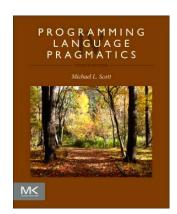
Syntax and Lexical Analysis

17-363/17-663: Programming Language Pragmatics



Reading: PLP chapter 2 through section 2.2

Prof. Jonathan Aldrich

Specifying Syntax

• Let's start by specifying the idea of a *digit*:

$$digit \longrightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

• From this we can build *natural numbers*:

$$non_zero_digit \longrightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

 $natural_number \longrightarrow non_zero_digit digit *$

• Simple concepts like these can be expressed with regular expressions

Regular Expressions

- A regular expression is one of the following:
 - A character
 - The empty string, denoted by ε
 - Two regular expressions concatenated
 - Two regular expressions separated by | (i.e., or)
 - A regular expression followed by the Kleene star
 - * (concatenation of zero or more strings)

Regular Expressions

• Numerical constants accepted by a simple hand-held calculator:

```
number \longrightarrow integer | real integer \longrightarrow digit digit * real \longrightarrow integer exponent | decimal (exponent | \epsilon) decimal \longrightarrow digit * ( . digit | digit . ) digit * exponent \longrightarrow (e | E) (+ | - | \epsilon) integer digit \longrightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```


Practice with Regular Expressions

- Define a regular expression for C-style comments
 - You may use abbreviations like *non-** or *newline*
 - You may use Kleene + (1 or more) in addition to Kleene *

Practice with Regular Expressions

- Define a regular expression for C-style comments
 - You may use abbreviations like *non-** or *newline*
 - You may use Kleene + (1 or more) in addition to Kleene *
- One solution (from the textbook)

