
Copyright © 2016 Elsevier and Jonathan Aldrich

Names, Scopes, and Bindings

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 3

Prof. Jonathan Aldrich

Name, Scope, and Binding

• Consider this example of a variable binding:
fn binding() {
 //println!("{}", name);
 let x = "Harry Q. Bovik";
 println!("Hello, {}", x);
}

• x is a name
• let x = "Harry Q. Bovik"; is a binding

– associates x with a variable
– assigns the result of evaluating the right hand side to

the variable
• The scope of x is where the binding is active

– typically the statements that follow the binding

Binding

• Scope rules control bindings (of variables, functions, etc.)

– Fundamental to all programming languages is the ability to
name data, i.e., to refer to data using symbolic identifiers
rather than addresses

– Not all data is named! For example, dynamic storage in C
is referenced by pointers, not names. But the pointers are
ultimately stored in variables that are named.

Name, Scope, and Binding

• Some notation for scope:
– S2[x] indicates that x is bound in S2

{
S1

let x = e;
S2[x]

}
• In most languages, using x in S1 or in e is a

compile-time error

Name, Scope, and Binding

• What happens if the scope of x is the entire block?
{

S1[x]
let x = e[x];
S2[x]

}
• This is true in JavaScript!

– x will have the value undefined if used in S1 or e

Name, Scope, and Binding

• In C, you can declare a variable without defining it
{

S1

int x;
S2[x]
x = e[x]
S3[x]

}
• x is in scope in S2, e, and S3

• But if x is used in S2 or e, the compiler will report a use
before initialization warning

– If the program is run anyway, x may have an arbitrary value
(typically whatever was in the memory location being used)

Name, Scope, and Binding

• Haskell allows recursive definitions! This is OK as long
as the variable being bound is used inside a function or
list

let x = e1[x] in e2[x] -- general form
let x = x in x+1 -- run time error (black hole)
let x = 1 : x in … -- OK: x is a cyclic list of 1s

let f = \n -> if n == 1 then 1 else n * f(n-1) in … : x
-- OK: defines factorial

Lifetime and Storage Management

• Lifetime of an entity (e.g. variable)
• From when space is allocated to when it is reclaimed

• Lifetime of a binding (e.g. the variable’s name)
• From when it is associated with the entity to when the association ends

fn return_ptr(x:&i32) -> &i32 {
 return x;
}
fn main() {
 let i = 1;
 let j = return_ptr(&i);
 println!("j is {}", j);
 // j is not used past here ...
}

• What if the lifetime of a binding is different from the lifetime of the
entity being bound?

Lifetime and Storage Management

• Lifetime of an entity (e.g. variable)
• From when space is allocated to when it is reclaimed

• Lifetime of a binding (e.g. the variable’s name)
• From when it is associated with the entity to when the

association ends
• If binding outlives the entity, we have a dangling reference

• Dangling references don’t usually exist as names per se, but we can
create them with pointers

fn return_ptr(x:&i32) -> &i32 {
 let local = 5;
 return &local;
}
let j = return_ptr(&i);

Lifetime and Storage Management

• Lifetime of an entity (e.g. variable)
• From when space is allocated to when it is reclaimed

• Lifetime of a binding (e.g. the variable’s name)
• From when it is associated with the entity to when the

association ends
• If binding ends before the entity, we have garbage

• Can happen in functional languages

let f(x) =
let y = x + 1 in
fn z => y + z // have to keep y around when f returns

in let g = f(1) // y is used in the returned function g
in let h = g(2) in
… // at this point y is garbage

Lifetime and Storage Management

• Here’s the Rust version

fn return_closure() -> Box<dyn Fn(i32) -> i32> {
 let increment = 1;
 let f = move |x| x+increment;
 return Box::new(f);
}
 let f = return_closure();
 let k = (*f)(1);

Lifetime and Storage Management

• Lifetime of an entity (e.g. variable)
• From when space is allocated to when it is reclaimed

• Lifetime of a binding (e.g. the variable’s name)
• From when it is associated with the entity to when the

association ends
• If binding outlives the entity, we have a dangling reference
• If binding ends before the entity, we have garbage

• A binding is active whenever it can be used

• A scope is the largest program region where no
bindings are changed
• Typically from a variable’s declaration to the end of a

block

Lifetime and Storage Management

• What does this Rust code print?

fn shadows() {
let x = 5;
println!("x is {}", x);
let x = 6;
println!("x is {}", x);

}

Lifetime and Storage Management

• Bindings may be (temporarily) deactivated
• When one variable is shadowed by another with the same name

fn shadows() {
let x = 5;
println!("x is {}", x);
let x = 6; // shadows the earlier binding
println!("x is {}", x); // will print 6

}

• When calling another function, while that function executes
• For static variables, when the containing function is not running

Lifetime and Storage Management

• Typical timeline (e.g. for variables)
– creation of entities – e.g. at function entry, alloc stmt
– creation of bindings – at variable declaration
– use of variables (via their bindings)
– (temporary) deactivation/shadowing of bindings
– reactivation of bindings
– destruction of bindings – at end of scope
– destruction of entities – at end of scope, free stmt

Copyright © 2009 Elsevier

Lifetime and Storage Management

• Storage Allocation mechanisms
–Static – fixed location in program memory

–Stack – follows call/return of functions

–Heap – allocated at run time, independent of call structure

• Static allocation for
–code

–globals

–static variables

–explicit constants (including strings, sets, etc.)

–scalars may be stored in the instructions

Copyright © 2009 Elsevier

Lifetime and Storage Management

•Stack allocation for
–parameters

–local variables

–temporaries

•Why a stack?
–allocate space for recursive routines
(not necessary in FORTRAN – no recursion)

–reuse space (in all programming languages)

–Why not a stack?
–We already saw that closures can be an exception

Lifetime and Storage Management

Lifetime and Storage Management

• Let’s look at compiling some Snake code
• Next week’s homework

(- 100 50)

(+ 2 (- 100 50))

(let (x 10) (let (y 10) (+ x y)))

Slight change from the
original question in class,
illustrates temporaries on

the stack better

Lifetime and Storage Management

Answer: compiling (- 100 50)

mov rax, 100

mov [rbp-8], rax

mov rax, 50

mov rbx, rax

mov rax, [rbp-8]

sub rax, rbx

Note: the subtraction code above is slightly different from the solution in class; the
code given here is slightly longer but is more robust because it preserves evaluation
order and so will continue to work in an imperative setting.

Compilation of
100

Compilation of
50

Compilation of
subtraction

Compilation of
subtraction

Lifetime and Storage Management

Answer: compiling (+ 2 (- 100 50))

mov rax, 2

mov [rbp-8], rax

mov rax, 100

mov [rbp-16], rax

mov rax, 50

mov rbx, rax

mov rax, [rbp-16]

sub rax, rbx

add rax, [rbp-8]

Lifetime and Storage Management

Answer: compiling (let (x 10) (let (y 10) (+ x y)))

mov rax, 10

mov [rbp-8], rax ; x

mov rax, 10

mov [rbp-16], rax ; y

mov rax, [rbp-8]

mov [rbp-24], rax ; temporary

mov rax, [rbp-16]

add rax, [rbp-24]

