Code Optimization, Day 2:
Global Optimization

17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
TICS

Reading: PLP chapter 17

Ben Titzer Prof. Jonathan Aldrich

Copyright © 2016 Elsevier and Jonathan Aldrich

Block 2:
vi3:
vi4d:
vi6:=vi4d +1
vi7 =1
vi8 :=v16 - v17
vi9:=vi3 xvi18
v21:=v19divv17
v22 = A
v25:=v17 << 2
v26 :=v22 + v25
*v26 := v21
Block 1: v31:=v14 -v17
sp:=sp-8 v33:=v31<<2
vli=r0 —nN v34 :=v22 +v33
n:=vl *v34 := v21
v2:=r1 —A v38:=v17 +1
A:=v2 t:=v21

*w2:=1 i :=v38

v8:=vl<<2 goto Block 3

vl:=v2+Vv8

*v9:=1

t=1

i=1 Block 3:

goto Block 3 V39 =i

v40 :=n

v42 :=v40 >> 1

Block 4: v43 :=v39 <v42
sp:=sSp+8 if v43 goto Block 2
goto *Ir else goto Block 4

A

Figure I74 Control flow graph for the combinations subroutine after local redundancy
elimination and strength reduction. Changes from Figure C-17.3 are shown in boldface type.

SSA and Data Flow Analysis

We now concentrate on optimizations across the
boundaries between basic blocks

We translate the code of our basic blocks into
static single assignment (SSA) form

SSA form generalizes local optimizations that

preV10usly worked locally to be global:
Constant propagation
Constant folding
Strength reduction
Common subexpression elimination
Loop invariant code motion
Dead code elimination

SSA and Data Flow Analysis

* Intoday’s compilers the translation to SSA form 1s
driven by data flow analysis and essentially all
global optimizations are based on it
— We detail the problems of identifying

common subexpressions
redundant loads and stores

SSA solves the problem of reaching definitions once
and all subsequent passes benefit

Further passes may use additional dataflow analysis to
model the heap, available expressions, and/or side-
effects
Global redundancy elimination can be structured
in such a way that 1t catches local redundancies as.......
well, eliminating the need for a separate local pass "

SSA Form

Static single assignment: every variable assigned
only once — uses at merges appropriately renamed
For example, if the instruction v2 := x1s
guaranteed to read the value of x written by the
instruction x3 := v1,then wereplace v2 := x

with v2 := x3

An IR construct called ¢ (phi or phi node) chooses
among the possible alternatives at control merges

— ¢-nodes exist only at compile time

* Optimization aide that will be removed late in compilation, e.g.
when generating target code

With SSA, reaching definitions of a variable is triyi

Conversion to SSA form

SSA form is primarily a renaming of local variables
and introduction of ¢ nodes

Can be formulated as a dataflow problem (i1.e.
fixpoint calculation), but most compilers employ a
custom renaming pass designed to be efficient

— Maintain a worklist of basic blocks, each with a mapping
from variable to most-recent version (e.g. v = v3)

Select a block from the worklist whose predecessors are all
finished (1f none, there 1s a loop) and rename in a forward
pass, push successors

Introduce ¢ nodes for any variable whose version differs
between predecessors
Every block 1s visited once, but result 1s *not optimal*

* Every compiler book you read tells you this 1s too 1nefﬁ01en1;,{-_
nearly all industrial compilers work this way -

Example: Convert this to SSA

func(a, b) * You can just
v =a*2

w = b1 update the
if v < w goto else variable subscripts

and introduce ¢s,
then: \ no need to rewrite
a:=v else: the code

v:=a*2 a=v
w = v+3 w = v+3

endif:

v :=b*2
W = v+a
return w

Solution: Convert this to SSA

func(a, b)

vl :=al*2

wl :=bl-1

if vl <wl goto else

then: /\A

a2 =vl else:
v2 ;= a2*?2 a3 =vl
w2 = v2+3 w3 :=v]+3

goto endif /

endif:

a4 = ¢(a2,a3)
v3 = ¢(v2,vl)
w4 = p(w2,w3)
v4 :=bl*2

w5 = v3+ad
return w>

You can just
update the
variable subscripts
and introduce ¢s,
no need to rewrite
the code

Value Numbering and SSA Form

Value numbering, as introduced earlier, assigns a

distinct virtual register name to every symbolically

distinct value in the IR

— It allows us to recognize when certain loads or
computations are redundant.

The first step 1n global value numbering 1s to

distinguish among the values that may be written

to a variable 1n different basic blocks

— We accomplish this step using static single assignment
(SSA) form

Value of SSA Form

All detinitions dominate their uses

* Ablock D dominates a block X 1f all paths
from start to X pass through D

Almost all local optimizations performed by a
compiler get more powerful with SSA

Constant propagation

Constant folding

Strength reduction

Common subexpression elimination

