
1

Metal, Continued

Reading: Checking System Rules Using 
System-Specific, Programmer-Written 
Compiler Extensions

17-654/17-754
Analysis of Software Artifacts
Jonathan Aldrich

27 February 2006 2

Assertion Side-Effects

• Flags error if assert() 
has side effects

• Illustrates matching on 
sub-expressions

• 14 errors, 2 false 
positives in ExOS

• Example bug:
• ExOS, mmap

• Causes VM fault if 
assert is disabled



2

27 February 2006 3

Assertion Failure

• Perform reaching definitions path-sensitively
• Different results for each path

• At an assert statement
• If reaching definition of each variable in assert is a 

constant assignment, evaluate the assert
• Flag an error if it is false

• Results
• 5 errors in FLASH
• Well-tested code
• Def to assignment paths long and complex

• e.g. 300 lines, 20 if statements, 4 else clauses, 10 
conditional compilation directives

27 February 2006 4

Tainted Analysis

• Kernel shouldn’t trust data from user
• Could pass null references

• Analysis
• Assume all data from user initially in tainted state
• Tainted data cannot be used except by functions that check 

its validity
• 18 errors
• 15 false positives
• Example error:



3

27 February 2006 5

Memory Management

• Similar to PREfix
• Catch leaks, use after free, possible null 

dereferences

• Challenge: How to do this intra-procedurally?
• It’s common for procedures to return newly 

allocated memory

• Solution
• Check error return paths

• OS: those returning a negative integer
• Catches many (but not all) errors

• PREfix can do better using interprocedural analysis

27 February 2006 7

Interprocedural analysis
• First, perform local analysis

• e.g. does this function 
block?

• e.g. are interrupts 
enabled?

• Later, perform reachability
analysis on call graph
• e.g. is a blocking 

function transitively 
called?

• If so, interrupts better be 
enabled

• Can find only simple 
interprocedural errors
• local analysis + 

reachability

• Vs. PREfix
• Perform local analysis
• Compute summary
• Use summary to analyze 

callers
• Handle recursion by 

exploring up to a fixed 
call depth

• Can only track 
(language-level) 
information

• Vs. Fluid
• Perform local analysis 

only
• Use annotations to 

determine what a callee
does

• Can track sophisticated 
predicates but requires 
user input



4

27 February 2006 8

Two Kinds of Path Sensitivity
• Metal

• Explores all paths 
separately

• Trims paths that share 
states at a program 
point

• Does not keep track of 
predicates

• PREfix
• Explores all paths 

separately
• Keep track of 

predicates
• Only explores feasible 

paths (based on 
predicates)

if (threads)
lock(y);

do_something();
if (threads)

unlock(y)

• Metal will report a 
double-unlock error
• False positive!

• PREfix will not

27 February 2006 9

Comparison

NoPost-passRule violationsMetal

Yes/

Contingent

AnnotationsConcurrency 
errors

Fluid

NoSummariesLanguage 
errors

PREfix

Sound?Inter-
procedural

Focus



5

Fugue:
Annotations for Protocol Checking

Reading: The Fugue Protocol Checker: 
Is Your Software Baroque?

17-654/17-754

Analysis of Software Artifacts

Jonathan Aldrich

27 February 2006 11

Find the Bug!



6

27 February 2006 12

Find the Bug!

27 February 2006 13

Specifications(1)

• Invariants
• No resource is referenced after its release
• All resources are released or returned to caller

• Does this cover all uses in practice?



7

27 February 2006 14

Specifications(2)

27 February 2006 15

Specifications(3)



8

27 February 2006 16

Verification
[InState(“connected”, 

WhenEnclosingState=“open”)]
[Unavailable(WhenEnclosingState=“

closed”)]
private Socket socket;

[ChangesState(“closed”, “open”)]
public void Open (string server) {

Socket newSock
= new Socket(…);

this.socket = newSock;
IPAddress host = …;
socket.connect(…);

}

• Initial assumption
• WebServer closed
• socket unavailable

• After new Socket(…)
• newSock is raw

• After assignment
• socket is raw

• Before Connect(…)
• verify socket is raw or 

bound
• After Connect(…)

• socket is connected
• End of method

• Verify Webserver open
• Ok because socket is 

connected

27 February 2006 17

Verification
[InState(“connected”, 

WhenEnclosingState=“open”)]
[Unavailable(WhenEnclosingState=“

closed”)]
private Socket socket;

[InState(“open”)]
public string GetPage (string url) {

this.socket.Send(…);
…

}

• Initial assumption
• WebServer open
• socket connected

• Before Send(…)
• verify socket is connected

• After Send(…)
• socket is still connected

• End of method
• Verify Webserver open
• Ok because socket is 

connected



9

27 February 2006 18

Aliasing Challenges

a.Open(); b.Open();

• Legal only if a != b

27 February 2006 19

Fugue Alias Analysis

• Annotations
• NotAliased

• Field or param is unique pointer to an object
• Local variables may temporarily alias

• Allows type system to track state changes
• Warning (lost track of object) if assigned to Escaping 

parameter
• MayBeAliased

• May have aliases
• May not call state-changing functions
• If not escaping, error if assigned to field or passed to 

Escaping parameter
• Escaping

• A MayBeAliased parameter that may be (transitively) 
assigned to a field



10

27 February 2006 20

Fugue Alias Analysis

• Analysis information
• Environment env: var � addr
• Capabilities: addr � aliasInfo
• aliasInfo: one of NotAliased, MayBeAliased, 