```
comment → /* (non-* | * non-/)* *+ /
| // (non-newline)* newline
```


From Tokens to Grammar

- Regular expressions are great for describing tokens
 - The smallest meaningful units of syntax numbers, symbols, keywords, and identifiers
 - These constructs have no interesting recursive structure
- But real programs have recursive structure, even in expressions like 2 * (x + (y/3))
- To capture higher-level syntax we need *context-free* grammars

• A calculator expression grammar is recursive:

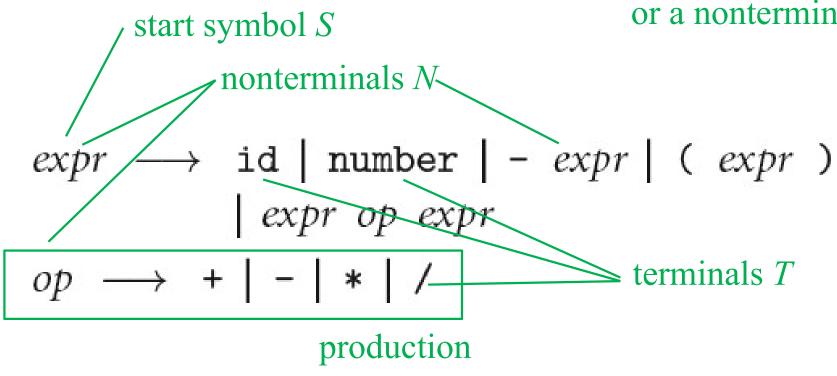
$$expr \longrightarrow id \mid number \mid - expr \mid (expr) \mid expr op expr$$
 $op \longrightarrow + \mid - \mid * \mid /$

expr is defined in terms of itself!

Context-Free Grammars (CFGs)

- Anatomy of a CFG
 - In Backus-Naur Form (BNF)

A *symbol* is a terminal or a nonterminal



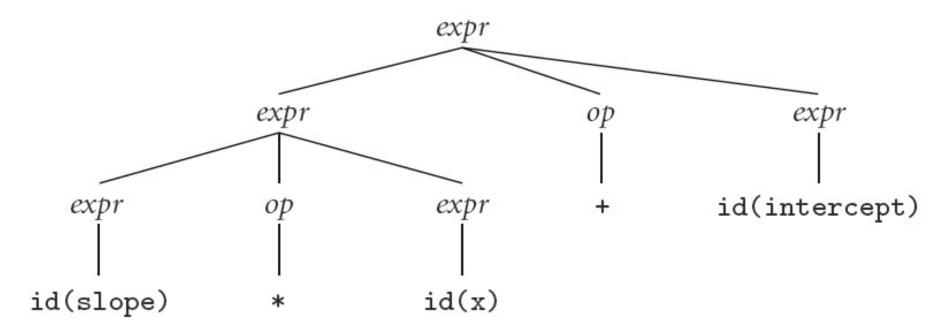
• In this grammar, |expr op | generate the string |op op + | - | * | /

$$expr \longrightarrow id \mid number \mid -expr \mid (expr) \mid expr \ op \ expr \mid -expr \mid (expr) \mid expr \ op \ expr \mid -expr \mid -expr \mid (expr) \mid expr \mid (expr) \mid$$

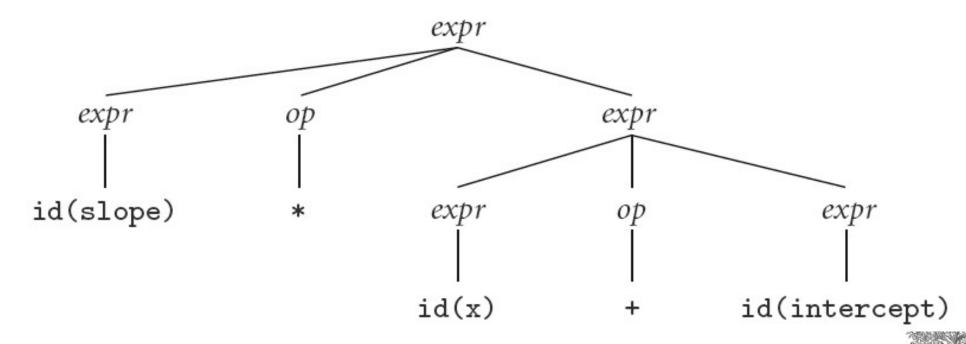
"slope * x + intercept"

$$expr \implies expr op \ \underline{expr}$$
 $\implies expr \ \underline{op} \ \text{id}$
 $\implies \underline{expr} + \text{id}$ This is called a
 $\implies expr \ op \ \underline{expr} + \text{id}$ derivation
 $\implies expr \ \underline{op} \ \text{id} + \text{id}$
 $\implies \underline{expr} * \text{id} + \text{id}$
 $\implies \text{id} * \text{id} + \text{id}$
 $\implies \text{id} * \text{id} + \text{id}$
 $\implies \text{slope}) \ (x) \ (\text{intercept})$

Parse tree for expression grammar for
 "slope * x + intercept"



- Alternate (Incorrect) Parse tree for
 "slope * x + intercept"
- Our grammar is ambiguous

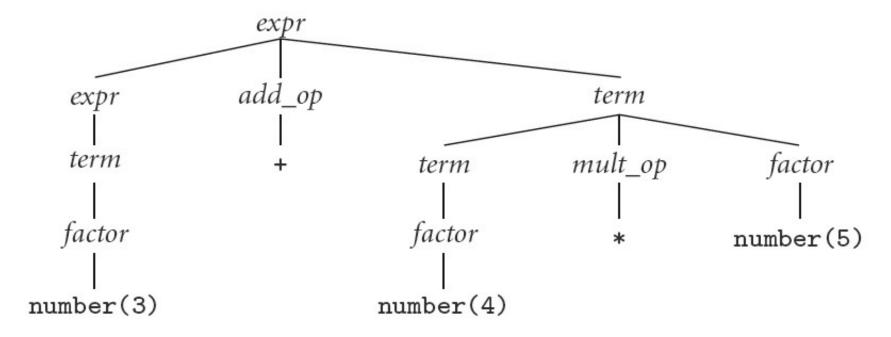


 A better version because it is unambiguous and captures precedence

```
1. expr \longrightarrow term \mid expr \ add\_op \ term
```

- 2. $term \longrightarrow factor \mid term mult_op factor$
- 3. $factor \longrightarrow id \mid number \mid -factor \mid (expr)$
- 4. $add_op \longrightarrow + | -$
- 5. $mult_op \longrightarrow * | /$

Parse tree for expression grammar (with left associativity) for 3 + 4 * 5



Practice with CFGs

- Add && and || to this grammar
 - Left-associative
 - Precedence: + over && over ||
 - 1. $expr \longrightarrow term \mid expr \ add_op \ term$
 - 2. $term \longrightarrow factor \mid term mult_op factor$
 - 3. $factor \longrightarrow id \mid number \mid -factor \mid (expr)$
 - 4. $add_op \longrightarrow + | -$
 - 5. $mult_op \longrightarrow * | /$

Practice with CFGs

• One solution

orexpr → andexpr | orexpr || andexpr andexpr → expr | andexpr && expr

- 1. $expr \longrightarrow term \mid expr \ add_op \ term$
- 2. $term \longrightarrow factor \mid term mult_op factor$
- 3. $factor \longrightarrow id \mid number \mid -factor \mid (expr)$
- 4. $add_op \longrightarrow + | -$
- 5. $mult_op \longrightarrow * | /$

Also replace with *orexpr*

Lexical Analysis (or "Scanning")

- Divides source code into tokens
- Removes comments
- Saves text of identifiers, strings, numbers
- Tags tokens with line numbers, for error messages

