17-363/17-663: Garbage Collection

Joannah Nanjekye, PhD
jnanjeky@cs.cmu.edu

Python Core Developer and Programming Languages Researcher

October 21, 2024

A

python’

Carnegie

Mellon

University

Garbage Collection

-> A 70-year old field now
-> Automation of dynamic memory allocation
-> Automation is vital for managed languages
-> Where the VM automatically allocates and deallocates memory on
the user’'s behalf because:
e [tis necessary for working programs
e [tis a complex manual task
e And error-prone

A garbage Collector is the component that reclaims
memory that the program no longer needs

Dijkstra Terminology

The collector refers to the aspect of the application that reclaims
memory for objects that are considered garbage

The mutator refers to the application program

The allocator is responsible for the allotment of memory for objects

Categorizing Garbage Collectors

-> Garbage collectors are categorized by how they:
e Allocate objects
e Identify unused objects
® Free unused memory

ObjFunction

chunk Ql—— —
ObjClosure ’ constants O- -
function
‘ upvalues '

O—L upvalue array ObjUpvalue
| I »| location Q—IW Ob)String

char array

(i s C’ closed lchars ,
N ~

-—
" -
-

- -
- - ‘--f'

»[d}altlal\ol

Allocation

Objects are allocated in memory in one of two ways:
1. Contiguous Allocation: Places objects in memory in the order in which they
are allocated
e Achieves this by incrementing the allocation pointer based on the size of
the object to be allocated
e Algorithms based on this technique have good locality because objects
are allocated and used together
2. Free-list allocation: Free lists are lists of variable-size cells of memory.
Free-list allocation places objects in these cells
e Objects are allocated in memory based on their size relative to the cell
e Allocation is in a first-fit fashion rather than allocation order
e [t permits non-contiguous allocation, which is prone to fragmentation
and poor locality

Identifying Garbage

Achieved in the following one of two ways:
1. Reference Counting: Involves tracking the number of times an object is
referenced by other objects
e An objectis considered garbage if its reference count drops to zero
2. Tracing: Scans the object graph for objects that are not directly or indirectly
referenced from a root object
e An object that is not reachable by reference from the root is considered
garbage and thereby collected

Memory Reclamation

Memory reclamation is achieved by one of these strategies::
1. Back to a free-list: Memory is returned to the free-list at the time of
deallocation
2. Sweeping: Involves traversing the object heap, marking unused blocks of
memory as free
3. Compaction: re-arranges the remaining objects after a collection to avoid
fragmentation

4. Copying: Moves objects from one region in memory to another, freeing up
the former

Overview of Tracing Garbage Collection

O/O

NI

o, 57
\

BEGIN

/

/O

O

/

\

N
7/

MARK

SWEEP

Y
o o)
o 1
*/O
END

A tracing garbage collector is any algorithm that traces through the graph of object references. This is in contrast with

reference counting, which has a different strategy for tracking the reachable objects.

Terminology

o N

. Object: This is simply an instance of data stored on the heap

Object graph: This is the layout of objects in memory; the objects make up the nodes
of this graph

The Root Set: This is a set of objects in the object graph from which references
originate and are directly accessible by the mutator.

Reachable or Live Objects: These are objects that have an incoming edge referencing
them from one of the root sets or edges from other reachable objects

Unreachable or Dead Objects: Objects that do not have any incoming edge
referencing them from the root set or edges from other reachable object

Collection: The process of reclaiming memory that is occupied with unreachable
objects

Barrier: An operation that is invoked before reading or writing to a pointer

A Conservative Collector: A garbage collector that works with minimal information
about pointers

Garbage Collection Example

Before Collection

-

Object A | | i
| | P{ Object E ’—*’ Object F H Object G

Object B i T

[Object H f , | [Object J J
_ Object |
Object C : ;
Object D . p '
‘ Object K I“)~{ Object N |
{ v \
‘ Object L 1} % Object M I
After Collection
Object A |
) Object E Object F Object G
L Object B | l
/ \ [Object H J
Object C

