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Object-Oriented Programming  (OOP)

Three key aspects:
• Encapsulation

• An object is a grouping of state and behavior, and hides its 
implementation choices from the outside world

• Inheritance
• Objects are related, and we can capture shared behavior in a 

way that multiple kinds of objects can use it without 
defining it themselves

• Dynamic dispatch
• The same operation can be implemented in different ways; 

each object knows what implementation to use for each
of its operations

This aspect is special:
• Unique to objects
• Present in all OO languages



Encapsulation

• An object is a grouping of state and behavior

let setImpl = { 
members : [1, 2, 3],
isMember : function(x) {

return this.members.includes(x);
},
add : function(x) {

if (!isMember(x))
this.members.push(x);

}
};
setImpl.add(4);      // uses the object
setImpl.isMember(4); // returns true

state

statebehavior

this refers to 
the current 

object instance



Encapsulation

• We can hide some of the object’s state

interface IntSet {
isMember : (x:number) => boolean
add : (x:number) => void

}

let setImpl = { ... };
let set : IntSet = setImpl;

set.add(4); 
set.isMember(4);
set.members

interface IntSet leaves 
out the members field.

We can change that later 
without affecting clients.

Assigning to a variable of 
type IntSet hides 

everything that’s not in 
the interface

It’s a type error to access 
members that are not 

exposed in the interface



Classes

• A class is a template for objects.  It defines structure 
& behavior used by all instances of the class

class IntSetClass {
members : number[];
constructor(m:number[]) {

this.members = m;
}
isMember(x:number):boolean {

return this.members.includes(x);
}
// add(x:number):void { ... }

}

let set2 : IntSetClass = new IntSetClass([1, 2]);
set2.add(5);
set2.isMember(5); // returns true



Dynamic Dispatch

• Every object knows its method implementations (whether 
defined in the object, or in that object’s class)

• When we invoke a method, the code for that object is run

class Dog {
talk() { console.log("woof!"); }

}
class Cat {

talk() { console.log("meow!"); }
}
let animals = [new Dog(), new Cat() ];
for (let a of animals)

a.talk(); // prints woof! meow!



Inheritance

• Inheritance lets us reuse code from one class in another
• Prototype: a variant where you reuse code from another object (see JavaScript)

class Collection {
constructor(ms) { this.members = ms; }
isMember(x) { return this.members.includes(x); }
add(x) { this.members.push(x); }
addAll(a) { for (let x of a) this.add(x); }

}
class Set extends Collection {

constructor(ms) { super(ms); }
add(x) { if (!this.isMember(x)) { super.add(x); } }

}
let set = new Set([]);
set.add(3);
set.addAll([3, 4]);
set.isMember(4);



Exercise

• Draw the frames on the runtime stack when 4 is added to the set in 
the call set.addAll([3, 4]).  Show all methods that are in from main() 
through push()

class Collection {
constructor(ms) { this.members = ms; }
isMember(x) { return this.members.includes(x); }
add(x) { this.members.push(x); }
addAll(a) { for (let x of a) this.add(x); }

}
class Set extends Collection {

constructor(ms) { super(ms); }
add(x) { if (!this.isMember(x)) { super.add(x); } }

}
let set = new Set([]);
set.add(3);
set.addAll([3, 4]);



Why Objects Matter

• Encapsulation (not specific to objects)
• Separate reasoning about a single module enhances correctness & finding bugs
• Ability to change the internals of a module without affecting others enhances 

software evolution

• Inheritance
• Some code patterns are difficult to reuse in any other way

• Typically when you have a reusable part and a customizable part, and they both call each 
other

• That said, many uses of inheritance can (and should) be replaced with 
composition
• Common guideline: prefer composition to inheritance

• Dynamic dispatch
• Architecturally important – support multiple independent & interoperating 

implementations of a common interface
• Examples all over the place: mobile phone apps, Linux device drivers,

graphical user interfaces, MapReduce, web frameworks



Traits in Rust

• Traits are Rust’s equivalent of OO interfaces

struct Sprocket {
name: String

} 
struct Cog {

id: u32
}
trait Sortable {

fn get_sort_name(&self) -> String;
fn less_than(&self, o: &dyn Sortable) -> bool {

return self.get_sort_name() < o.get_sort_name()
}

}

These types may be defined in a 
separate module, and may not 
be easy to chnage

These types may be defined in a 
separate module, and may not 
be easy to chnage

A trait is an interface, possibly 
with some reusable method 
implementations

self is the name 
Rust uses for this

o is dyn, which 
allows dynamic 
dispatch



We implement the trait, providing 
Sortable functionality in a way 
appropriate for the specified type