```
y := x;
z := 1;
while y > 1 do
z := z * y;
y := y - 1

y := x ; z := 1 ; while y
> 1 do z := z * y ; y :=
y - 1 od
```


- Suppose we are building an ad-hoc (hand-written) scanner for a calculator language:
 - We read the characters one at a time with look-ahead
- If it is one of the one-character tokens
 () + * /

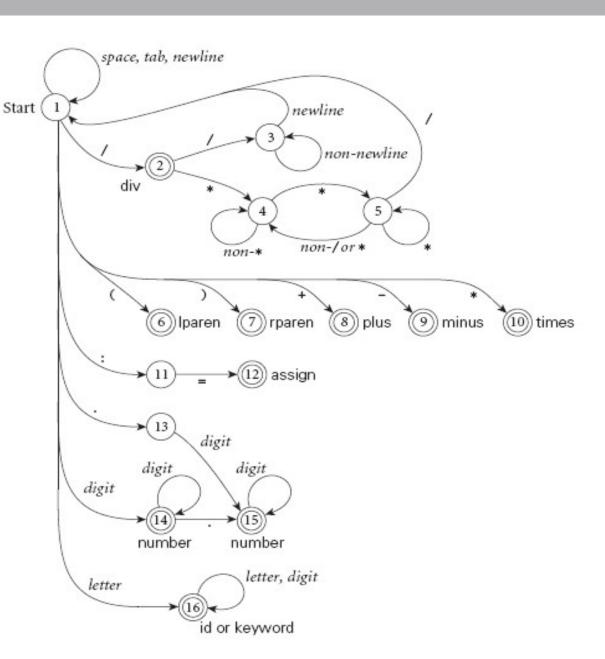
we announce that token

- If it is a digit, we keep reading digits until we can't anymore, then announce a number
- If it is a letter, we keep reading letters and digits and maybe underscores until we can't anymore, then announce an identifier

Scanning with floating point

- If it is a digit, we keep reading until we find a non-digit
 - if that is not a . we announce an integer
 - otherwise, we keep looking for a real number
 - if the character after the . is not a digit we announce an integer and reuse the . and the look-ahead

Pictorial
 representation
 of a scanner for
 calculator
 tokens, in the
 form of a finite
 automaton



- This is a deterministic finite automaton (DFA)
 - Lex, scangen, etc. build these things automatically from a set of regular expressions
 - Specifically, they construct a machine that accepts the language

