
17-363/17-663: Garbage Collection

1

Joannah Nanjekye, PhD
jnanjeky@cs.cmu.edu

Python Core Developer and Programming Languages Researcher
October 21, 2024

Garbage Collection

2

➔ A 70-year old field now
➔ Automation of dynamic memory allocation
➔ Automation is vital for managed languages
➔ Where the VM automatically allocates and deallocates memory on

the user’s behalf because:
● It is necessary for working programs
● It is a complex manual task
● And error-prone

A garbage Collector is the component that reclaims
memory that the program no longer needs

The collector refers to the aspect of the application that reclaims
memory for objects that are considered garbage

The mutator refers to the application program

The allocator is responsible for the allotment of memory for objects

 Dijkstra Terminology

3

Categorizing Garbage Collectors

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

➔ Garbage collectors are categorized by how they:
● Allocate objects
● Identify unused objects
● Free unused memory

4

Allocation

Objects are allocated in memory in one of two ways:
1. Contiguous Allocation: Places objects in memory in the order in which they

are allocated
● Achieves this by incrementing the allocation pointer based on the size of

the object to be allocated
● Algorithms based on this technique have good locality because objects

are allocated and used together
2. Free-list allocation: Free lists are lists of variable-size cells of memory.

Free-list allocation places objects in these cells
● Objects are allocated in memory based on their size relative to the cell
● Allocation is in a first-fit fashion rather than allocation order
● It permits non-contiguous allocation, which is prone to fragmentation

and poor locality

5

Identifying Garbage

Achieved in the following one of two ways:
1. Reference Counting: Involves tracking the number of times an object is

referenced by other objects
● An object is considered garbage if its reference count drops to zero

2. Tracing: Scans the object graph for objects that are not directly or indirectly
referenced from a root object

● An object that is not reachable by reference from the root is considered
garbage and thereby collected

6

Memory Reclamation

Memory reclamation is achieved by one of these strategies::
1. Back to a free-list: Memory is returned to the free-list at the time of

deallocation
2. Sweeping: Involves traversing the object heap, marking unused blocks of

memory as free
3. Compaction: re-arranges the remaining objects after a collection to avoid

fragmentation
4. Copying: Moves objects from one region in memory to another, freeing up

the former

7

Overview of Tracing Garbage Collection

8

Terminology

1. Object: This is simply an instance of data stored on the heap
2. Object graph: This is the layout of objects in memory; the objects make up the nodes

of this graph
3. The Root Set: This is a set of objects in the object graph from which references

originate and are directly accessible by the mutator.
4. Reachable or Live Objects: These are objects that have an incoming edge referencing

them from one of the root sets or edges from other reachable objects
5. Unreachable or Dead Objects: Objects that do not have any incoming edge

referencing them from the root set or edges from other reachable object
6. Collection: The process of reclaiming memory that is occupied with unreachable

objects
7. Barrier: An operation that is invoked before reading or writing to a pointer
8. A Conservative Collector: A garbage collector that works with minimal information

about pointers

9

Garbage Collection Example

10

Before Collection

After Collection

Garbage Collection Algorithms
Reference Counting: works by tracking a count of all incoming references to an object,
collecting objects whose reference count decreases to zero

● A write barrier is used to synchronize changes to every pointer,
● Hailed for low memory overhead and ease of implementation
● Has two main limitations:

○ Cannot collect garbage for objects in a cycle
○ Incurs performance overhead as a result of tracking pointer mutations

A lot of research exists to address these known challenges

11

Garbage Collection Algorithms

Mark-Sweep: Performs memory management activities in two phases, i.e., the mark and
sweep phase

● The mark phase traverses the object graph from the root set, marking all objects
or nodes that have an incoming reference from the root set or other reachable
objects

● The sweep phase then traverses the whole heap, freeing any memory with
unmarked objects

12

Garbage Collection Algorithms

Mark-Compact: Rearrange objects in memory after a collection cycle.
Compaction is commonly used in the mark-and-sweep collection

● After the marking phase, compaction can be used in addition to a normal sweep
phase

● Sweeping without rearranging objects creates fragmentation and compaction
solves this problem

● A simple compaction algorithm uses sliding to compress reachable objects into a
contiguous memory space while maintaining their order in the heap

13

Garbage Collection Algorithms

Semi-space Copying: Copying collectors divide the heap into two regions
● Allocation of objects is done in the first region called the from-space
● When it runs out of space, collection takes place copying any live objects to the

second region called the to-space
● The pointers to the moved objects are updated

14

Garbage Collection Algorithms

Generational Collection: Based on the weak generational hypothesis hypothesis,
generational collectors are region-based GCs and similar to the semi-space collectors

● The weak generational hypothesis states that most of the objects live for a short
time

● Generational GCs partition the heap in two generations, the nursery and the old
generation

● The nursery is frequently collected while the old generation is less often
collected

15

Challenges for all Algorithms

● Handling conservative references
● Performance (latency and throughput)
● Visitation Order
● Number of passes over the heap
● Locality
● Fragmentation
● Parallelism

16

Garbage Collection and its Economics

Architectures

Modern architectures can have
memory overhead

Applications

The runtime behaviour affects GC cost

Design choices lead to GC cost

Programming Languages

Source: Nystrom, R., 2021. Crafting interpreters. Genever Benning.

17

Start with identifying garbage collection gaps?

Potential Paths: To understand and optimize garbage
collection

18

GC Gaps: Modularity

Complexity is the Enemy of Security and Performance
Steve Blackburn, MPLR 2020, Keynote

Effects of this Complexity:
❖ Compromises security
❖ Complicates maintenance
❖ Hinders analysis

19

GC Gap: Performance

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

Source: Acunote, 2008. Garbage Collection is Why Ruby is Slow. Gleb
Arshinov.