Traits in Rust

• Traits are Rust’s equivalent of OO interfaces

struct Sprocket {
name: String

} 
struct Cog {

id: u32
}
trait Sortable {

fn get_sort_name(&self) -> String;
fn less_than(&self, o: &dyn Sortable) -> bool {

return self.get_sort_name() < o.get_sort_name()
}

}
impl Sortable for Sprocket {

fn get_sort_name(&self) -> String { return self.name.clone() }
}
impl Sortable for Cog {

fn get_sort_name(&self) -> String {
return "Cog".to_string() + &self.id.to_string()

}
}



Using Rust Traits
trait Sortable {

fn get_sort_name(&self) -> String;
fn less_than(&self, o: &dyn Sortable) -> bool {

return self.get_sort_name() < o.get_sort_name()
}

}
impl Sortable for Sprocket {

fn get_sort_name(&self) -> String { return self.name.clone() }
}
impl Sortable for Cog {

fn get_sort_name(&self) -> String {
return "Cog".to_string() + &self.id.to_string()

}
}
fn main() {

let w1 = Cog { id: 3 };
let s1 = Sprocket { name: "Spacely".to_string() };
let w1_name = w1.get_sort_name();
let s1_name = s1.get_sort_name();
println!("{} < {}? {}", w1_name, s1_name, w1_name < s1_name);

// in sorted order? yes; prints "true"
}



Two ways to dispatch
trait Sortable {

fn get_sort_name(&self) -> String;

fn less_than(&self, o: &dyn Sortable) -> bool {
return self.get_sort_name() < o.get_sort_name()

}

fn less_than(&self, o: &impl Sortable) -> bool {
return self.get_sort_name() < o.get_sort_name()

}

fn less_than<T: Sortable>(&self, o: &T) -> bool {
return self.get_sort_name() < o.get_sort_name()

}
}

dyn enables dynamic dispatch
Implemented with a “fat pointer”: 
a pointer to the value and a 
pointer to the trait impl

impl means dispatch is static.  
Must know at the call site which 
implementation is used

impl is actually syntactic suger
for a parameterized type.
(equivalent to above code)



Initialization and Finalization
• We defined the lifetime of an object to be 

the interval during which it occupies space 
and can hold data
– Most object-oriented languages provide some 

sort of special mechanism to initialize an object 
automatically at the beginning of its lifetime

• When written in the form of a subroutine, this 
mechanism is known as a constructor

• A constructor does not allocate space

– A few languages provide a similar destructor 
mechanism to finalize an object automatically at 
the end of its lifetime



Initialization and Finalization
Issues
• choosing a constructor

• references and values
– If variables are references, then every object must be 

created explicitly - appropriate constructor is called

– If variables are values, then object creation can happen 
implicitly as a result of elaboration

• execution order
– When an object of a derived class is created in C++, the 

constructors for any base classes will be executed before 
the constructor for the derived class

• garbage collection



Dynamic Method Binding

• Data members of classes are implemented 
just like structures (records)
– With (single) inheritance, derived classes have 

extra fields at the end

– A pointer to the parent and a pointer to the child 
contain the same address - the child just knows 
that the struct goes farther than the parent does



Dynamic Method Binding

• Non-virtual functions require no space at run 
time; the compiler just calls the appropriate 
version, based on type of variable
– Member functions are passed an extra, hidden, initial 

parameter: this (called current in Eiffel and self in 
Smalltalk)

• C++ philosophy is to avoid run-time overhead 
whenever possible(Sort of the legacy from C)
– Languages like Smalltalk have (much) more run-time 

support



Dynamic Method Binding

• Virtual functions are the only thing that requires 
any trickiness (Figure 10.3)
– They are implemented by creating a dispatch table 

(vtable) for the class and putting a pointer to that table in 
the data of the object 

– Objects of a derived class have a different dispatch table
• In the dispatch table, functions defined in the parent come 

first, though some of the pointers point to overridden 
versions

• You could put the whole dispatch table in the object itself, 
saving a little time, but potentially wasting a LOT of space



Dynamic Method Binding



Dynamic Method Binding



Dynamic Method Binding

• Note that if you can query the type of an 
object, then you need to be able to get from 
the object to run-time type info
– The standard implementation technique is to 

put a pointer to the type info at the beginning of 
the vtable

– Of course you only have a vtable in C++ if your 
class has virtual functions

• That's why you can't do a dynamic_cast on a pointer 
whose static type doesn't have virtual functions



Mix-In Inheritance

• Classes can inherit from only one “real” 
parent

• Can “mix in” any number of interfaces, 
simulating multiple inheritance

• Interfaces appear in Java, C#, Go, Ruby, 
etc.
– contain only abstract methods, no method 

bodies or fields
• Has become dominant approach, 

superseding true multiple inheritance



Mix-In Inheritance



Semantics

• We can use the static and dynamic semantics techniques we have 
learned to model objects

Source: Atshushi Igarashi, Benjamin Pierce, and Philip Wadler.  
Featherweight Java: a minimal core calculus for Java and GJ.  
OOPSLA 1999.


