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• We’ve covered a few machine-independent 
optimizations

– Dead-code elimination, strength reduction, code motion


• These (almost) always pay off, regardless of the 
machine


• Machine-Dependent optimizations take into 
account machine resources and reorganize or 
reschedule code to make best use of them

Machine-Dependent Optimization



• Execution of any instruction takes machine 
resources (e.g. an arithmetic-logic unit) and time

– Hardware resources: execution units (ports)

– Time: pipeline stages such as fetch, decode, execute


• Instruction scheduling makes best use of machine 
resources to make the same instructions run in less 
time


• Local instruction scheduling: within a basic block

• Rearrange instructions to avoid pipeline stalls, 

within the constraints of data dependencies

Scheduling



• To schedule instructions to make better use of the 
pipeline, we first arrange them into a directed 
acyclic graph (DAG), in which each node 
represents an instruction, and each arc represents a 
dependence

– Most arcs will represent flow dependences, in which 

one instruction uses a value produced by a previous 
instruction


– A few will represent anti-dependences, in which a later 
instruction overwrites a value read by a previous 
instruction


– In our example, these will correspond to updates of 
induction variables

Instruction Scheduling



Instruction Scheduling



• Considerations:

– Dependencies between instructions

– Every instruction takes multiple cycles

– Resource (machine units) usage of each instruction


• Most algorithms are based on list scheduling

– Model each cycle of execution, assign instruction(s) to 

cycles in a forward or backward pass

– An instruction is ready as soon as its input operands are 

ready, accounting for the delay of inputs

– An instruction may not be able to be scheduled at a 

particular cycle because a unit it needs is in use by 
another instruction


• Instruction scheduling and register allocation are 
fundamentally in tension with each other

Instruction Scheduling Algorithms



• Loops are extremely important because most 
programs spend a lot of time in loops


• Most optimizing compilers include some of:

– Loop invariant code motion moves computations out of the 

body of a loop and into its header

– Induction variable analysis rewrites expressions that 

accomplish iteration and can remove bounds checks

– Loop peeling copies the body of a loop for the first 

iteration, which can set up other optimizations

– Loop unrolling duplicates the body of a loop many times to 

reduce iteration overhead and unlock other optimizations

– Software pipelining allows instruction scheduling across 

loop iterations

– Loop reordering targets the iteration order of nested loops 

to improve cache locality

Loop Optimization Buffet



• A loop invariant is an instruction (i.e., a load or 
calculation) in a loop whose result is guaranteed to 
be the same in every iteration

– If a loop is executed n times and we are able to move an 

invariant instruction out of the body and into the header 
(saving its result in a register for use within the body), 
then we will eliminate n -1 calculations from the 
program

• a potentially significant savings


• In order to tell whether an instruction is invariant, 
we need to identify the bodies of loops, and we 
need to track the locations at which operand 
values are defined

Loop Invariant Code Motion (LICM)



LICM Example



• An induction variable takes on a simple 
progression of values in successive loop iterations 

– We confine our attention to arithmetic progressions

– Induction variables appear as loop indices, subscript 

computations, or variables incremented or decremented 
explicitly within the body of the loop


• Induction variables are important for two reasons:

– They commonly provide opportunities for strength 

reduction, replacing multiplication with addition

– They are commonly redundant: instead of keeping 

several induction variables in registers, we can often 
keep a smaller number and calculate the remainder  
from those when needed

Induction Variables



• Tracking the locations at which an operand may have been 
defined amounts to the problem of reaching definitions

– Formally, we say an instruction that assigns a value v into a location 

(variable or register) l reaches a point p in the code if v may still be 
in l at p


• Like the conversion to static single assignment form, 
considered informally earlier, the problem of reaching 
definitions can be structured as a set of forward, any-path 
data flow equations

– We let GenB be the set of final assignments in block B (those that 

are not overwritten later in B)

– For each assignment in B we also place in KillB all other 

assignments (in any block) to the same location

• In SSA form, they are φ’s that are just functions of 

themselves 

Identifying Induction Variables



Induction Variable Example



• Loop peeling copies the body of a loop once

– The first iteration often has safety checks and other 

weirdness that subsequent iterations don’t need

• Loop unrolling copies the body of a loop more 

than once, creating a longer loop, and allowing the 
scheduler to intermingle the instructions of the 
original iterations


• If we unroll two iterations of our combinations  
example we obtain the code of Figure 17.14

– We use separate names (here starting with the letter ‘t’) 

for registers written in the initial half of the loop

– This convention minimizes anti- and output 

dependences, giving us more latitude in scheduling

Loop Peeling and Unrolling



Loop Unrolling Example



• A software-pipelined version of our combinations 
subroutine appears in the bottom half of Figure 
17.15 and as a control flow graph in Figure 17.16

