
Modules and Macros in Rust
Jonathan Aldrich

17-363

Based heavily on the Rust book, Brown version



Crates

• A crate is one or more files that are compiled as a unit
• The crate root is the file where compilation starts, e.g. main.rs

• A binary crate has a main function and is executable
• A library crate defines shared functionality to be used by multiple 

projects



Packages

• A package bundles one or more crates together
• At most one library create
• Any number of binary creates

• How to create a package:
cargo new my-project

• Package file system structure:
• The Cargo.toml file describes how to build the crates
• The src directory holds the source code

• main.rs is the crate root of a binary crate with the same name as the package
• lib.rs is the crate root of a library crate with the same name as the package



Modules

• A module is a unit of information hiding.
• Crates contain one or more modules

• The crate root is the top-level module of a crate

• 3 ways to define a module:
mod foo { /* foo contents */ }

mod bar; // contents in bar.rs

mod baz; // contents in baz/mod.rs (less recommended)

• Submodules
mod boff; // in bar.rs; contents in bar/boff.rs



Module visibility
mod foo {

pub mod child {

pub fn bar() { return helper(); }

fn helper() { return hidden::baz(); }

}

mod hidden {

pub fn baz() { return 3; }

}

}

foo::child::bar() // OK

foo::hidden::baz() // error: module `hidden` is private

Visibility rules:
• You can access other 

declarations in your module, 
or those in a parent module

• You can only access things in 
a submodule if they are 
annotated pub



Paths and Use

• You can use global paths (starting with crate for the current crate) to 
name any element that is visible to you

crate::garden::vegetables::Asparagus.eat()

• The use construct allows you to use a name without giving the whole path
use crate::garden::vegetables::Asparagus

Asparagus.eat()

• self is a name for the current module
• super is a name for the outer module



alias and pub use

• You can use alias to rename used things to avoid name clashes:
use std::fmt::Result;
use std::io::Result as IoResult;

• pub use is a convenient way to export things under a shorter path:
mod front_of_house {

pub mod hosting { // inaccessible from outside top-level module
pub fn add_to_waitlist() {} }

}
pub use crate::front_of_house::hosting; // accessible as `hosting`



Using external packages

• In Cargo.toml
rand = "0.8.5"

• In main.rs
use rand::Rng;

fn main() {

let secret_number = rand::thread_rng().gen_range(1..=100);

}



In-Class Exercise 1
pub mod parent {
pub fn a() {}
fn b() {}
pub mod child {
pub fn c() {}

}
}
fn main() {
use parent::{*, child as alias};
// ...

}

Inside main, what is the total number of paths that can refer to a, b, or c (not including those that 
use self, super, or crate)? Write your answer as a digit such as 0 or 1. For example, if the only two 
valid paths were a and parent::b, then the answer would be 2.



In-Class Exercise 2
Imagine a Rust package with the following directory structure:

Foobar
├── Cargo.toml
└── src/

├── lib.rs
├── engine.rs
└── engine/

└── analysis.rs

The contents of each file are:

// engine/analysis.rs
pub fn run() {}

// engine.rs
mod analysis;
pub use analysis::*;

// lib.rs
pub mod engine;

Say that another Rust developer is using the foobar library crate in a separate package, and they want to call 
the run function. What is the path they would write?



Macros

• Run at compile time – so they can transform code
• Are more flexible than functions – e.g. can take any # of arguments
println!("hello {}", name)



Declarative Macros
#[macro_export]
macro_rules! vec {

( $( $x:expr ),* ) => {
{

let mut temp_vec = Vec::new();
$(

temp_vec.push($x);
)*
temp_vec

}
};

}
let v: Vec<u32> = vec![1, 2, 3];

Generated code for vec![1, 2, 3]:

{

let mut temp_vec = Vec::new();

temp_vec.push(1);

temp_vec.push(2);

temp_vec.push(3);

temp_vec

}



Procedural macros

• Lower-level but extremely flexible implementation interface

#[proc_macro]

pub fn sql(input: TokenStream) -> TokenStream { ... }

let sql = sql!(SELECT * FROM posts WHERE id=1);



Derive macro (extended example)

pub trait HelloMacro { fn hello_macro(); }

struct Pancakes;

impl HelloMacro for Pancakes {

fn hello_macro() {

println!("Hello, Macro! My name is Pancakes!");

}

}

fn main() {

Pancakes::hello_macro();

}

We want to 
generate this 

impl



Derive macro in action

use hello_macro::HelloMacro;

use hello_macro_derive::HelloMacro; 

#[derive(HelloMacro)]

struct Pancakes;

fn main() {

Pancakes::hello_macro();

}

Much 
cleaner!



Defining the Hello derive macro (1)

use proc_macro::TokenStream;

use quote::quote;

#[proc_macro_derive(HelloMacro)]

pub fn hello_macro_derive(input: TokenStream) -> TokenStream {

// Construct a representation of Rust code as a syntax tree

// that we can manipulate

let ast = syn::parse(input).unwrap();

// Build the trait implementation

impl_hello_macro(&ast)

}



Defining the Hello derive macro (2)

fn impl_hello_macro(ast: &syn::DeriveInput) -> TokenStream {

let name = &ast.ident;

let gen = quote! {

impl HelloMacro for #name {

fn hello_macro() {

println!("Hello, Macro! My name is {}!", stringify!(#name));

}

}

};

gen.into()

}



Attribute macros

• Let you modify code based on an “attribute” that you define

#[proc_macro_attribute]

pub fn route(attr: TokenStream, item: TokenStream)

-> TokenStream { ... }

#[route(GET, "/")]

fn index() { ... }