```
identifier | int const
| real const | comment | symbol
| ...
```


- We run the machine over and over to get one token after another
 - Nearly universal rule:
 - always take the longest possible token from the input thus foobar is foobar and never f or foo or foob
 - more to the point, 3.14159 is a real const and never 3, ., and 14159
- Regular expressions "generate" a regular language; DFAs "recognize" it

- Scanners tend to be built three ways
 - ad-hoc
 - semi-mechanical pure DFA(usually realized as nested case statements)
 - table-driven DFA
- Ad-hoc generally yields the fastest, most compact code by doing lots of specialpurpose things, though good automaticallygenerated scanners come very close

- Writing a pure DFA as a set of nested case statements is a surprisingly useful programming technique
 - though it's often easier to use perl, awk, sed
 - for details see Example 2.16
- Table-driven DFA is what lex and scangen produce
 - lex/lalrpop in the form of C/Rust code
 - scangen in the form of numeric tables and a
 separate driver (for details see Figure 2.11-2.12);

- Note that the rule about longest-possible tokens means you return only when the next character can't be used to continue the current token
 - the next character will generally need to be saved for the next token
- In some cases, you may need to peek at more than one character of look-ahead in order to know whether to proceed
 - In Pascal, for example, when you have a 3 and you a see a dot
 - do you proceed (in hopes of getting 3.14)? or
 - do you stop (in fear of getting 3..5)?

• In messier cases, you may not be able to get by with any fixed amount of look-ahead. In Fortran, for example, we have

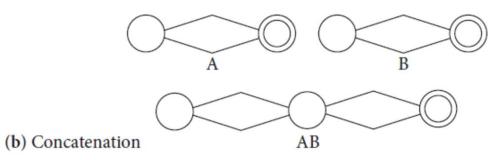
• Here, we need to remember we were in a potentially final state, and save enough information that we can back up to it, if we get stuck later

Converting a RE to a DFA

- 1. Write regular expressions for each construct
 - Except keywords special case of identifiers
- 2. Construct NFA from REs
- 3. Convert NFA to a DFA (set of subsets)
- 4. Minimize DFA (find equivalence classes)
- 5. Fix up the result
 - Longest-possible token rule
 - Discard whitespace and comments
 - Distinguish keywords from identifiers
 - Save text, token location
