
Copyright © 2016 Elsevier

Intermediate Code Generation

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 15

Prof. Jonathan Aldrich



Review: Compiler Structure

• Review: phases of compilation

– Machine-independent phases form a “middle end” 

in addition to front end and back end

language- 
dependent

machine- and 
language- 
independent



Intermediate Representations
• Many compilers have multiple intermediate representations


• Different compilation steps work at different levels of abstraction


• High-level: Abstract Syntax Trees


• Mid-level: Control Flow Graphs

• Nodes are basic blocks: instruction sequences with no jumps in or out


• Idealized, machine-independent instructions are given in 3-address code: 
r1 := r2 op r3


• Edges are jumps


• Low Level: Instructions for an idealized machine

• May be the same notation used inside basic blocks, above

• Often with infinite “virtual registers” instead of finite physical ones


• Note: there are no hard boundaries between these levels



Stack-Based Bytecode
• Bytecode is an IR optimized for compactness, interpretability


• Compactness is important for code sent over a network

• The name comes from the typical “one instruction per byte”


• Can build a fast interpreter by branching on the byte

• Or more sophisticated techniques, like direct threaded code, jump tables, and 

computed gotos

• In commercially important language, it usually gets compiled “just in time” for 

performance anyway

• Still simple & portable, like other IRs


• Examples: Java bytecode, Pascal p-code, Microsoft CIL, 
WebAssembly



Stack-Based vs. Pseudo-Assembly
• Heron’s formula: A = sqrt [s(s-a)(s-b)(s-c)] where s = (a+b+c)/2  

stack-based: 3-address pseudo-assembly:
push a r2 := a
push b r3 := b
push c r4 := c
add r1 := r2 + r3
add r1 := r1 + r4
push 2 r1 := r1 / 2 -- s
divide
pop s
push s
push s r2 := r1 - r2 -- s-a
push a
subtract
push s r3 := r1 - r3 -- s-b
push b
subtract
push s r4 := r1 - r4 -- s-c
push c
subtract
multiply r3 := r3 * r4
multiply r2 := r2 * r3
multiply r1 := r1 * r2
push sqrt
call sqrt
call

Tradeoff: space vs. time

• Bytecode is more compact


• 23 instructions in 25 bytes

• Most instructions fit in a byte


• including push small integers or 
first few variables


• 2 extra bytes to specify sqrt
• 3-address easier to optimize


• Reorder / replace instructions, 
considering registers or 
pipeline are all easier


• But: most instructions 4 bytes

• The call instruction is 8 bytes


• 13 instructions in 56 bytes



WebAssembly
• Bytecode target we’ll use for our compilers

• Goals


• Portable

• Browser platform (interop with JavaScript)

• Machine-independent

• Memory-safe (all errors  traps, read/write only within local state)

• Compact (for sending over the network)

• Fast (to interpret, to compile, and execute compiled code)

• Typed (but low-level: almost everything is an i32 or float)


• Two formats

• Portable binary format (.wasm)

• Textual equivalent based on S-expressions (.wat)


• S ::= int_const | str_const | symbol | id | ( S* )


• Semantics specified with inference rules



Basic WebAssembly Bytecode

Instructions Stack afterward
(empty)

i32.const 1 1
i32.const 2 1 2
i32.add 3



Variables & Main in WebAssembly
TypeScript Source
let x:number = 1;
x = x + 1

WASM
(func (export "main") (local $x i32)

(empty)
    i32.const 1 i32
    local.set $x (empty)
    local.get $x i32
    i32.const 1 i32 i32
    i32.add i32
    local.set $x (empty)
))



If in WebAssembly

see if_false.ts / if_false.wat



Typechecking WebAssembly
• Stacks must match at control flow merges!

(empty)
local.get $condition i32
if [i32]       (empty)
i32.const 1 i32
else

(empty)
end ??? type error!
i32.const 2
i32.add // error if took else branch!



Typechecking WebAssembly
• Stacks must match at control flow merges!  Fixed now.

