
Copyright © 2016 Elsevier and Jonathan Aldrich

Code Optimization, Day 2: 
Global Optimization

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 17

Prof. Jonathan AldrichBen Titzer



Redundancy Elimination in Basic Blocks



SSA and Data Flow Analysis

• We now concentrate on optimizations across the 
boundaries between basic blocks


• We translate the code of our basic blocks into 
static single assignment (SSA) form


• SSA form generalizes local optimizations that 
previously worked locally to be global:

– Constant propagation

– Constant folding

– Strength reduction

– Common subexpression elimination

– Loop invariant code motion

– Dead code elimination



SSA and Data Flow Analysis

• In today’s compilers the translation to SSA form is 
driven by data flow analysis and essentially all 
global optimizations are based on it

– We detail the problems of identifying 


• common subexpressions

• redundant loads and stores


– SSA solves the problem of reaching definitions once 
and all subsequent passes benefit


– Further passes may use additional dataflow analysis to 
model the heap, available expressions, and/or side-
effects


• Global redundancy elimination can be structured 
in such a way that it catches local redundancies as 
well, eliminating the need for a separate local pass



SSA Form

• Static single assignment: every variable assigned 
only once — uses at merges appropriately renamed


• For example, if the instruction v2 := x is 
guaranteed to read the value of x written by the 
instruction x3 := v1, then we replace v2 := x 
with v2 := x3


• An IR construct called ϕ (phi or phi node) chooses 
among the possible alternatives at control merges

– ϕ-nodes exist only at compile time


• Optimization aide that will be removed late in compilation, e.g. 
when generating target code


• With SSA, reaching definitions of a variable is trivial



Conversion to SSA form

• SSA form is primarily a renaming of local variables 
and introduction of ϕ nodes


• Can be formulated as a dataflow problem (i.e. 
fixpoint calculation), but most compilers employ a 
custom renaming pass designed to be efficient

– Maintain a worklist of basic blocks, each with a mapping 

from variable to most-recent version (e.g. v = v3)

– Select a block from the worklist whose predecessors are all 

finished (if none, there is a loop) and rename in a forward 
pass, push successors


– Introduce ϕ nodes for any variable whose version differs 
between predecessors


– Every block is visited once, but result is *not optimal*

• Every compiler book you read tells you this is too inefficient, but 

nearly all industrial compilers work this way



Example: Convert this to SSA

func(a, b)

v := a*2

w := b-1

if v < w goto else

then:

a := v

v := a*2

w := v+3

goto endif

endif:

v := b*2

w := v+a

return w

else:

a := v

w := v+3

• You can just 
update the 
variable subscripts 
and introduce ϕs, 
no need to rewrite 
the code



Solution: Convert this to SSA

func(a, b)

v1 := a1*2

w1 := b1-1

if v1 < w1 goto else

then:

a2 := v1

v2 := a2*2

w2 := v2+3

goto endif

endif:

a4 := φ(a2,a3)

v3 := φ(v2,v1)

w4 := φ(w2,w3)

v4 := b1*2

w5 := v3+a4

return w5

else:

a3 := v1

w3 := v1+3

• You can just 
update the 
variable subscripts 
and introduce ϕs, 
no need to rewrite 
the code



Value Numbering and SSA Form

• Value numbering, as introduced earlier, assigns a 
distinct virtual register name to every symbolically 
distinct value in the IR

– It allows us to recognize when certain loads or 

computations are redundant. 

• The first step in global value numbering is to 

distinguish among the values that may be written 
to a variable in different basic blocks

– We accomplish this step using static single assignment 

(SSA) form



Value of SSA Form

• All definitions dominate their uses

• A block D dominates a block X if all paths 

from start to X pass through D

• Almost all local optimizations performed by a 

compiler get more powerful with SSA

• Constant propagation

• Constant folding

• Strength reduction

• Common subexpression elimination


