
Copyright © 2016 Elsevier and Jonathan Aldrich

Code Optimization, Day 4: 
Scheduling and Loop Optimizations

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 17

Prof. Jonathan AldrichBen Titzer

• We’ve covered a few machine-independent
optimizations

– Dead-code elimination, strength reduction, code motion

• These (almost) always pay off, regardless of the
machine

• Machine-Dependent optimizations take into
account machine resources and reorganize or
reschedule code to make best use of them

Machine-Dependent Optimization

• Execution of any instruction takes machine
resources (e.g. an arithmetic-logic unit) and time

– Hardware resources: execution units (ports)

– Time: pipeline stages such as fetch, decode, execute

• Instruction scheduling makes best use of machine
resources to make the same instructions run in less
time

• Local instruction scheduling: within a basic block

• Rearrange instructions to avoid pipeline stalls,

within the constraints of data dependencies

Scheduling

• To schedule instructions to make better use of the
pipeline, we first arrange them into a directed
acyclic graph (DAG), in which each node
represents an instruction, and each arc represents a
dependence

– Most arcs will represent flow dependences, in which

one instruction uses a value produced by a previous
instruction

– A few will represent anti-dependences, in which a later
instruction overwrites a value read by a previous
instruction

– In our example, these will correspond to updates of
induction variables

Instruction Scheduling

Instruction Scheduling

• Considerations:

– Dependencies between instructions

– Every instruction takes multiple cycles

– Resource (machine units) usage of each instruction

• Most algorithms are based on list scheduling

– Model each cycle of execution, assign instruction(s) to

cycles in a forward or backward pass

– An instruction is ready as soon as its input operands are

ready, accounting for the delay of inputs

– An instruction may not be able to be scheduled at a

particular cycle because a unit it needs is in use by
another instruction

• Instruction scheduling and register allocation are
fundamentally in tension with each other

Instruction Scheduling Algorithms

• Loops are extremely important because most
programs spend a lot of time in loops

• Most optimizing compilers include some of:

– Loop invariant code motion moves computations out of the

body of a loop and into its header

– Induction variable analysis rewrites expressions that

accomplish iteration and can remove bounds checks

– Loop peeling copies the body of a loop for the first

iteration, which can set up other optimizations

– Loop unrolling duplicates the body of a loop many times to

reduce iteration overhead and unlock other optimizations

– Software pipelining allows instruction scheduling across

loop iterations

– Loop reordering targets the iteration order of nested loops

to improve cache locality

Loop Optimization Buffet

• A loop invariant is an instruction (i.e., a load or
calculation) in a loop whose result is guaranteed to
be the same in every iteration

– If a loop is executed n times and we are able to move an

invariant instruction out of the body and into the header
(saving its result in a register for use within the body),
then we will eliminate n -1 calculations from the
program

• a potentially significant savings

• In order to tell whether an instruction is invariant,
we need to identify the bodies of loops, and we
need to track the locations at which operand
values are defined

Loop Invariant Code Motion (LICM)

LICM Example

• An induction variable takes on a simple
progression of values in successive loop iterations

– We confine our attention to arithmetic progressions

– Induction variables appear as loop indices, subscript

computations, or variables incremented or decremented
explicitly within the body of the loop

• Induction variables are important for two reasons:

– They commonly provide opportunities for strength

reduction, replacing multiplication with addition

– They are commonly redundant: instead of keeping

several induction variables in registers, we can often
keep a smaller number and calculate the remainder  
from those when needed

Induction Variables

• Tracking the locations at which an operand may have been
defined amounts to the problem of reaching definitions

– Formally, we say an instruction that assigns a value v into a location

(variable or register) l reaches a point p in the code if v may still be
in l at p

• Like the conversion to static single assignment form,
considered informally earlier, the problem of reaching
definitions can be structured as a set of forward, any-path
data flow equations

– We let GenB be the set of final assignments in block B (those that

are not overwritten later in B)

– For each assignment in B we also place in KillB all other

assignments (in any block) to the same location

• In SSA form, they are φ’s that are just functions of

themselves 

Identifying Induction Variables

Induction Variable Example

• Loop peeling copies the body of a loop once

– The first iteration often has safety checks and other

weirdness that subsequent iterations don’t need

• Loop unrolling copies the body of a loop more

than once, creating a longer loop, and allowing the
scheduler to intermingle the instructions of the
original iterations

• If we unroll two iterations of our combinations
example we obtain the code of Figure 17.14

– We use separate names (here starting with the letter ‘t’)

for registers written in the initial half of the loop

– This convention minimizes anti- and output

dependences, giving us more latitude in scheduling

Loop Peeling and Unrolling

Loop Unrolling Example

• A software-pipelined version of our combinations
subroutine appears in the bottom half of Figure
17.15 and as a control flow graph in Figure 17.16