(empty)
local.get $condition i32
if [i32] (empty)
i32.const 1 i32
else
i32.const 2 i32
end i32
i32.const 2 i32 i32
i32.add i32



Practice!
• Translate the following pseudocode to WebAssembly:


if x > 0 then x else –x


• Some useful instructions: local.get, i32.const, i32.gt_s, i32.sub, 
if/else/end, 



Loops, Functions, and Nonlocal Returns

see while_count
see return



Imports, Memories, Running from JavaScript

see hello and run.js

• Compiling and running


% wat2wasm wat/part1/hello.wat -o wasm/part1/hello.wasm

% node run.js wasm/part1/hello.wasm 1
% wizeng wasm/part1/hello.wasm 1

• argument 1 indicates 1 page of memory (64k)

– see run.js code for how this is passed in


• Shortcut: ./single.sh part1/hello



Global variables

(module
  (import "console" "log_int" (func $log_int (param 
i32)))
  (global $tmp (mut i32) (i32.const 0))
  (func (export "main")
    global.get $tmp
    i32.const 1
    i32.add
    global.set $tmp
))



Memories

(module
  (import "console" "log_int" (func $log_int (param 
i32)))
  (import "js" "mem" (memory 1))
  (func (export "main")
    i32.const 0
    i32.const 1
    i32.store
    i32.const 0
    i32.load
))

• See also run.js



Tables, Types, Indirect Calls

(module
  (import "console" "log_int" (func $log_int (param i32)))
  (import "js" "mem" (memory 1))
  (table 2 funcref)
  (elem (i32.const 0) $foo $bar)
  (type $fn1arg (func (param i32) (result i32)))
  (func (export "main")
    i32.const 10
    i32.const 0
    call_indirect (type $fn1arg)
    i32.const 1
    call_indirect (type $fn1arg)
  )
  (func $foo (param $x i32) (result i32) ...)
  (func $bar (param $x i32) (result i32) ...)
)



Generating code

• Generally a tree traversal

– Producing instructions (or S-expressions, for WebAssembly)


• May need some information from typechecker

– Or just (re-)compute, if it’s simple


• May need to collect information to return along with code

– E.g. in Assignment 7, this includes a list of all local variables declared 

(must be declared at the top of a function in WebAssembly)

– If not already computed during typechecking



Other handy instructions

drop





Intermediate Representations
• An intermediate representation (IR) provides the 

connection between the front end and the back end of the 
compiler, and continues to represent the program during 
the various back-end phases.


• IRs can be classified in terms of their level, or degree of 
machine dependence. 


• High-level IRs

– IRs are often based on trees or directed acyclic graphs (DAGs) that directly 

capture the structure of modern programming languages

– facilitates certain kinds of machine-independent code improvement, 

incremental program updates, direct interpretation, and other operations 
based strongly on the structure of the source 


– Because the permissible structure of a tree can be described formally by a 
set of productions (cf., Section 4.6), manipulations of tree-based forms can 
be written as attribute grammars


– Stack-based languages are another common type of high level IR



Intermediate Representation

• The most common medium-level IRs consist of 
three-address instructions for a simple idealized 
machine, typically one with an unlimited number 
of registers

– Since the typical instruction specifies two operands, an operator, 

and a destination, three-address instructions are called quadruples

– In older compilers, one may sometimes find an intermediate form 

consisting of triples or indirect triples in which destinations are 
specified implicitly


• the index of a triple in the instruction stream is the name of the result

• an operand is generally named by specifying the index of the triple that 

produced it.



Intermediate Representations
• Different compilers use different IRs


– Many compilers use more than one IR internally, though in the common 
two-pass organization one of these is distinguished as “the” intermediate 
form 


•  connection between the front end and the back end. 