- |
Object D
') { Object L } { Object M J

Garbage Collection Algorithms

Reference Counting: works by tracking a count of all incoming references to an object,
collecting objects whose reference count decreases to zero
e A write barrier is used to synchronize changes to every pointer,
e Hailed for low memory overhead and ease of implementation
e Has two main limitations:
o Cannot collect garbage for objects in a cycle
o Incurs performance overhead as a result of tracking pointer mutations

A lot of research exists to address these known challenges

(M

[Po——— A ——-—-L/ -——-b-{ c - \ X
-

// A ——a—/ X
‘ P ———t
(3) \
. X
. \)m
\\ (1) \\-#/
N\ A3 c | X
S
\\‘ ______
—
1] \\
. L—— e | p— X .
£/ N

11

Garbage Collection Algorithms

Mark-Sweep: Performs memory management activities in two phases, i.e., the mark and
sweep phase
e The mark phase traverses the object graph from the root set, marking all objects
or nodes that have an incoming reference from the root set or other reachable

objects
e The sweep phase then traverses the whole heap, freeing any memory with
unmarked objects

12

Garbage Collection Algorithms

Mark-Compact: Rearrange objects in memory after a collection cycle.
Compaction is commonly used in the mark-and-sweep collection
e After the marking phase, compaction can be used in addition to a normal sweep
phase
e Sweeping without rearranging objects creates fragmentation and compaction
solves this problem
e A simple compaction algorithm uses sliding to compress reachable objects into a
contiguous memory space while maintaining their order in the heap

Sweep Phase
G6C Free space occupied by
I I
Root Z , 7 dead objects
\ /
| /«-——\ Compact phase

G6C A~ D E Move objects to
Root reduce fragmentation

13

Garbage Collection Algorithms

Semi-space Copying: Copying collectors divide the heap into two regions
e Allocation of objects is done in the first region called the from-space
e When it runs out of space, collection takes place copying any live objects to the
second region called the to-space
e The pointers to the moved objects are updated

from-space | o-space
|
from-space
to-space "

14

Garbage Collection Algorithms

Generational Collection: Based on the weak generational hypothesis hypothesis,
generational collectors are region-based GCs and similar to the semi-space collectors
e The weak generational hypothesis states that most of the objects live for a short

time
e (Generational GCs partition the heap in two generations, the nursery and the old
generation
e The nursery is frequently collected while the old generation is less often
collected
mature space mature space
nursery nursery

15

Challenges for all Algorithms

Handling conservative references
Performance (latency and throughput)
Visitation Order

Number of passes over the heap
Locality

Fragmentation

Parallelism

16

Garbage Collection and its Economics

Programming Languages

Design choices lead to GC cost

Architectures

Modern architectures can have
memory overhead

The runtime behaviour affects GC cost

LATENCY
A
EXECUTION TIME r)
[I T T T - 1
User | GC | User GC User GC User
it dniny WM RO T
L Ulumuhnummlll .'H.')JJB&TWK%
~
User | User User (User
_ »,
Y
THROUGHPUT

Source: Nystrom, R., 2021. Crafting interpreters. Genever Benning.

17

Potential Paths: To understand and optimize garbage
collection

Start with identitying garbage collection gaps?

18

GC Gaps: Modularity

Complexity is the Enemy of Security and Performance
Steve Blackburn, MPLR 2020, Keynote

Iectlon IS complex =

f\ 1L 1N

S Ca L

. | = ALy
e
R ¢ J**‘\._“.

