
Copyright © 2016 Elsevier and Jonathan Aldrich

Code Optimization, Day 2:
Global Optimization

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 17

Prof. Jonathan AldrichBen Titzer

Redundancy Elimination in Basic Blocks

SSA and Data Flow Analysis

• We now concentrate on optimizations across the
boundaries between basic blocks

• We translate the code of our basic blocks into
static single assignment (SSA) form

• SSA form generalizes local optimizations that
previously worked locally to be global:
– Constant propagation
– Constant folding
– Strength reduction
– Common subexpression elimination
– Loop invariant code motion
– Dead code elimination

SSA and Data Flow Analysis

• In today’s compilers the translation to SSA form is
driven by data flow analysis and essentially all
global optimizations are based on it
– We detail the problems of identifying

• common subexpressions
• redundant loads and stores

– SSA solves the problem of reaching definitions once
and all subsequent passes benefit

– Further passes may use additional dataflow analysis to
model the heap, available expressions, and/or side-
effects

• Global redundancy elimination can be structured
in such a way that it catches local redundancies as
well, eliminating the need for a separate local pass

SSA Form

• Static single assignment: every variable assigned
only once — uses at merges appropriately renamed

• For example, if the instruction v2 := x is
guaranteed to read the value of x written by the
instruction x3 := v1, then we replace v2 := x
with v2 := x3

• An IR construct called ϕ (phi or phi node) chooses
among the possible alternatives at control merges
– ϕ-nodes exist only at compile time

• Optimization aide that will be removed late in compilation, e.g.
when generating target code

• With SSA, reaching definitions of a variable is trivial

Conversion to SSA form

• SSA form is primarily a renaming of local variables
and introduction of ϕ nodes

• Can be formulated as a dataflow problem (i.e.
fixpoint calculation), but most compilers employ a
custom renaming pass designed to be efficient
– Maintain a worklist of basic blocks, each with a mapping

from variable to most-recent version (e.g. v = v3)
– Select a block from the worklist whose predecessors are all

finished (if none, there is a loop) and rename in a forward
pass, push successors

– Introduce ϕ nodes for any variable whose version differs
between predecessors

– Every block is visited once, but result is *not optimal*
• Every compiler book you read tells you this is too inefficient, but

nearly all industrial compilers work this way

Example: Convert this to SSA

func(a, b)
v := a*2
w := b-1
if v < w goto else

then:
a := v
v := a*2
w := v+3
goto endif

endif:
v := b*2
w := v+a
return w

else:
a := v
w := v+3

• You can just
update the
variable subscripts
and introduce ϕs,
no need to rewrite
the code

Solution: Convert this to SSA

func(a, b)
v1 := a1*2
w1 := b1-1
if v1 < w1 goto else

then:
a2 := v1
v2 := a2*2
w2 := v2+3
goto endif

endif:
a4 := φ(a2,a3)
v3 := φ(v2,v1)
w4 := φ(w2,w3)
v4 := b1*2
w5 := v3+a4
return w5

else:
a3 := v1
w3 := v1+3

• You can just
update the
variable subscripts
and introduce ϕs,
no need to rewrite
the code

Value Numbering and SSA Form

• Value numbering, as introduced earlier, assigns a
distinct virtual register name to every symbolically
distinct value in the IR
– It allows us to recognize when certain loads or

computations are redundant.
• The first step in global value numbering is to

distinguish among the values that may be written
to a variable in different basic blocks
– We accomplish this step using static single assignment

(SSA) form

Value of SSA Form

• All definitions dominate their uses
• A block D dominates a block X if all paths

from start to X pass through D
• Almost all local optimizations performed by a

compiler get more powerful with SSA
• Constant propagation
• Constant folding
• Strength reduction
• Common subexpression elimination