MayBeAliased/Escaping

27 February 2006 22

Example: Alias Analysis
void f([MayBeAliased][Escaping] x);
void g([MayBeAliased] x);

void h([NotAliased] y) {

z = y;

v = new T();

g(z);

f(v);
}

Environment Capabilities
y � a a � NA

y � a, z � a a � NA

y�a, z�a, v�b a�NA, b�NA

y�a, z�a, v�b a�NA, b�NA
a still NotAliased

y�a, z�a, v�b a�NA, b�MBA
Warning: lost track of b



11

27 February 2006 23

Typestate Analysis Lattice
Adapted from MSR TR and ECOOP ’04 paper to match dataflow theory

• Lattice element σ
• (Var � Addr , Addr � ObjDesc )
• ObjDesc: (Type , Alias , StateSet , FieldMap )

• State used for typestate analysis
• Alias : NA, MA, MA/E
• FieldMap : Field � Addr
• Lattices are equivalent up to renaming of addresses

• ⊑
• NA ⊑ MA ⊑ MA/E
• ⊑ is ⊆ for states
• L1 ⊑ L2 if merge(α1, α2, L1) ⊑ L2

• merge substitutes α1 for α2 in L1; joins their statesand fieldmaps, and 
joins the both alias infos together with MA

• Intuitively, allows more aliasing than was present before

• artificial ⊥
• ⊤ = ({x � αT},{αT�(T,MA/E,states(T), f � αtype(f)})

• T = type(x)
• Join

• Least upper bound of ⊑
• If NA becomes MA or MA/E, warn “lost track of object”

27 February 2006 24

Typestate Analysis Flow Functions

• ƒTA(σ, [new T]k)
= [tk↦α][α↦(T,NA,initState(T), ∅)] σ

• α ∉ domain(σ)
• ƒTA(σ, [[…]n.f]k) = [tk↦β] σ

• σ(tn)=α, σ(α).f=β
• ƒTA(σ, [[…]n.f]k) = [tk↦β][β↦annot(f)] σ

• σ(tn)=α, f ∉ domain(σ(α)), β ∉ domain(σ), T=type(f)
• annot(f) denotes the state annotated on f

• ƒTA(σ, [x]k) = [tk↦σ(x)] σ
• ƒTA(σ, [x := […]n]k) = [x↦σ(tn)] σ
• ƒTA(σ, /* any other */) = σ



12

27 February 2006 25

Typestate Analysis Flow Functions
• ƒTA(σ, [[…]n.f := […]m]k) = [α.f↦σ(tm)] σ

• σ(tn)=α, alias(σ(α))=NA
• ƒTA(σ, [[…]n.f := […]m]k) = σ

• σ(tn)=α, alias(σ(α))≠NA, alias(σ(σ(tm)))=MA/E
• check that pack(σ(σ(tm)), Sann) ⊑ annot(f, state(σ(α)))
• Sann = state(annot(f, state(σ(α))))

• ƒTA(σ, [fn([…]n)]k) = [α↦ annot(fnout)] σ
• σ(tn)=α
• check that pack(σ(α), Sann) ⊑ annot(fnin)
• if alias(σ(α))=NA and alias(annot(fnin))=MA/E

• lost track of tn warning

• σ
ι
=({x � αx},{αx � annot(x))

• end of function
• check for argument x that pack(σ(σ(x)), Sann) ⊑ annot(fnout)

• pack((T,alias,S, {fi � αi}), S’) = (T,alias,S’,∅)
• check that pack(σ(αi), Sann) ⊑ annot(fi, S’)

27 February 2006 26

Example: Type State Analysis
[WithProtocol(“raw”, “bound”, “connected”, 

“down”)]
class Socket {

…
[InState(“connected”)]
public int Send(…);
[Disposes(State.Any)]
public void Close();

}

[WithProtocol(“open”, “closed”)]
class WebPageFetcher {

[InState(“connected”, 
WhenEnclosingState=“open”), 
NotAliased(WhenEnclosingState=“open”)]
private Socket socket;
…
[ChangesState(“open”, “closed”)]
public void Close() {

Socket sock = this.socket;
sock.Send(…);
sock.Close();

} …

Analysis Information
• Entry of Close()

• [this � a0,
a0 � (WebPageFetcher, NA, “open”,

{socket � a1}),
a1 � (Socket, NA, “connected”, ∅)]

• Socket sock = this.socket;
• [this � a0, socket � a1,

a0 � (WebPageFetcher, NA, “open”,
{socket � a1}),

a1 � (Socket, NA, “connected”, ∅)]
• sock.Send(…);

• verify: sock in “connected” state (yes)
• sock.Close();

• verify: sock ∈ State.Any
• verify: alias(σ(σ(sock))) = NA
• [this � a0, socket � a1,

a0 � (WebPageFetcher, NA, “open”,
{socket � a1})]

• sock and this.socket become dangling
• Exit of Close()

• verify: σ(sock) ∉ domain(σ)



13

27 February 2006 27

Experience

• Web server application
• 16,000 lines of code
• Well tested, deployed
• Checked DB library usage

• Errors
• Disposing command object (17 times)
• Closing DB connections (9 times)

• Could cause out of resources error

• Observations
• Added states to objects to track initialization
• Annotated 24 methods and 6 fields

• 3 more methods used library only intra-procedurally

• How would Metal have done?

27 February 2006 29

Fugue vs. Metal, PREfix

• Fugue
• Manual 

annotations
• Can find inter-

procedural errors
• Tracks aliases for 

soundness

• Metal
• Fully automatic 

(once protocol 
specified)

• Finds only intra-
procedural errors

• Unsound
• PREfix

• Fully automatic
• Finds only 

language errors
• Unsound


