Introduction to Program Analysis

Reading: NNH 1.1-1.3, 1.7-1.8

17-654/17-765
Analysis of Software Artifacts Jonathan Aldrich

Applications of Program Analysis

- Optimization
- Avoid redundant/unnecessary computation
- Compute in a more efficient way
- Verifying correctness
- Assurance of software
- Finding bugs
- Determining properties
- Performance
- Security and reliability
- Design and architecture

Analysis as an Approximation

- Example: finding divide-by-zero errors
read (x);
if $(x>0)$
then $\mathrm{y}:=1$
else $\mathrm{y}:=0 ; \mathrm{S} ; / / \mathrm{S}$ is some other statement
z := 2 / y ; // could this be an error?
- What could y hold at the last statement?
- In general, anything (since S could assign to y)
- If S doesn't affect y, one would think the answer is the set $\{0,1\}$

Quick Undecidability Proof

- Theorem: There does not exist a program Q that can decide for all programs P , whether P terminates.
- Proof: By contradiction.
- Assume there exists a program $Q(x)$ that returns true if x terminates, false if it does not.
- Consider the program " $R=$ if $Q(R)$ then loop."
- If R terminates, then Q returns true and R loops (does not terminate).
- If R does not terminate, then Q returns false and R terminates.
- Thus we have a contradiction, and termination must be undecidable

Analysis as an Approximation

- If S doesn't terminate normally, y cannot be 0
- Problem: undecidable to tell if S terminates!
- In general program analysis must compute an approximation

Safe Approximations read (x); if $(x>0)$. then $y:=$ else $\mathrm{y}:=0 ; \mathrm{S}$; // S does not affect y It is safe to say that? It is safe to say that the value of y is in $\{0,1\}$ - We will catch all divide-by-zero errors this way - Approximating the value of y as $\{1\}$ is unsafe - Missing possible behaviors of the program \qquad Would like to prove that analyses are safe

Precise Approximations

read(x);

```
if \((x>0)\)
then \(\mathrm{y}:=1\)
else \(\mathrm{y}:=2\); S; // \(S\) does not affect \(y\)
\(\mathrm{z}:=2 / \mathrm{y}\); // could this be an error?
- What is the most precise approximation for the value of \(y\) ? - \(\varnothing\) is the most precise possible answer
- \(\{1,2\}\) is the most precise safe approximation for \(y\)
- \(\{1,2,3\}\) is worse, \(\{0,1,2,3\}\) is worst still, NAT is worst of all
- Sets containing 0 may lead to a false positive
- Other inaccuracies could cause problems later on
- A precise analysis will compute as small a set of possibilities for program execution as it can
```


WHILE: An Imperative Language

- Categories
$-a \in$ AExp arithmetic expressions
$-b \in$ BExp boolean expressions
$-S \in$ Stmt statements
$-x, y \in$ Var variables
$-n \in$ Num numerals
$-\ell \in$ Lab labels
- Syntax
$-a \quad::=x|n| a_{1} o p_{a} a_{2}$
$-b \quad::=$ true \mid false \mid not $b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2}$
$-S \quad::=[x:=a]^{\ell} \mid[\text { skip }]^{\ell} \mid S_{1} ; S_{2}$
| if $[b]^{\ell}$ then S_{1} else $S_{2} \mid$ while $[b]^{\ell}$ do S

Example While Program

[y := x] ${ }^{1}$;
[$\mathrm{z}:=1]^{2}$;
while $[y>1]^{3}$ do
$\left[z:=z^{*} y\right]^{4} ;$
[y:=y-1] ${ }^{5}$;
$[y:=0]^{6}$;
Computes the factorial function, with the input in x and the output in z

Reaching Definitions Analysis

- A variable definition of the form $[x:=a]^{\ell}$ may reach program point P if there is an execution of the program where x was last assigned a value at ℓ when P is reached.
- Uses
- Optimization
- Does a constant assignment reach a variable's use?
- Bug finding
- Does a NULL assignment reach a pointer dereference?
- Does a 0 assignment reach a divisor?

Reaching Definitions Example
[y := x] ${ }^{1}$;
[$\mathrm{z}:=1]^{2}$;
while $[y>1]^{3}$ do
[$\mathrm{z}:=\mathrm{z}$ * y$]^{4}$;
$[y:=y-1]^{5}$;
[y := 0] ${ }^{6}$;

RD at entry			$\underline{\text { RD at exit }}$		
-	y	z	X	y	z
?	?	?	?	1	?
?	1	?	$?$	1	2
?	1,5	2,4	$?$	1,5	2,4
?	1,5	2,4	$?$	1,5	4
?	1,5	4	$?$	5	4
?	1,5	2,4	?	6	2,4

