between statically and dynamically-checked components in hot 

code when there's a substantial footprint

59



[RQ4] What changes cause execution time to jump?
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Gradual Verification Helps Bring Engineering to Verification

● Makes partial / missing specs explicit with ?
● Checks specs statically where possible and dynamically where necessary
● Interesting theory

○ Soundness, conservative extension, gradual guarantee, pay as you go
○ Connection between static iso-recursive checking and dynamic equi-recursive checking

● Interesting implementation
○ Representations and algorithms for optimized run-time checking

● Lots more research to do!
○ More powerful specifications (higher-order, quantification, concurrency, …)
○ Case studies, human subjects experiments to evaluate practical value
○ Further optimization in implementation

62
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