*\:\ -
L XN

Effects of this Complexity:

N/

* Compromises security

N/

¢ Complicates maintenance
¢ Hinders analysis

19

GC Gap: Performance

Problem Patch
Rails 1.2
module ActiveRecord
class Base
private
def attributes_with_quotes(include_primary_
result = {}

@attributes.each_key do |name|
if column = column_for_attribute(na

ActiveRecord: :Base#create calls d resultiname] = quote_value(read
i , . en
Samples: 2K of event ‘'page-faults', Event count (approx.): 91453 attributes_with_quotes twice, end
Overhead Samples Command Shared Object Symbol AELIVERBEOTU: sBaseURUARS, OGe, Fesuls
ve P ; ; J y #attributes_with_quotes calls end
17 .08% 198 wuwsgi uwsgi [.] collect.part.?7 #attributes, which clones all attribute end
- collect.part.7 values. None of these clones are necessary. | end
- _PyObject_GC_New Impact: Rails 2.0
T 98.54% PYD1ICT_New When copying 120 tasks in Acunote this costs
+ 1.46% list_iter 650M. Patch improves performance from 14s § module ActiveRecord
: e 1
+ 356 uwsgi _scrypt.so [.] crypto_scrypt Notea: ;rz::t:ase
+ 444 uwsgi libc-2.20.s0 [.] _int_malloc Helps when you do a lot of creates and def attribute?;with_quotes(include_primary_
. ~ : X ted =
¥ 291 uwsgl Uwsgi [.] PyObject_Malloc updates through ActiveRecord. 'gg(t)t?lbutes.each_pair do |name, value|
+ 218 uwsgil uwsgi [.] PyObject_GenericGetAttr if column =[col;:mn_for_attribute('m
. b quoted(name] = quote_value(read
+ 176 uwsgi uwsgi [.] PyEval_EvalFrameEx -
+ 167 uwsgil uwsgi [.] PyFrame_New t_aﬂd1 : _ ;
+ 27 mc-eccc-pool libc-2.20.s0 [.] _int_malloc and NGRURALTORIOntYACEIULas: f ot
+ 96 uwsgi libc-2.20.s0 [.] __memcpy_sse2_unaligned ’ end
+ 48 cfgator-sub libc-2.20.s0 [.] _int_malloc on
Source: Instagram, 2017. Dismissing Garbage Collection at Instagram. Source: Acunote, 2008. Garbage Collection is Why Ruby is Slow. Gleb

Chenyang Wu, Min Ni. Arshinov.
20

GC Gap: Support for Native Extensions

#[cxx::bridge] mod
description of boundary

Code generation

Macro expansion
Safe

straightforward Straightforward

Rust APls Hidden C ABI C++ APIs
Rust Rust blndlngs ————— > C++ blndlngs <— C+t
code code

Source: Google Android Team, 2024. Comprehensive Rust.

Technological Challenges:
< Memory model compatibility
¢ Pointer stability
¢ Lifetime complexity
¢ Generation and verification

21

Some Recent Contributions to these Gaps

__

Eclipse OMR-based GC Understanding the GC Cost || Optimal JIT Trace Sizing CyStck and Migration Tooling
[CASCON 2021] [CASCON 2022] [US Patent 2023] [ICOOOLPS 2023]

Type-based Stores and Context Aware Presizing

[JOT 2024]
b
Type-based Stores Context Aware Presizing N [k Artifacts Available / v1.1

| [DEF, Anti-patent2024] | | [DEF, Anti-patent 2024] |

Modularity Performance Support for Native Code

DEF: Defensive Publication

IBM OMR GC Modularity for RPython VMs

Control flow
graphing

—

A

RPython function objects

Type inferance

LLTyper/OOTyper

OMR GC
Transformation

Backend
compilation

» Compiled code

OMR garbage
collector

T

OMR glue code

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2021. Eclipse OMR garbage collection for tracing JIT-based virtual machines. CASCON '21. IBM Corp., USA, 244-249

23

Raw Code Metrics, LCOM and MI

OMR Garbage Collector | RPython Garbage Collector
Number of methods 22 26
Number of bytes 11.5kb 26kb
LOC 338 630
LLOC 224 538
SLOC 249 567
Y CC 42 98
CC 1.75 3.5
OMR GC | Framework GC | p7 = max{o, 1007272 InV —0.23G — 16.2In L + 50 sin vm}
Lack of cohesion of methods (LCOM) 2 1.5 171
Maintainability Index (MI) 31.28, A 14.12, B | Where:

(1) V = Halstead volume

) G = Total cyclomatic complexity
) L =SLOC
4) C = Percentage of comment lines in radians

