17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 10

Acknowledgments: some presentation ideas
from Craig Chambers

Copyright © 2016 Elsevier

HW 6 Thoughts

* The main challenge in HW6 1s probably just writing
tree traversals in OCaml

We assigned a checkpoint (due Thursday, October 26)
to make sure you get started

The checkpoint 1s a small portion of the overall work
but we hope it will help you get over this “hump.”

HW 6 Mystery Explained

 When we studied composite types, we learned that
records have two subtyping rules:

<7

— S-depth
{fery<s{[f:7"}

S-width

{firg:T}<{f:7}

* But in the uTS specification, there 1s only the S-width
rule. Why?

HW 6 Mystery Explained
 uTS has no S-width rule. Why?

(Tiry<{T:7}

S-depth

S-width

{fimg:7y<{f:7}

« uTS interfaces are a combination of 3 things:
Records — because there are several fields with names
Recursive types — because the interface type can be used in
its own definition

Pointer types — because the fields are mutable
« Remember —t,* <t,* only if T, =7,

Fun fact: TypeScript interfaces are tagged unions too!
* Butnot in the uTS language you are implementing

HW 6 Mystery Explained
 uTS has no S-width rule. Why?

(Tiry<{T:7}

S-depth

S-width

{fimg:7y<{f:7}

e Our uTS rule 1s similar to the rules of Typescript

 Interestingly, Flow does support depth subtyping!
* Flow is a different type system for JavaScript
 Why? Flow lets you designate some fields as immutable

 (Can’t write to those fields after initialization

* Depth subtyping applies only to immutable fields
» These fields are still implemented with pointers, but don’t
have to follow the invariant subtyping rules that pointers do

Object-Oriented Programming

* Analogy to the real world 1s central to the OO
paradigm - you think in terms of real-world objects
that interact to get things done

 Many OO languages are strictly sequential, but the
model adapts well to parallelism as well

* Strict interpretation of the term
— uniform data abstraction - everything 1s an object
— 1nheritance
— dynamic method binding

Object-Oriented Programming

* Lots of conflicting uses of the term out there
object-oriented style available in many
languages

— data abstraction crucial
— 1nheritance required by most users of the term OO

— centrality of dynamic method binding a matter of
dispute

Object-Oriented Programming

« SMALLTALK 1s, historically, the canonical
object-oriented language
— It has all three of the characteristics listed above

— It's based on the thesis work of Alan Kay at Utah 1n
the late 1960’s

— It went through 5 generations at Xerox PARC,
where Kay worked after graduating

— Smalltalk-80 1s the current standard

Object-Oriented Programming

Modula-3

— single inheritance
— all methods virtual
— no constructors or destructors

Java, C#

— Interfaces, mix-in inheritance
— all methods virtual

Scala
— Multi-paradigm, classes, functions, traits

JavaScript
— Prototype-based, dynamically typed

Object-Oriented Programming

* Ada 95

—tagged types

—single mheritance

—no constructors or destructors
—class-wide parameters:

*methods static by default

can define a parameter or pointer that grabs the object-specific
version of all methods

—base class doesn't have to decide what will be virtual

—notion of child packages as an alternative to friends

Object-Oriented Programming

* Is C++ object-oriented?
— Uses all the right buzzwords
— Has (multiple) inheritance and generics (templates)

— Allows creation of user-defined classes that look
just like built-1n ones

— Has all the low-level C stuff to escape the
paradigm

— Has friends
— Has static type checking

Object-Oriented Programming

 In the same category of questions:
— Is Prolog a logic language?