– The idea is to build a loop whose body comprises 

portions of several consecutive iterations of the original 
loop, with no internal start-up or shut-down cost


– In our example, each iteration of the software-pipelined 
loop contributes to three separate iterations of the 
original loop


– Within each new iteration (shown between vertical 
bars) nothing needs to wait for the divide to complete


– To avoid delays, we have altered the code in several 
ways

Software Pipelining



Software Pipelining



Software Pipelining Example



Loop Reordering
• The code optimization techniques that we have considered 

thus far have served two principal purposes

– eliminate redundant or unnecessary instructions

– minimize stalls on a pipelined machine


• Two other goals have become increasingly important in 
recent years

– it has become increasingly important to minimize cache misses 

(processor speed outstrips memory latency)

– it has become important to identify sections of code that can execute 

concurrently (parallel machines)

• As with other optimizations, the largest benefits come from 

changing the behavior of loops



Loop Reordering
• A loop-reordering compiler can improve this code by 

interchanging the nested loops:

for j := 1 to n

	 for i := 1 to n

	 	 A[i, j] := 0

Figure 17.17 Tiling (blocking) of a matrix operation



Loop Reordering

for i := 1 to n

	 for j := 1 to n

	 	 A[i, j] := 0


• If A is laid out in row-major order, and if each cache 
line contains m elements of A, then this code will 
suffer n2/m cache misses


• If A is laid out in column major order, and if the 
cache is too small to hold n lines of A, then the code 
will suffer n2 misses, fetching the entire array  
from memory m times



Loop Dependences
• When reordering loops, we must to respect all data 

dependences (loop-carried dependences) 

i := 2 to n

	 for j := 1 to n1

	 	 A[i, j] := A[i, j] + A[i - 1, 

j+1]

• Here the calculation of A[i, j] in iteration (i, j) 

depends on the value of A[i-1, j+1], which was 
calculated in iteration (i-1, j+1). 


• This dependence is often represented by a diagram of the 
iteration space (see next slide):



Loop Interchange
• The i and j dimensions in this 

diagram represent loop indices, 
not array subscripts. 

– The arcs represent the loop-carried 

flow dependence

• If we wish to interchange the 
i and j loops of this code (e.g., 
to improve cache locality), we 
find that we cannot do it, 
because of the dependence: we 
would end up trying to write 
A[i, j] before we had written 
A[i-1, j+1]



Loop Reversal
• By analyzing the loop 

dependence, we note that we 
can reverse the order of the j 
loop without violating the 
dependence:


for i := 2 to n

	 for j := n1 to 1 by 1

	 	 A[i, j] := A[i, j]  
	 	 A[i1, j+1]


• This change transforms the 
iteration space as shown 
here



Loop Skewing

• Another transformation that sometimes serves to 
eliminate a dependence is known as loop skewing

– it reshapes a rectangular iteration space into a parallelogram, 

by adding the outer loop index to the inner one, and then 
subtracting from the appropriate subscripts:


for i := 2 to n

	 for j := i+1 to i+n-1

   A[i,j-i]:= A[i,j-i]-A[i1,j+1-i]


• A moment’s consideration will reveal that this code 
accesses the exact same elements as before, in the 
exact same order



Loop Skewing

• Its iteration space, however, looks like here (the 
loops can be safely be interchanged)



Loop Parallelization

• Loop iterations (at least in non-recursive programs) 
constitute the principal source of operations that can 
execute in parallel

– one needs to find independent loop iterations - with no 

loop-carried dependences

• Even in languages without special constructs, a 

compiler can often parallelize code by identifying—
or creating—loops with as few loop-carried 
dependences as possible

– These transformations are valuable tools in this endeavor



Loop Parallelization

• Consider the problem of “zero-ing out” a two-
dimensional array (row-major order):

for i := 0 to n-1

	 	 for j := 0 to n-1

	 	 	 A[i, j] := 0


• On a machine containing several general purpose 
processors, we parallelize the outer loop:


–– on processor pid:

for i := (n/p × pid) to (n/p ×(pid + 1)-1)


	 	 for j := 1 to n

	 	 	 A[i, j] := 0



Loop Parallelization
• Other issues of importance in parallelizing compilers 

include communication and load balance

• Locality in parallel programs reduces communication 

among processors and between the processors and memory

– Optimizations similar to those employed to reduce the number of 

cache misses on a uniprocessor can be used to reduce 
communication trafic on a multiprocessor.


• Load balance refers to the division of labor among 
processors on a parallel machine

– dividing a program among 16 processors, we shall obtain a speedup 

of close to 16 only if each processor takes the same amount of time 
to do its work


– assigning 5% of the work to each of 15 processors and 25% of the 
work to the sixteenth, we are likely to see a speedup of no more 
than four