(2
(3
(

24

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2021. Eclipse OMR garbage collection for tracing JIT-based virtual machines. CASCON '21. IBM Corp., USA, 244-249

2.5

Best Trace Limit
=
(&)

-

0.5

JIT Tracing and Garbage Collection

«10°
| | | | | | |
Default PyPy Trace Limit
& | ® B ot & ¥ 3 N
,\,50"9 QgQ‘ Q@o Q@é éo° ‘\00&
Benchmarks

QL

E I i T i

E 21.2¢F H

221,14 . _ _ . _ 5

§ 21 I\I | |

~ 6000 50000 100000 400000 800000 1500000 2000000
Tracelimit

-3

¢ 42 20

l_ fyesl Ik

Q

O \ /

G

g 415 | | ! | |

6000 50000 100000 400000 800000 1500000 2000000

Tracelimit

© o
= N
|

0 | | | |
6000 50000 100000 400000 800000 1500000 2000000

Tracelimit

Minor GC Time

H1: The effective or best trace limit is application
specific

H2: Increasing the trace limit improves performance to a degree,
after which GC pressure degrades it

25

Joannah Nanjekye, David Bremner, and Aleksandar Micic. The Garbage Collection Cost For Meta-Tracing JIT-based Dynamic Languages. CASCON '22. IBM Corp., USA, 140-149

Optimal Trace Sizing for Virtual Machines

b0
] b1
We propose a technique that utilizes profiling information [Tracing]
. . b2
during formation of a trace:
e A new trace is not compiled immediately, it is profiled =
first fir = 60
e We identify hot exits of the trace, which is the effective bbo
trace size estimation phase \ ‘ LT Ser
. . . Profili
e We then estimate the total execution time for a program [= Y, =
at this trace size
e The estimated total execution time at this trace size, can by—>» Smax
be used to decide to either continue trace formation, or v a3 —
¢ Igc(ve
trigger a trace abort [Phase Estimation])_.4 * Tgc (Smax)
J o Tmut (Seff)
e Tmut (Smax)
-
\4
[Phase change eva|uati0n}) _< ® Tage (seff) + Tmut (Seff) > Tge (SmaX) + Tmut (smaX)
_

Joannah Nanjekye, David Bremner, and Aleksandar Micic. The Garbage Collection Cost For Meta-Tracing JIT-based Dynamic Languages. CASCON '22. IBM Corp., USA, 140-149 26

Language C API and Garbage Collection

Objects are in form of a C struct. The C APIs have the following challenges:
e A non-moving object model
e Non-opaque Object structs
e Tight coupling with GC implementation
e Borrowed references

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2023. Towards Reliable Memory Management for Python Native Extensions. ICOOOLPS 2023. ACM, USA, 15-26

27

CyStck

A new alternate stack-based C API for Python as a S — E_0
S OluthIl . ' [PyObjecty]
e We combine a stack and light-weight handles | PyObject ' !

: PyObject 1

o The stack and handles are used for communication

between C and Python .
o As well as aid with garbage collection SN o
. . : Cystck_Object var1 : =l Stack
e CyStck provides scope gates for functions that may -]

generate many objects
) Handles 8
e For object lifetime management we use: i i Emirommeg. | g C Object

Cystck Object var2

C Object

o A manual reference mechanism
© Process introspection

Another Problem: Reachability alone is not enough to determine when to collect an object

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2023. Towards Reliable Memory Management for Python Native Extensions. ICOOOLPS 2023. ACM, USA, 15-26

Process Introspection

Algorithm 4: Deallocation: ObjectLifeTimeAnalysis(obj)

Data: Input: Let obj be the object
Result: An accurate deallocation of obj

1 use liballocs.h;

2 /*deallocate an object™/;

3 if CreatedFromPython(obj) then
4 if refcount == 0 then

5 detachRefCountPolicy();

6 free(obj)();

7 end

8 end

o if /CreatedFromPython(obj) then
10 if refcount == 0 then

11 - detachRefCountPolicy(obj);
12 end

13 if isExplicitFreeCalled() then
14 \ detachExplicitFreePolicy(obj);
15 end

16 if 'has policy(obj) then

17 - free(obj);