— Is Common Lisp functional?
 However, to be more precise:

— Smalltalk is really pretty purely object-oriented
— Prolog 1s primarily logic-based

— Common Lisp 1s largely functional

— C++ can be used 1n an object-oriented style

Object Models

An object model denotes the data and metadata representation
used by a language implementation

Tradeoffs in implementing object models:
* Complexity

e Performance

 Memory usage

Common features

* An object 1s usually (at least one) contiguous block of memory
Sometimes several related blocks are used

« Objects usually needs metadata— a “tag” or “header”
More information if more dynamic, has reflection, or is garbage collected

We’ll start with object models for statically typed
single-inheritance OO languages like Java and C#

Prefixing - Implementing Inheritance

« Prefixing: layout of subclass has layout of superclass as a prefix

class Point {
int x;
int y;

}

class ColorPoint extends Point {
Color color; X

y
color

// OK, ColorPoint is a subtype of Point

Point p = new ColorPoint(0, 1, green);

// subclasses of Point have x and y in the same place
int manhattanDistance = p.x + p.y;

Example due to Craig Chambers

Implementing Method Calls

Possible Strategies

1. Each object knows its type; search the inheritance hierarchy
* Very slow

2. Use a hashtable

e Can be a cache for strategy #1
» Still slow, but was used in early Smalltalk systems

3. Store function pointers in objects, as 1f they were fields
Invocation is fast & constant time: load and indirect jump
Con: objects are big!

Observation: in this strategy, all objects of the same class will
store the same function pointers. Can we factor them out?

Virtual Method Tables (vtables)

class foo {

int a; F foo’s vtable

double b; foo::k —
char c; foo::1 —
public: foo::m —
virtual void k(...

code pointers

foo::n —

virtual int 1(...

virtual void m();

virtual double n(...
} F;

FigUI’E 10.3 Implementation of virtual methods. The representation of object F begins with the address of the vtable for
class foo. (All objects of this class will point to the same vtable.) The vtable itself consists of an array of addresses, one for the
code of each virtual method of the class. The remainder of F consists of the representations of its fields.

* The assembly pseudocode generated for £->m() is:

rl := £

r2 := *rl — vtable address

r2 := *(r2 + (3-1) x 4) — assuming 4=sizeof(addres.
call =*r2 o

class bar : public foo { bar’s vtable
int w; foo::

public: foo::
void m() override;
bar::

virtual double s(... code pointers
foo::n —

virtual char *t(...

bar::s —

} B; bar::t ———

Figure 10.4 Implementation of single inheritance. As in Figure 10.3, the representation of object B begins with the address of
Its class's vtable. The first four entries in the table represent the same members as they do for foo, except that one—m—~has
been overridden and now contains the address of the code for a different subroutine. Additional fields of bar follow the ones
inherited from foo In the representation of B; additional virtual methods follow the ones inherited from foo in the vtable of

class bar.

ELSEVIER

Dynamic Type Casts

* Note that 1f you can query the type of an
object, then you need to be able to get from
the object to run-time type info

— The standard implementation technique 1s a type
info at the beginning of the vtable

— In C++, the class only has a vtable 1f the class
has virtual functions

e That's why dynamic cast is disallowed on a pointer
whose static type doesn't have virtual functions

— Other approaches: intervals, Cohen display

Implementing Methods: this

* Methods are passed an extra, hidden, initial parameter:
this (called self in Smalltalk and some other languages)

« Allows the method to access the fields of the object and call
other methods

e Usually a pointer to the start of the object storage in memory

Multiple Interface Inheritance

class widget { ... }

class named widget extends widget
implements sortable object { ... }

class augmented widget extends named widget
implements graphable object, storable object

augmented_widget
object vtable

widget view — >

Y

augmented_
widget part

a
b

sortable_object view ———

widget fields

—d

c sortable_

object part

name

graphable_object view ———> —_]

storable_object view ————> ﬁ\'
-b

graphable_
object part

storable_
object part

Multiple Interface Inheritance

augmented_widget
object vtable

widget view — > augmented_

widget part

a

widget fields
b

sortable_object view ———>

(o sortable_

object part

name

graphable_object view ——> —

storable_object view —> ———‘\\\\\\\\)

graphable_
object part

storable_
object part

* Consider a cast from augmented widget t0o sortable object:
r2 :=rl + a

Multiple Interface Inheritance

augmented_widget

widget view —— >

a
b
sortable_object view ———>
¢
graphable_object view ——>

storable_object view —>

* Consider a call to an interface method of sortable object

r2 := *rl

r3 += ril
call *(r2 + 4)

object

vtable

Y

widget fields

name

—_—

_]

—a

.

