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Data Flow Analysis

« Dataflow analysis computes facts about a program
at every point (e.g. basic block)

A general framework can express many analyses:

.

four sets for each basic block B, called Ing, Outy, Geny,
and Killy;

. values for the Gen and Kill sets;
. an equation relating the sets for any given block B;
. an equation relating the Out set of a given block to the

In sets of 1ts successors, or relating the /n set of the
block to the Out sets of its predecessors; and (often)

. certain 1nitial conditions




Data Flow Analysis

* An example system of equations:

Out g Genp U (Inp ~ Killp)

Inp ﬂ Out A

predecessors A of B

Dataflow analysis can be forward or backward
* forward.: Out sets are a function of the In sets
* backward: In sets are a function of the Out sets

The direction suggests (but does not require) a
visitation order for the IR




Data Flow Analysis

The goal of the analysis 1s to find a solution that
represents a fixed point of the equations

A fixed point 1s a set of /n and Out sets that satisfy
both the equations and the 1nitial conditions

— Some problems have a single fixed point

— Others may have more than one

« we usually want either the least or the greatest fixed point
(smallest or largest sets)

— Computing the fixed point solution efficiently requires
careful datastructure design and the proper iteration
order




Applying Dataflow analysis to
Global Value Numbering

« SSA form construction used a forward dataflow
analysis to rename variables and insert ¢ nodes

With assignments to local variables eliminated,
local value numbering can be extended to global
value numbering through another dataflow
analysis

— As 1n local value numbering, the goal 1s to merge any

virtual registers that are guaranteed to hold
symbolically equivalent expressions

In the local case, we were able to perform a linear pass
over the code

We kept a dictionary that mapped loaded and computed:ea
expressions to the names of virtual registers that Qs
contained them




Global Value Numbering

* A simple forward traversal does not suffice in the
global case, because the code may have cycles and
merges

We’ll use a forward dataflow analysis to solve this
This algorithm works on SSA and non-SSA programs

It can also be obtained with a simpler algorithm that
begins by unifying all expressions with the same top-level
operator

» In the end, repeatedly separates expressions whose operands are
distinct

» It is quite similar to the DFA minimization algorithm of Chapter 2

We perform this analysis for our running example
informally




Global Redundancy and
Data Flow Analysis

* We will use a forward dataflow analysis
where the sets In and Out contain
eXpressions

Outp = Genp U (Inp ~ Killp)

Ing ﬂ Out 4

predecessors A of B

e Our initial condition is /n, = &: no expressions are
available at the beginning of execution




Global Redundancy and
Data Flow Analysis

For a block B

Ing 1s the set of expressions guaranteed to be available
at the beginning of B

Outy 1s the set of expressions guaranteed to be available
at the end of B

Killy 1s the set of expressions killed in B: invalidated by

an instruction in B, and not subsequently recalculated
e For non-SSA programs, an assignment to a local invalidates
« For programs with load/store, stores to memory may invalidate

Gengp 1s the set of expressions calculated in B and not
subsequently killed in B




Global Redundancy and
Data Flow Analysis

* Available expression analysis 1s known as a
forward data flow problem, because information
flows forward across branches: the /n set of a
block depends on the Out sets of 1ts predecessors
— We will see an example of a backward data flow

problem later
We calculate the desired fixed point of our
equations 1n an inductive (iterative) fashion, much
as we computed first and follow sets in Chapter 2

Our equation for /ny, uses intersection to insist that
an expression be available on all paths into B

shrink with subsequent 1terat10ns




Global Redundancy and
Data Flow Analysis

* We turn our attention to /ive variable analysis -very
important in any subroutine in which global
common subexpression analysis has eliminated

load 1nstructions

Live variable analysis 1s a backward flow problem

It determines which instructions produce values
that will be needed 1n the future, allowing us to
eliminate dead (useless) instructions

— 1n our example we consider only values written to
memory and with the elimination of dead stores

— applied to values in virtual registers as well, live variable
analysis can help to 1dentify other dead instructions




Global Redundancy and
Data Flow Analysis

* For this instance of data flow analysis
Iny 1s the set of variables live at the beginning of block B
Out, 1s the set of variables live at the end of the block

Geny 1s the set of variables used in B (non-SSA: without
first being defined in B)

Kill, 1s the set of variables defined in B (non-SSA:
without having been used first)

* The data flow equations are:

Inp Genp U (OQOutp ~ Killp)

Outp U Inc

successors (' of B




Running live variable analysis and dead
code elimination

start: Ing is the set of variables live at the
vli:=a+1

V2 =vl -3 beginning of block B

Vv3=c/2 Out, is the set of variables live at the end of

the block

Geny,, 1s the set of variables used in B (non-
SSA: without first being defined in B)

header: ) Kill, is the set of variables defined in B

vd =b *2 (non-SSA: without having been used first)
if v4 <7 goto end

body:
vi=a+1
v6 :=v5 *4
b:=v5
goto header

end:
returnc/ 2




Exercise: Apply live variable analysis and
dead code elimination to this program

Bl:

vl :=a*2

v2 :=b-1

if vl <v2 goto B2 else B3

\
B3:
b:=vl
vS =vI+3

goto B4

\

<

B4:

v6 = a*2
v7 :=v6+3
return v’/




Exercise: Apply live variable analysis and
dead code elimination to this program

Bl:

vl :=a*2

v2 :=b-1

if vl <v2 goto B2 else B3

/N

A |
B3:
b:=vl
vy =vI+3
goto B4

N/

4 »

B4:

v6 = a*2
v7 :=v6+3
return v’/




Register Allocation

Program IR has an unlimited number of variable
names, often called *“virtual registers™

Real machines have a fixed set, often 8, 16, or 32
of physical or architectural registers

May be different sets for float and integer

Registers are the fastest storage of the entire
computer system => important to use effectively

How do we map the unbounded set of virtual
registers onto a finite set?

* Answer: cannot, in general, must use some stack
*  When to use stack, and which register to use?
* Program analysis!




Applying liveness analysis to
Register Allocation

Observation: liveness analysis computes the set of

live variables at the beginning and end of every
basic block

What we need: set of live variables at every
program point

Variables that are not live at any of the same
program points can use the same register
Otherwise we say they interfere

Computing the set of interferences allows us to
allocate registers to variables efficiently




Approaches to Register Allocation

Local: only use registers within a block

Linear scan: simplify control flow graph to a line,
obtain a set of intervals that are relatively easy to assign
to registers (almost same as local)

Graph coloring: use interference graph directly to
compute a more efficient solution

* Interference graph represents all conflicts between
variables that cannot use the same register

* Graph-coloring is an NP-hard problem

* Nearly all compilers use a coloring heuristic for the
graph

In any case, 1f allocation fails, resort to spilling




Approaches to Register Allocation

Graph coloring: use interference graph directly to
compute a more efficient solution

Build interference graph from liveness analysis
Nodes represent variables
(Undirected edges represent vertices)

Assign K (number of registers) or fewer colors to
vertices

Simplification-based heuristic: remove nodes < K
degree onto a stack

Pop nodes in reverse order, rebuilding the graph and
giving each a color that differs from its neighbors

Spill 1f not enough colors




