
Copyright © 2016 Elsevier

Bottom-Up LR Parsing

17-363/17-663: Programming Language Pragmatics

Reading: PLP section 2.3

Top-Down vs. Bottom-Up Parsing

• Top-Down/LL Parsing Intuition

program
stmt_list $$$
stmt stmt_list $$$
...

• Bottom-Up/LR Parsing Intuition
read A

stmt

stmt_list
stmt_list read B

stmt_list stmt

Start trying to parse a program

Start trying to parse a programBased on lookahead, refine to stmt_list
then to stmt stmt_list

Stack tracks predicted future parsing

Start by shifting a few tokens

Reduce tokens to a stmt, then to a stmt_listReduce tokens to a stmt, then to a stmt_list

Continue to shift and reduce tokens
tokens to recognize another stmt

Stack shows what constructs
have been recognized so far

Continue to shift and reduce tokens
tokens to recognize another stmt

Example Program and SLR(1) Grammar

read A
read B
sum := A + B
write sum
write sum / 2

Modeling a Parse with LR Items

• Initial parse state captured by an item

– includes start symbol, production, and current location

• What we see next might be inside stmt_list
– So we expand stmt_list and add more items to the set:

Modeling a Parse with LR Items

• We can likewise expand stmt to get the item set:

• This is an SLR parser state
– We’ll call it state 0

Modeling a Parse with LR Items

• Our starting stack has state 0 on it:

0
• Input: read A read B …

• From state 0, we shift read onto the stack and
move to state 1:

0 read 1

• State 1 represents the following item:

Modeling a Parse with LR Items

• stack / item: 0 read 1

• input: A read B …

• From state 1, we shift id onto the stack

• stack / item: 0 read 1 id 1’

• input: read B …

• Now we reduce to stmt, and put stmt into the input

• stack / item: 0
• input: stmt read B …

Modeling a Parse with LR Items

• stack / item: 0
• input: stmt read B …

• We now shift stmt

• stack / item: 0 stmt 0’
• input: read B …

• Next we reduce to stmt_list

• stack / item: 0
• input: stmt_list read B …

Modeling a Parse with LR Items

• stack / item: 0
• input: stmt_list read B …

• Now we shift stmt_list

• stack / item: 0 stmt_list 2
• input: read B …

The Characteristic Finite State
Machine (CFSM)

There are also shift-reduce actions. So our states 0’, 1’ aren’t shown
here: they are “in between” states within a shift-reduce action

The CFSM as a Table

A Detailed Explanation of the CFSM

A Detailed Explanation of the CFSM

A Detailed Explanation of the CFSM

Exercise: LR Parsing

• Assume you are in parsing state 0
and the token stream is write sum / 2

• Show how the parse stack changes as the token
stream is consumed

• We’ll do the first two actions together

Exercise: LR Parsing

Parse stack Input stream Action

0 write sum / 2 $$ (starting configuration)

Exercise: LR Parsing
Parse stack Input stream Action

0 write sum / 2 $$ (starting configuration)

0 write 4 sum / 2 $$ shift write

0 write 4 factor / 2 $$ shift id(sum) and reduce by factor id

0 write 4 term / 2 $$ shift factor and reduce by term factor

0 write 4 term 7 / 2 $$ shift term and reduce by term factor

0 write 4 term 7 mult_op 2 $$ shift / and reduce by mult_op /

… 4 term 7 mult_op 11 2 $$ shift mult_op

… 4 term 7 mult_op 11 factor $$ shift 2 and reduce by factor num_lit(2)

0 write 4 term $$ shift factor and reduce by term term mult_op factor

0 write 4 term 7 $$ shift term

0 write 4 expr $$ reduce by expr term

0 write 4 expr 6 $$ shift expr

Exercise: LR Parsing
Parse stack Input stream Action

…

0 write 4 expr 6 $$ shift expr

0 stmt $$ reduce by stmt write expr

0 stmt_list $$ shift stmt and reduce by stmt_list stmt

0 stmt_list 2 $$ shift stmt_list

0 program shift $$ and reduce by program stmt_list $$

[done]

Parsing if-then-else Statements

• A famous parsing challenge (from Algol) involves if-
then-else, where else is optional:

stmt ::= if exp then stmt

| if exp then stmt else stmt

• Consider the phrase:

if exp then if exp then stmt else stmt

• Which then does the else belong to?