-b

augmented_
widget part

sortable_
object part

graphable_
object part

storable_
object part

— vtable address
— this correction

—— add correction to old address
—- call (assumes first method 1in

Object model practice

* Draw the layout of the object created at the end of this code.
Show all virtual function tables.

interface Pingable {
public void ping();
}
class Counter implements Pingable {
int count = 0;
public void ping() {
++count;
}
public int val() {
return count;

}

Counter ¢ = new Counter();

Real Multiple Inheritance

Animal

Two approaches:

FlyingAnimal

e ‘“non-virtual inheritance” — A C++ hack
Just include state from both inherited classes
Works like multiple interface inheritance

If there’s a diamond in the hierarchy, you get some fields twice
* Good luck fixing bugs if the duplicate fields have inconsistent values!

Fast, simple, and works if there are no diamonds, or if the diamond
classes have no state

Bat

* The right way (C++ virtual inheritance)

* Essentially treat fields like methods — look up their location in a vtable
» Slower, but has reasonable semantics

JavaScript’s Object Model

» Each object has multiple dynamically-typed properties
* Indexed by strings
* Can be added or deleted dynamically
 When a property is not found, the object’s prototype 1s consulted
* The prototype is the value of the property __proto_
» This property can be a mutable object!

* The vtable strategy doesn’t apply!

 Instead, start with a map from property name to value
* Implemented as a list of pairs, or a hashtable
e Slow!

Optimizing JavaScript

 Start with a map from property name to value
* Implemented as a list of pairs, or a hashtable
e Slow!

« Observation: most objects fall into one of a few “shapes™
. Used “hidden classes™ (aka “shapes™ or “maps”)
Every object has a pointer to an immutable map describing object’s

properties
No need for a hashtable for most objects
Adding or removing a property changes the pointer to the map

Hidden Classes

 Hidden classes form a tree with transitions
« Example:

function Foo(x, vy) {
this.x = x;
this.y = y;

}

var x = new Foo (33, 44);

Each time a property is added, the hidden class is updated

Deleting a property in LIFO order reverses the process

Delete a different property?

» Typically go to hashtable strategy (known as “dictionary mode” in V8)
— otherwise too many hidden classes are generated

Inline Caches

* Consider looking up field x in the statement:

var £ = 0.x;

* An inline cache stores K entries, where an entry can be of the form:
entry = {shape, offset}

The access searches through the entries, looking for a matching shape
— The hashtable is a backup

Code for the inline cache access looks like:

lookup(o: Object, ic: InlineCache, propertyName: string)

for (1 = 0; 1 < K; 1i++) {
if (o.shape == ic.entries[i].shape)
return o.properties[ic.entries[i].offset];
}
// ic might be updated in this call
return o.hashtable.lookup(propertyName, ic);

Mix-In Inheritance

Classes can inherit from only one “real”
parent

Can “mix 1n” any number of interfaces,
simulating multiple inheritance

Interfaces appear 1n Java, C#, Go, Ruby, etc.

— contain only abstract methods, no method
bodies or fields

Has become dominant approach,
superseding true multiple inheritance

True Multiple Inheritance

e In C++, you can say
class professor : public
teacher, public researcher {

J

Here you get all the members of teacher and
all the members of researcher

— If there's anything that's in both (same name and
argument types), then calls to the member are
ambiguous; the compiler disallows them

True Multiple Inheritance

* You can of course create your own member 1n the

merged class
professor::print () {
teacher::print ();
researcher::print ();

}
Or you could get both:

professor::tprint () {
teacher::print ()

}

professor::rprint () {
researcher::print ();

}

True Multiple Inheritance

* Virtual base classes: In the usual case 1f you
inherit from two classes that are both
derived from some other class B, your
implementation includes two copies of B's
data members

» That's often fine, but other times you want a
single copy of B

— For that you make B a virtual base class

