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• Dataflow analysis computes facts about a program 
at every point (e.g. basic block)


• A general framework can express many analyses: 

1. four sets for each basic block B, called InB, OutB, GenB, 

and KillB; 

2. values for the Gen and Kill sets; 

3. an equation relating the sets for any given block B; 

4. an equation relating the Out set of a given block to the 

In sets of its successors, or relating the In set of the 
block to the Out sets of its predecessors; and (often) 


5. certain initial conditions

Data Flow Analysis



• An example system of equations:

Data Flow Analysis

• Dataflow analysis can be forward or backward

• forward: Out sets are a function of the In sets

• backward: In sets are a function of the Out sets


• The direction suggests (but does not require) a 
visitation order for the IR 



• The goal of the analysis is to find a solution that 
represents a fixed point of the equations


• A fixed point is a set of In and Out sets that satisfy 
both the equations and the initial conditions

– Some problems have a single fixed point

– Others may have more than one


• we usually want either the least or the greatest fixed point 
(smallest or largest sets)


– Computing the fixed point solution efficiently requires 
careful datastructure design and the proper iteration 
order

Data Flow Analysis



• SSA form construction used a forward dataflow 
analysis to rename variables and insert ϕ nodes


• With assignments to local variables eliminated, 
local value numbering can be extended to global 
value numbering through another dataflow 
analysis

– As in local value numbering, the goal is to merge any 

virtual registers that are guaranteed to hold 
symbolically equivalent expressions


– In the local case, we were able to perform a linear pass 
over the code


– We kept a dictionary that mapped loaded and computed 
expressions to the names of virtual registers that 
contained them

Applying Dataflow analysis to

Global Value Numbering



• A simple forward traversal does not suffice in the 
global case, because the code may have cycles and 
merges

– We’ll use a forward dataflow analysis to solve this

– This algorithm works on SSA and non-SSA programs

– It can also be obtained with a simpler algorithm that 

begins by unifying all expressions with the same top-level 
operator

• In the end, repeatedly separates expressions whose operands are 

distinct

• It is quite similar to the DFA minimization algorithm of Chapter 2


• We perform this analysis for our running example 
informally

Global Value Numbering



• We will use a forward dataflow analysis 
where the sets In and Out contain 
expressions

Global Redundancy and  
Data Flow Analysis

• Our initial condition is In1 = ∅: no expressions are 
available at the beginning of execution



• For a block B

– InB is the set of expressions guaranteed to be available 

at the beginning of B

– OutB is the set of expressions guaranteed to be available 

at the end of B

– KillB is the set of expressions killed in B: invalidated by 

an instruction in B, and not subsequently recalculated

• For non-SSA programs, an assignment to a local invalidates

• For programs with load/store, stores to memory may invalidate


– GenB is the set of expressions calculated in B and not 
subsequently killed in B

Global Redundancy and  
Data Flow Analysis



• Available expression analysis is known as a 
forward data flow problem, because information 
flows forward across branches: the In set of a 
block depends on the Out sets of its predecessors

– We will see an example of a backward data flow 

problem later 

• We calculate the desired fixed point of our 

equations in an inductive (iterative) fashion, much 
as we computed first and follow sets in Chapter 2


• Our equation for InB uses intersection to insist that 
an expression be available on all paths into B

– In our iterative algorithm, this means that InB can only 

shrink with subsequent iterations

Global Redundancy and  
Data Flow Analysis



• We turn our attention to live variable analysis -very 
important in any subroutine in which global 
common subexpression analysis has eliminated 
load instructions


• Live variable analysis is a backward flow problem

• It determines which instructions produce values 

that will be needed in the future, allowing us to 
eliminate dead (useless) instructions

– in our example we consider only values written to 

memory and with the elimination of dead stores

– applied to values in virtual registers as well, live variable 

analysis can help to identify other dead instructions

Global Redundancy and  
Data Flow Analysis



• For this instance of data flow analysis

– InB is the set of variables live at the beginning of block B

– OutB is the set of variables live at the end of the block

– GenB is the set of variables used in B (non-SSA: without 

first being defined in B)

– KillB is the set of variables defined in B (non-SSA: 

without having been used first)

• The data flow equations are:

Global Redundancy and  
Data Flow Analysis



Running live variable analysis and dead 
code elimination

start:

v1 := a + 1

v2 := v1 - 3

v3 := c / 2

header:

v4 := b * 2

if v4 < 7 goto end

body:

v5 := a + 1

v6 := v5 * 4

b := v5

goto header

end:

return c / 2

– InB is the set of variables live at the 
beginning of block B


– OutB is the set of variables live at the end of 
the block


– GenB is the set of variables used in B (non-
SSA: without first being defined in B)


– KillB is the set of variables defined in B 
(non-SSA: without having been used first)



Exercise: Apply live variable analysis and 
dead code elimination to this program

B1:

v1 := a*2

v2 := b-1

if v1 < v2 goto B2 else B3

B2:

a := v2

v3 := a*2

v4 := v1+3

goto B4

B4:

v6 := a*2

v7 := v6+3

return v7

B3:

b := v1

v5 := v1+3

goto B4
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• Program IR has an unlimited number of variable 
names, often called “virtual registers”


• Real machines have a fixed set, often 8, 16, or 32 
of physical or architectural registers


• May be different sets for float and integer

• Registers are the fastest storage of the entire 

computer system => important to use effectively

• How do we map the unbounded set of virtual 

registers onto a finite set?

• Answer: cannot, in general, must use some stack

• When to use stack, and which register to use?


• Program analysis!

Register Allocation



• Observation: liveness analysis computes the set of 
live variables at the beginning and end of every 
basic block


• What we need: set of live variables at every 
program point


• Variables that are not live at any of the same 
program points can use the same register


• Otherwise we say they interfere

• Computing the set of interferences allows us to 

allocate registers to variables efficiently

Applying liveness analysis to

Register Allocation



• Local: only use registers within a block

• Linear scan: simplify control flow graph to a line, 

obtain a set of intervals that are relatively easy to assign 
to registers (almost same as local)


• Graph coloring: use interference graph directly to 
compute a more efficient solution

• Interference graph represents all conflicts between 

variables that cannot use the same register

• Graph-coloring is an NP-hard problem

• Nearly all compilers use a coloring heuristic for the 

graph

• In any case, if allocation fails, resort to spilling

Approaches to Register Allocation



• Graph coloring: use interference graph directly to 
compute a more efficient solution

• Build interference graph from liveness analysis

• Nodes represent variables

• (Undirected edges represent vertices)

• Assign K (number of registers) or fewer colors to 

vertices

• Simplification-based heuristic: remove nodes < K 

degree onto a stack

• Pop nodes in reverse order, rebuilding the graph and 

giving each a color that differs from its neighbors

• Spill if not enough colors

Approaches to Register Allocation