Shift/Reduce Conflicts

• This is a shift-reduce conflict

if exp then if exp then stmt . else stmt

• When the else appears
• we can shift, treating it as part of the inner if statement, or

• we can reduce the inner if statement,
treating the else as part of the outer if statement

• How to solve?
– Many existing tools prioritize shift over reduce

• This corresponds to the traditional solution to the if problem

Shift/Reduce Conflicts

• This is a shift-reduce conflict

if exp then if exp then stmt . else stmt

• When the else appears
• we can shift, treating it as part of the inner if statement, or

• we can reduce the inner if statement,
treating the else as part of the outer if statement

• How to solve?
– Many existing tools prioritize shift over reduce

– You can declare productions with precedence
• E.g. giving the if-then-else production higher precedence

than the if-then production

Shift/Reduce Conflicts

• This is a shift-reduce conflict

if exp then if exp then stmt . else stmt

• When the else appears
• we can shift, treating it as part of the inner if statement, or

• we can reduce the inner if statement,
treating the else as part of the outer if statement

• How to solve?
– Many existing tools prioritize shift over reduce

– You can declare productions with precedence

– Rewrite the grammar to make it LR(1)

An LR(0) If-Then-Else Grammar
stmt → balanced_stmt | unbalanced_stmt
balanced_stmt → if cond then balanced_stmt

else balanced_stmt
| other_stuff

unbalanced_stmt → if cond then stmt
| if cond then balanced_stmt

else unbalanced_stmt

Invariant: balanced_stmts may be inside unbalanced_stmts

– but not vice versa

Unfortunately, this grammar is LR(0) but not LL(0)

– Have to use precedence in LL parsers
or add custom code to a recursive-descent parser

Advice for Managing Conflicts

• Start with a simple grammar that works
– Even if it doesn’t parse the whole language

• Add constructs incrementally
– Save and compile the grammar after each change

– If there was a conflict, adjust the grammar to avoid it
before proceeding

– Error messages are sometimes helpful, but don’t
actually try to understand/reconstruct the LR parsing
table (even experts typically don’t go this route)

Connections to Theory
• A scanner is a Deterministic Finite Automaton (DFA)

– it can be specified with a state diagram

• An LL or LR parser is a Pushdown Automaton (PDA)
– a PDA can be specified with a state diagram and a stack

• the state diagram looks just like a DFA state diagram, except the arcs
are labeled with <input symbol, top-of-stack symbol> pairs, and in
addition to moving to a new state the PDA has the option of pushing
or popping a finite number of symbols onto/off the stack

• For LL(1) parsers the state machine has only two states:
processing and accepted

• All the action is in the input symbol and top of stack

• LR(1) parsers are richer (and more expressive)

Error Reporting
• Error reporting is relatively simple

• If you get a token for which there’s no entry in the
current parsing state / top of stack element, signal an
error
• Can tell the user what tokens would be OK here

Error Recovery
• Nice to report more than one error to the user

• Rather than stopping after the first one

• Simple idea: Panic mode
• In C-like languages, semicolons are good recovery spots

• So on an error:
• read tokens until you get to a semicolon

• discard the parser’s stack (predictions in an LL parser, states in an LR
parser) until you come to a production that has a semicolon

• assume you’ve parsed the semicolon-containing construct,
and continue parsing

• There are ways to do substantially better – see the online
supplement to the textbook

Other Parsing Tools
• Generalized LR (GLR) parser generators

• Accept any grammar – even ambiguous ones!
• This can be good if you have grammars written by nonexperts, as in

SASyLF

• But for a compiler-writer it is dangerous—you may not even know
your grammar is ambiguous, and then your poor users get ambiguity
errors when the parser runs

• Works like an LR parser, but on ambiguity considers all
possible parses in parallel

• Still O(n) if the grammar is LR (or “close”)

Other Parsing Tools
• Parsing Expression Grammar (PEG) parser generators

• Sidestep ambiguity by always favoring the first production

• Same danger as GLR parsers – you may not know your
grammar is ambiguous

• Still used some in practice (e.g. in Python)
• About as efficient as LL or LR in practice

• Like LR, PEG grammars can be cleaner than LL grammars

• Requires extreme care to get right – must think algorithmically
instead of declaratively

• Guido van Rossum, the developer of Python, saw this as an advantage