 - Return a special EOF token at end of file

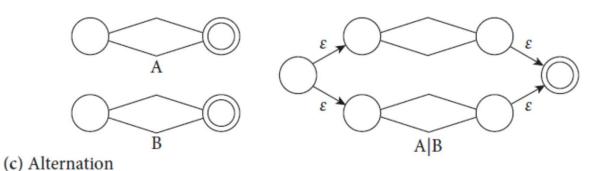
RE to NFA Construction

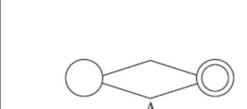
(a) Base case

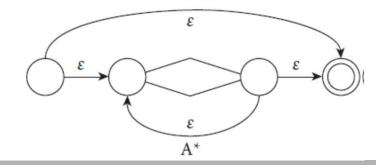


Let's apply this to

d* (. d | d .) d*

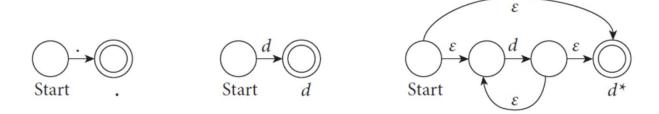


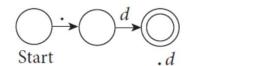


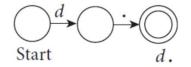


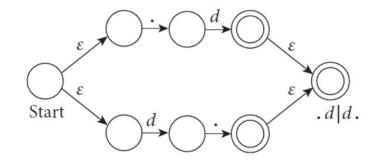
(d) Kleene closure

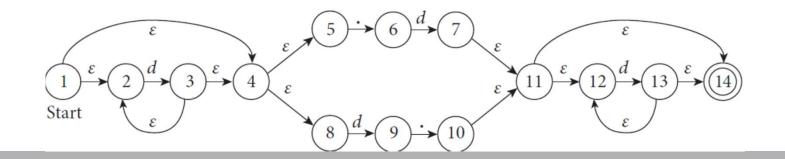
RE to NFA Construction







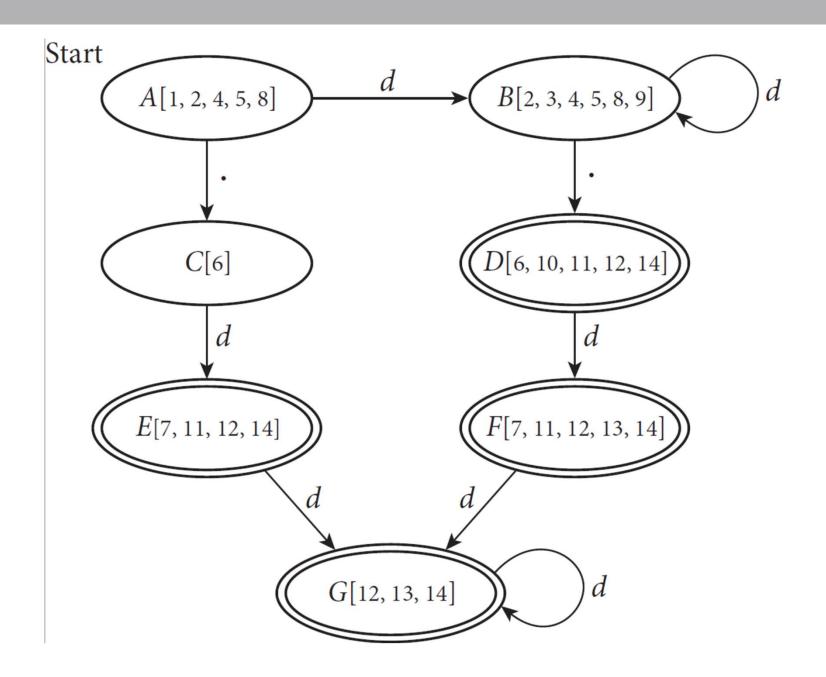




NFA to DFA Construction

- Each state in the DFA is a set of NFA states
 - "Set of subsets"
- The start DFA state contains the start NFA state, plus all states reachable through ε-transitions
- For each input that can be consumed from one of those NFA states, we create another DFA state with the set of destination states (plus states from ϵ -transitions)

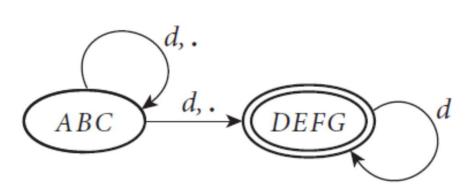
NFA to DFA Construction (example)



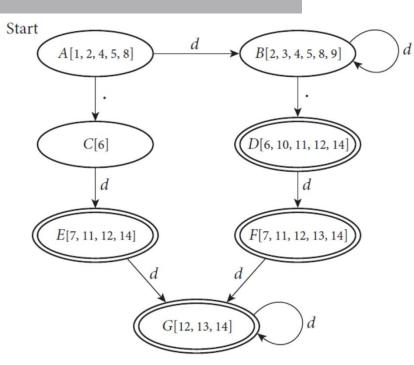
DFA Minimization

- Start by merging all DFA states into two equivalence classes: final and non-final
- Iteratively split the equivalence classes as follows:
 - Identify a class X with a nondeterministic transitions on some character c that lead to k other equivalence classes
 - Split X into k equivalence classes according to the destinations of these transitions

DFA Minimization



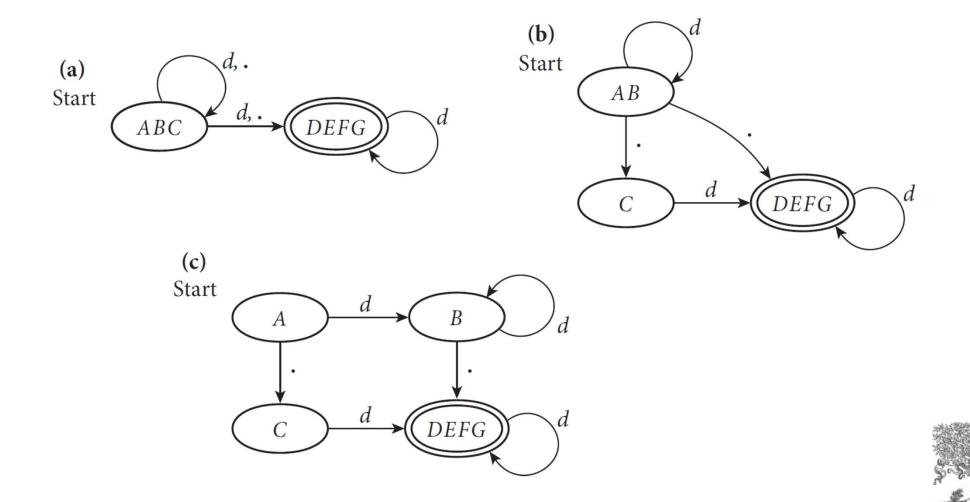
• Example: Consider the diagram on the left, derived by merging states from the one on the upper right.



- The transition from ABC on d is nondeterministic
- So we split *ABC* into two parts:
 - -AB (where d transitions back to ABC)
 - C (where d transitions to DEFG)
- The result is (b) on the next page

DFA Minimization (example)

• From state (b) we can now make the . transition deterministic by splitting AB into A and B. Now we have a DFA.



Syntax and Lexical Analysis

- We use regular expressions to define tokens
 - Concatenation, alternation, repetition
- A scanner uses a DFA to recognize tokens
 - Often the DFA is machine-generated
- Context-free grammars define higher-level structure
 - Must structure the right way to avoid ambiguity
 - Interesting parsing challenges future lecture!