Source: Instagram, 2017. Dismissing Garbage Collection at Instagram.
Chenyang Wu, Min Ni.

20

GC Gap: Support for Native Extensions

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

Source: Google Android Team, 2024. Comprehensive Rust.

Technological Challenges:
❖ Memory model compatibility
❖ Pointer stability
❖ Lifetime complexity
❖ Generation and verification

21

Some Recent Contributions to these Gaps

Eclipse OMR-based GC
[CASCON 2021]

Understanding the GC Cost
[CASCON 2022]

Optimal JIT Trace Sizing
[US Patent 2023]

Type-based Stores and Context Aware Presizing
[JOT 2024]

Context Aware Presizing
[DEF, Anti-patent 2024]

Type-based Stores
[DEF, Anti-patent 2024]

CyStck and Migration Tooling
[ICOOOLPS 2023]

Modularity Performance Support for Native Code
22

DEF: Defensive Publication

IBM OMR GC Modularity for RPython VMs

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2021. Eclipse OMR garbage collection for tracing JIT-based virtual machines. CASCON '21. IBM Corp., USA, 244–249
23

Raw Code Metrics, LCOM and MI

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2021. Eclipse OMR garbage collection for tracing JIT-based virtual machines. CASCON '21. IBM Corp., USA, 244–249
24

A (20 - 100): Good, B (10 - 19): Moderate, C (0 - 9): Low

JIT Tracing and Garbage Collection

Joannah Nanjekye, David Bremner, and Aleksandar Micic. The Garbage Collection Cost For Meta-Tracing JIT-based Dynamic Languages. CASCON '22. IBM Corp., USA, 140–149
25

H1: The effective or best trace limit is application
specific

H2: Increasing the trace limit improves performance to a degree,
after which GC pressure degrades it

Default PyPy Trace Limit

Optimal Trace Sizing for Virtual Machines

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

 We propose a technique that utilizes profiling information
during formation of a trace:

● A new trace is not compiled immediately, it is profiled
first

● We identify hot exits of the trace, which is the effective
trace size estimation phase

● We then estimate the total execution time for a program
at this trace size

● The estimated total execution time at this trace size, can
be used to decide to either continue trace formation, or
trigger a trace abort

Joannah Nanjekye, David Bremner, and Aleksandar Micic. The Garbage Collection Cost For Meta-Tracing JIT-based Dynamic Languages. CASCON '22. IBM Corp., USA, 140–149 26

Language C API and Garbage Collection

Objects are in form of a C struct. The C APIs have the following challenges:
● A non-moving object model
● Non-opaque Object structs
● Tight coupling with GC implementation
● Borrowed references

Main Problems: Pointer Stability, Lifetime Complexity, Memory Model Compatibility

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2023. Towards Reliable Memory Management for Python Native Extensions. ICOOOLPS 2023. ACM, USA, 15–26 27

CyStck

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

 A new alternate stack-based C API for Python as a
solution:

● We combine a stack and light-weight handles

○ The stack and handles are used for communication
between C and Python

○ As well as aid with garbage collection
● CyStck provides scope gates for functions that may

generate many objects
● For object lifetime management we use:

○ A manual reference mechanism
○ Process introspection

Another Problem: Reachability alone is not enough to determine when to collect an object

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2023. Towards Reliable Memory Management for Python Native Extensions. ICOOOLPS 2023. ACM, USA, 15–26 28

Process Introspection

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2023. Towards Reliable Memory Management for Python Native Extensions. ICOOOLPS 2023. ACM, USA, 15–26 29

Garbage Collection and Phase Analysis

30

Live Size and Allocation Rate

31

Optimal Heap Limits: The heap limit algorithm by Kirisame et al., can be
modified to be based on the stack height instead of live size:

Reduced Pause Time: Phase-based GC triggering based on the stack height
can be investigated with server workloads to reduce server timeout for
requests

 Memory Safety of FFIs: Towards better VM/C++ interoperability, study
memory safety concerns and write validation tools that are able to isolate
safety issues

Potential GC Work Paths

32

Eclipse OMR-based GC
[CASCON 2021]

Understanding the GC Cost
[CASCON 2022]

Optimal JIT Trace Sizing
[US Patent 2023]

Type-based Stores and Context Aware Presizing
[JOT 2024]

Context Aware Presizing
[DEF, Anti-patent 2024]

Type-based Stores
[DEF, Anti-patent 2024]

CyStck and Migration Tool
[ICOOOLPS 2023]

Modularity Performance Support for Native Code

33
DEF: Defensive Publication

Thank You!

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

1. [Reference Counting]. Simulate reference counting with this Java-like code, tracking allocated
objects, reference counts, and deallocation:
class Link {

int value;
Link next;

}

Link makeList() {
Link x = new Link();
x.next = new Link();
Link y = new Link();
x.next = y;
return y;

}

Link z = makeList();
z.next = z;
z = null;

34

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

17-363/17-663: Programming Language Pragmatics, In-Class Exercises October 21, 2024
Andrew ID: __________________________

35

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

2. [Copy Collection]. Simulate copy collection on the following memory from-space, and show the
resulting to-space. We’ve simplified things so that the heap has only pairs in it, and each pair has an
additional “forwarding address” space. That means every heap location is a multiple of 3. We reserve
0 for the null pointer. Assume all non-zero values are pointers. Assume we have one global variable, x.

Value of global variable x: address 3

From-Space:

36

Unicorn Sightings
A record of the number of unicorns
spotted in the fantasy realm and the

beauty and mystery.

Dragon Taming
A closer look at the art of taming dragons

and the brave adventurers who dare to
take on these fearsome creatures.

------------------------------ After Copy Collection -----------------------------

Value of global variable x: ____________

37