– the syntax trees passed from semantic analysis to intermediate code 

generation constitute a high level IR

– control flow graphs containing pseudo-assembly language (passed in 

and out of machine-independent code improvement) are a medium level 
IR


– the assembly language of the target machine serves as a low level IR

• Compilers that have back ends for different target architectures 

do as much work as possible on a high or medium level IR

– the machine-independent parts of the code improver can be shared by 

different back ends



Intermediate Representations



Back-End Compiler Structure
• Certain optimizations can be performed on syntax trees, but a 

less hierarchical representation of the program makes most 
analyses and optimizations easier


• Our example compiler therefore includes an explicit phase for 
intermediate code generation

– The code generator groups the nodes into basic blocks

– It then creates a control flow graph in which the nodes are basic blocks 

and the arcs represent interblock control flow

• Within each basic block, operations are represented as instructions for an 

idealized machine with an unlimited number of registers - we will call 
these virtual registers


• By allocating a new one for every computed value, the compiler can avoid 
creating artificial connections between otherwise independent 
computations too early in the compilation process



Back-End Compiler Structure

• The machine-independent code optimization phase performs 
transformations on the control flow graph. 

– local code optimizations - it modifies the instruction sequence within 

each basic block to eliminate redundant loads, stores, and arithmetic 
computations


– global code optimizations - it also identifies and removes a variety of 
redundancies across the boundaries between basic blocks within a 
subroutine


– an expression whose value is computed immediately before an if 
statement need not be recomputed after else


– An expression that appears within the body of a loop need only be 
evaluated once if its value will not change in subsequent iterations


• Some global optimizations change the number of basic 
blocks and/or the arcs among them



Back-End Compiler Structure



Back-End Compiler Structure



Back-End Compiler Structure

• The next phase of compilation is target code 
generation

– This phase strings the basic blocks together into a linear 

program, translating each block into the instruction set 
of the target machine and generating branch instructions 
(or “fall-throughs”) that correspond to the arcs of the 
control flow graph. 


• The output of this phase differs from real assembly 
language primarily in its continued reliance on 
virtual registers



Back-End Compiler Structure
• The final phase of our example compiler structure consists 

of register allocation and instruction scheduling - machine-
specific code improvement


• Register allocation requires that we map the unlimited 
virtual registers onto the bounded set of registers available 
in the target machine

– If there aren’t enough architectural registers to go around, we may 

need to generate additional loads and stores to multiplex a given 
architectural register among two or more virtual registers


– As described in Section 5.5, instruction scheduling consists of 
reordering the instructions of each basic block to fill the pipeline(s) 
of the target machine



Back-End Compiler Structure
• Phases and Passes


– A pass of compilation is a phase or sequence of phases that is serialized 
with respect to the rest of compilation


• it does not start until previous phases have completed

• it finishes before any subsequent phases start. 

• if desired, a pass may be written as a separate program, reading its input 

from a file and writing its output to a file. 

-- Two-pass compilers are particularly common


they may be divided between the front end and the back end (between 
semantic analysis and intermediate code generation)  
		 or 

• they may be divided between intermediate code generation and global 

code improvement

• In the latter case, the first pass is still commonly referred to as the front 

end and the second pass as the back end



Code Generation

• The back end of Figure 15.1 is too complex to 
present in any detail in a single chapter

– To limit the scope of our discussion, we will content ourselves in this 

chapter with producing correct but naive code

– This choice will allow us to consider a significantly simpler back end. 

– Starting with Figure 15.1, we drop the machine-independent code 

improver and then merge intermediate and target code generation into 
a single phase


• generates linear assembly language - no code improvements for control 
flow, therefore, there is no need to represent that flow explicitly in a 
control flow graph



Code Generation

• We also adopt a much simpler register allocation 
algorithm

– operates directly on the syntax tree prior to code 

generation - eliminates need for virtual registers and the 
subsequent mapping onto architectural registers


• Finally, we drop instruction scheduling. The 
resulting compiler structure appears in Figure 15.5. 

– Its code generation phase closely resembles the 

intermediate code generation of Figure 15.1.

• An Attribute Grammar for GCD Example is 

presented in Section 15.3.1



Code Generation

• Register Allocation

– Evaluation of the rules of the attribute grammar itself 

consists of two main tasks

– In each subtree we first determine the registers that will 

be used to hold various quantities at run time; then we 
generate code. 