– The idea is to build a loop whose body comprises

portions of several consecutive iterations of the original
loop, with no internal start-up or shut-down cost

– In our example, each iteration of the software-pipelined
loop contributes to three separate iterations of the
original loop

– Within each new iteration (shown between vertical
bars) nothing needs to wait for the divide to complete

– To avoid delays, we have altered the code in several
ways

Software Pipelining

Software Pipelining

Software Pipelining Example

Loop Reordering
• The code optimization techniques that we have considered

thus far have served two principal purposes

– eliminate redundant or unnecessary instructions

– minimize stalls on a pipelined machine

• Two other goals have become increasingly important in
recent years

– it has become increasingly important to minimize cache misses

(processor speed outstrips memory latency)

– it has become important to identify sections of code that can execute

concurrently (parallel machines)

• As with other optimizations, the largest benefits come from

changing the behavior of loops

Loop Reordering
• A loop-reordering compiler can improve this code by

interchanging the nested loops:

for j := 1 to n

	 for i := 1 to n

	 	 A[i, j] := 0

Figure 17.17 Tiling (blocking) of a matrix operation

Loop Reordering

for i := 1 to n

	 for j := 1 to n

	 	 A[i, j] := 0

• If A is laid out in row-major order, and if each cache
line contains m elements of A, then this code will
suffer n2/m cache misses

• If A is laid out in column major order, and if the
cache is too small to hold n lines of A, then the code
will suffer n2 misses, fetching the entire array  
from memory m times

Loop Dependences
• When reordering loops, we must to respect all data

dependences (loop-carried dependences)

i := 2 to n

	 for j := 1 to n1

	 	 A[i, j] := A[i, j] + A[i - 1,

j+1]

• Here the calculation of A[i, j] in iteration (i, j)

depends on the value of A[i-1, j+1], which was
calculated in iteration (i-1, j+1).

• This dependence is often represented by a diagram of the
iteration space (see next slide):

Loop Interchange
• The i and j dimensions in this

diagram represent loop indices,
not array subscripts.

– The arcs represent the loop-carried

flow dependence

• If we wish to interchange the
i and j loops of this code (e.g.,
to improve cache locality), we
find that we cannot do it,
because of the dependence: we
would end up trying to write
A[i, j] before we had written
A[i-1, j+1]

Loop Reversal
• By analyzing the loop

dependence, we note that we
can reverse the order of the j
loop without violating the
dependence:

for i := 2 to n

	 for j := n1 to 1 by 1

	 	 A[i, j] := A[i, j]
	 	 A[i1, j+1]

• This change transforms the
iteration space as shown
here

Loop Skewing

• Another transformation that sometimes serves to
eliminate a dependence is known as loop skewing

– it reshapes a rectangular iteration space into a parallelogram,

by adding the outer loop index to the inner one, and then
subtracting from the appropriate subscripts:

for i := 2 to n

	 for j := i+1 to i+n-1

 A[i,j-i]:= A[i,j-i]-A[i1,j+1-i]

• A moment’s consideration will reveal that this code
accesses the exact same elements as before, in the
exact same order

Loop Skewing

• Its iteration space, however, looks like here (the
loops can be safely be interchanged)

Loop Parallelization

• Loop iterations (at least in non-recursive programs)
constitute the principal source of operations that can
execute in parallel

– one needs to find independent loop iterations - with no

loop-carried dependences

• Even in languages without special constructs, a

compiler can often parallelize code by identifying—
or creating—loops with as few loop-carried
dependences as possible

– These transformations are valuable tools in this endeavor

Loop Parallelization

• Consider the problem of “zero-ing out” a two-
dimensional array (row-major order):

for i := 0 to n-1

	 	 for j := 0 to n-1

	 	 	 A[i, j] := 0

• On a machine containing several general purpose
processors, we parallelize the outer loop:

–– on processor pid:

for i := (n/p × pid) to (n/p ×(pid + 1)-1)

	 	 for j := 1 to n

	 	 	 A[i, j] := 0

Loop Parallelization
• Other issues of importance in parallelizing compilers

include communication and load balance

• Locality in parallel programs reduces communication

among processors and between the processors and memory

– Optimizations similar to those employed to reduce the number of

cache misses on a uniprocessor can be used to reduce
communication trafic on a multiprocessor.

• Load balance refers to the division of labor among
processors on a parallel machine

– dividing a program among 16 processors, we shall obtain a speedup

of close to 16 only if each processor takes the same amount of time
to do its work

– assigning 5% of the work to each of 15 processors and 25% of the
work to the sixteenth, we are likely to see a speedup of no more
than four