18 end

19 end

Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2023. Towards Reliable Memory Management for Python Native Extensions. ICOOOLPS 2023. ACM, USA, 15-26

29

Garbage Collection and Phase Analysis

Al CaIIS|mpIe HTMLSle
25 v 80 25
20 t ail 20
15] 15 § \\
40 -
10 | 10 + \\
51 s = 5|
0 i O A 1 i : 0 i
B 20 40 60 80 3
NBody Pickle RegexCompile
25 v 30 y 25 '
. SO ok
20 } \ 20 |
= 20 | \ \\
© 15t \ 15 | \
) \ \
T \
S 10 ¥ \ 10 :
§ 10 | \\ \
7))
5t \ 5t \
0 - 0 - 0 .
4 5 10 3
UnpackSequence Richards RegexEffBot
25 T 12 v 30 F '
AN N T -
f h\ ‘\' J
20 10 | [Y\[Y v 'nl
ped | ‘
/ .
15 | 8 M/ = A
\ A p At d
10 } 1 6t / : |
\l. ‘0' || / 10 1 '|
\ e [| / l
5 E ‘L-—'/ iy : 4 . {
’/ Ya%
0 i i i 2 i A O i i i i
0 2 4 6 8 0 20 40 60 0 10 20 30 40

Time (Call Site)

Live Size and Allocation Rate

Stack Height Live Size Stack Height Allocatation Rate
6 410 6 e 189
1400 |
! 1300 &} jes
1380 88
4 370 4 :
0 10 0 10
8 ' 430 8 190
6 \ 1420 6 180
4 \ 410 4 170
21 1400 2} 160
0 . . : . * 330 O : . 4 . ‘ 1 50
1 2 3 4 5 6 £ 1 2 3 4 5 6 7
UnpackSequence

1400

1390

380

1 2 3 4 5
Time (Call Site)

31

Potential GC Work Paths

Optimal Heap Limits: The heap limit algorithm by Kirisame et al., can be
modified to be based on the stack height instead of live size:

M = kS ++/kSg/cs

Reduced Pause Time: Phase-based GC triggering based on the stack height
can be investigated with server workloads to reduce server timeout for

requests

Memory Safety of FFIs: Towards better VM /C++ interoperability, study
memory safety concerns and write validation tools that are able to isolate
safety issues

32

__

Eclipse OMR-based GC Understanding the GC Cost || Optimal JIT Trace Sizing CyStck and Migration Tool
[CASCON 2021] [CASCON 2022] [US Patent 2023] [ICOOOLPS 2023]

Type-based Stores and Context Aware Presizing
[JOT 2024]

Type-based Stores Context Aware Presizing

| Artifacts Available / v1.1
| [DEF, Anti-patent2024] | | [DEF, Anti-patent 2024] ||

Thank You!

DEF: Defensive Publication

1. [Reterence Counting]. Simulate reference counting with this Java-like code, tracking allocated
objects, reference counts, and deallocation:
class Link {

int value;

Link next:

}

Link makeList() {
Link x = new Link();

X.next = new Link();

Link y = new Link();
X.next =y,

return y,

}

Link z = makeList();
z.next =z;
7 = null;

34

17-363/17-663: Programming Language Pragmatics, In-Class Exercises October 21, 2024
Andrew ID:

35

2. [Copy Collection]. Simulate copy collection on the following memory from-space, and show the
resulting to-space. We've simplified things so that the heap has only pairs in it, and each pair has an
additional “forwarding address” space. That means every heap location is a multiple of 3. We reserve
0 for the null pointer. Assume all non-zero values are pointers. Assume we have one global variable, x.

Value of global variable x: address 3

From-Space:

From-Space:
Address Forwarding address | First Second
0
3 9 15
6 12 15
9 9 0
12 6 0
15 18 0
18 0 15

Value of global variable x:

To-Space:

Address

Forwarding address

First

Second

30

33

36

39

42

45

48

37