– Our naive register allocation strategy uses the 
next_free_reg inherited attribute to manage registers 
r1 ... rk as an expression evaluation stack


• To calculate the value of (a + b) × (c - (d / e)) for 
example, we would generate the following:



Code Generation



Code Generation
• In a particularly complicated fragment of code it is possible to run out 

of architectural registers. 

– In this case we must spill one or more registers to memory


• Our naive register allocator pushes a register onto the program’s 
subroutine call stack

– In effect, architectural registers hold the top k elements of an 

expression evaluation stack of effectively unlimited size

• It should be emphasized that our register allocation algorithm, makes 

very poor use of machine resources

• If we were generating medium level intermediate code, we would 

employ virtual registers, rather than architectural ones

– Mapping of virtual registers to architectural registers would occur 

much later in the compilation process.

• Target code for the GCD program appears in Figure 14.7.



Address Space Organization

• Assemblers, linkers, and loaders typically operate 
on a pair of related file formats

– relocatable object code 

– executable object code 


• Relocatable object code is acceptable as input to a 
linker

– multiple files in this format can be combined to create 

an executable program

• Executable object code is acceptable as input to a 

loader: 

– it can be brought into memory and run



Address Space Organization

• A relocatable object file includes the following descriptive 
information:

– import table: Identifies instructions that refer to named locations 

whose addresses are unknown, but are presumed to lie in other files 
yet to be linked to this one


– relocation table: Identifies instructions that refer to locations within 
the current file, but that must be modified at link time to reflect the 
offset of the current file within the final, executable program


– export table: Lists the names and addresses of locations in the 
current file that may be referred to in other files


• Imported and exported names are known as external 
symbols



Address Space Organization

• Running program segments

– code

– constants

– initialized data

– uninitialized data: may be allocated at load time or on 

demand in response to page faults

• Usually zero filled, both to provide repeatable symptoms for 

programs that erroneously read data they have not yet written

– stack: may be allocated in some fixed amount at load time 


• more commonly, is given a small initial size, and then 

• extended automatically by the operating system in response to 

(faulting) accesses beyond the current segment end.



Address Space Organization
• Running program segments (2):


– heap: may also be allocated in some fixed amount at load time. 

• more commonly, is given a small initial size, and is then

• extended in response to explicit requests from heap-management 

library routines

– files: In many systems, library routines allow a program to map a file 

into memory

• The map routine interacts with the operating system to create a 

new segment for the file, and returns the address of the beginning 
of the segment


• the contents of the segment are usually fetched from disk on 
demand, in response to page faults


– dynamic libraries: Modern operating systems typically arrange for 
most programs to share a single copy of the code for popular libraries



Assembly
• Some compilers translate source files directly into object 

files acceptable to the linker

• More commonly, they generate assembly language that 

must subsequently be processed by an assembler to create 
an object file

– symbolic (textual) notation for code.

– within a compiler it would still be symbolic, most likely consisting 

of records and linked lists

• To translate this symbolic representation into executable 

code, we must

– replace opcodes and operands with their machine language 

encodings

– replace uses of symbolic names with actual addresses



Assembly
• When passing assembly language from the compiler 

to the assembler, it makes sense to use some internal 
(records and linked lists) representation


• At the same time, we must provide a textual front end 
to accommodate the occasional need for human input:



Assembly
• An alternative organization has the compiler generate 

object code directly

– This organization gives the compiler a bit more flexibility: operations 

normally performed by an assembler (e.g., assignment of addresses to 
variables) can be performed earlier if desired. 


– Because there is no separate assembly pass, the overall translation to 
object code may be slightly faster



Assembly

• Emitting Instructions

– The most basic task of the assembler is to translate symbolic 

representations of instructions into binary form

– In some assemblers this is easy


• there is a one-one correspondence between mnemonic operations and 
instruction op-codes


– Many assemblers extend the instruction set in minor ways to 
make the assembly language easier for human beings to read


– Most MIPS assemblers, for example, provide a large number 
of pseudoinstructions that translate into different real 
instructions depending on their arguments, or that correspond 
to multi-instruction sequences



Assembly
• Assemblers respond to a variety of directives (MIPS):


– segment switching

• .text directive indicates that subsequent instructions and data should be 

placed in the code (text) segment. 

• .data directive indicates that subsequent instructions and data should be 

placed in the initialized data segment. 

• .space n directive indicates that n bytes of space should be reserved in the 

uninitialized data segment

• .byte, .half, .word, .float, and .double directives each take a sequence of 

arguments

• related .ascii directive takes a single character string as argument, which it 

places in consecutive bytes

– symbol identification


• .global name directive indicates that name should be entered into the table of 
exported symbols.


– alignment

• .align n directive causes the subsequent output to be aligned at an address 

evenly divisible by 2n



Assembly

• RISC assemblers implement a virtual machine - 
instruction set is “nicer” than that of the real hardware

– In addition to pseudoinstructions, the virtual machine may 

have non-delayed branches

– If desired, the compiler or assembly language programmer can 

ignore the existence of branch delays

– The assembler will move nearby instructions to fill delay slots 

if possible, or generate nops if necessary. 

– To support systems programmers, the assembler must also 

make it possible to specify that delay slots have already been 
filled



Assembly

• Assemblers commonly work in several phases

– if the input is textual, an initial phase scans and parses the 

input, and builds an internal representation

– there are two additional phases.


• first phase identifies all internal and external (imported) symbols, 
assigning locations to the internal ones


– complicated by the length of some instructions (on a CISC machine)  
	 	 	 or


– complicated by number of real instructions produced by a pseudo-
instruction (on a RISC machine) 


• final phase produces object code



Assembly
• CISC assemblers distinguish between  absolute and 

relocatable words in an object file

• Absolute words are known at assembly time; they need not 

be changed by the linker

– constants and register-register instructions 


• A relocatable word must be modified by adding to it the 
address within the final program of the code or data 
segment of the current object file

– A CISC jump instruction might consist of a one-byte 

jmp opcode followed by a four-byte target address

– For a local target, the address bytes in the object file 

would contain the symbol’s offset within the file

– The linker finalizes the address by adding the offset of 

the file’s code segment within the final program



Linking
• Most language implementations - certainly all that are 

intended for the construction of large programs - support 
separate compilation

– fragments of the program can be compiled and assembled more-or-

less independently

• After compilation, these fragments (known as compilation 

units) are “glued together” by a linker

– programmer explicitly divides the program into modules or files 

separately compiled

– integrated environments may abandon the notion of a file in favor of a 

database of subroutines separately compiled

• Linker joins together compilation units



Linking
• A static linker does its work prior to program execution, 

producing an executable object file

• A dynamic linker does its work after the program has been 

brought into memory for execution

• Each of the compilation units of a program to be linked 

must be a relocatable object file

– some files will have been produced by compiling fragments of the 

application being constructed

– others will be general purpose library packages needed by the 

application

• Since most programs make use of libraries, even a “one-

file” application typically needs to be linked



Linking

• Linking involves two subtasks: relocation and the 
resolution of external references


• Some authors refer to relocation as loading, and call 
the entire “joining together” process “link-loading.”


• In this book we use “loading” to refer to the process 
of bringing an executable object file into memory 
for execution

– on very simple machines loading entails relocation

– the operating system uses virtual memory to giving the 

impression that it starts at some standard address (zero)

– often loading also entails a certain amount of linking



Linking



Dynamic Linking

• On a multi-user system, it is common for several instances of a 
program (an editor or web browser, for example) to be executing 
simultaneously

– It would be highly wasteful to allocate space in memory for a separate, 

identical copy of the code of such a program for every running instance

• Many operating systems therefore keep track of the programs that 

are running, and set up memory mapping tables so that all instances 
of the same program share the same read-only copy of the program’s 
code segment

– Each instance receives its own writable copy of the data segment

– Code segment sharing can save enormous amounts of space

– It does not work, however, for instances of programs that  

are similar but not identical


