
1

Test Prioritization

Related reading: Effectively Prioritizing
Tests in Development Environment

17-654/17-754 Analysis of Software Artifacts
Gabriel Zenarosa

6 April 2006 2

Test Prioritization: Motivation

• Goal: find and eliminate newly introduced defects
• Regression Testing for Windows

• Many tests
• Many platform configurations to run them on
• Full tests take weeks to run

• Test Prioritization
• Want to run tests likely to fail first
• Day 1 after internal release, not day 21!

• Test Selection
• What tests should I run before checking in code?
• What tests should be run before releasing a critical fix?
• Special case of prioritization

Observation: New defects are introduced from changed code

Slide adapted from ICFEM talk by Amitabh Srivastava

2

6 April 2006 3

Test Prioritization: Motivation

• Goal: find and eliminate newly introduced defects
• Regression Testing for Windows

• Many tests
• Many platform configurations to run them on
• Full tests take weeks to run

• Test Prioritization
• Want to run tests likely to fail first
• Day 1 after internal release, not day 21!

• Test Selection
• What tests should I run before checking in code?
• What tests should be run before releasing a critical fix?
• Special case of prioritization

Observation: New defects are introduced from changed code

Slide adapted from ICFEM talk by Amitabh Srivastava

• Which “strategy” does
Echelon take?
• Which test feature is
used to approximate
the likelihood of failure?

6 April 2006 4

Challenges in Test Prioritization

• Detecting change and affected parts of the
program

• Scalability to handle complex systems
• Tens of millions of tests
• Thousands of developers and testers
• Tens of millions lines of source code
• Acceptable response times

• Integrating seamlessly into development
process

Slide adapted from ICFEM talk by Amitabh Srivastava

3

6 April 2006 5

Scout (Echelon): Test Prioritization System

Old Image

Coverage

New Image

Old Image

Image Change Analysis

Coverage Impact Analysis

Test Prioritization

Output 2Output 2Output 2Output 2

List of impacted blocks not

covered by the existing

tests

Output 1Output 1Output 1Output 1

Prioritized list of test cases

based on coverage of the

impacted blocks

What changed?What changed?What changed?What changed?

Detect impacted blocks

(new + old changed)

What can be leveraged?What can be leveraged?What can be leveraged?What can be leveraged?

Detect impacted blocks likely to

be covered by existing tests

What order should tests be run? What order should tests be run? What order should tests be run? What order should tests be run?

Detect minimal set of test cases

likely to cover the impacted blocks

Slide adapted from ICFEM talk by Amitabh Srivastava

6 April 2006 6

BMAT – Binary Matching

• Goal: detect corresponding blocks in old
and new versions of a program
• [Wang, Pierce, and McFarling JILP 2000]

• Matches basic blocks in binary code
+ don’t need source code
– must ignore changes in address space

• Algorithm considers similarities in code
and in its uses

Slide adapted from ICFEM talk by Amitabh Srivastava

4

6 April 2006 7

BMAT – Matching Procedures

• Match procedures if names match
• Qualified by package, scope, etc.
• If ambiguous, extend to include argument types

• Check for similar names
• Verify match if blocks are similar (see below)

• Look for function bodies hashing the same
• Perform pair-wise comparison of blocks

otherwise
• Conclude function is new if no matches are

found

6 April 2006 8

BMAT – Matching Blocks

• Match blocks based on hash of contents
• Look for exact match first, then apply fuzzy hashing

algorithm
• Fuzzy algorithms ignore information that is likely to change due to

innocuous changes: offsets, registers, block addrs, opcodes

• Control-flow match
• Build CFG, look for node pairs with the same connectivity
• May match many new blocks to one old block
• Partial match: new block not always executed (e.g. b2’’)

5

6 April 2006 9

Detecting Impacted Blocks

• Old blocks
• Identical (modulo address changes)

• Impacted blocks
• Old modified blocks
• New blocks

6 April 2006 10

Scout (Echelon): Test Prioritization System

Old Image

Coverage

New Image

Old Image

Image Change Analysis

Coverage Impact Analysis

Test Prioritization

Output 2Output 2Output 2Output 2

List of impacted blocks not

covered by the existing

tests

Output 1Output 1Output 1Output 1

Prioritized list of test cases

based on coverage of the

impacted blocks

What changed?What changed?What changed?What changed?

Detect impacted blocks

(new + old changed)

What can be leveraged?What can be leveraged?What can be leveraged?What can be leveraged?

Detect impacted blocks likely to

be covered by existing tests

What order should tests be run? What order should tests be run? What order should tests be run? What order should tests be run?

Detect minimal set of test cases

likely to cover the impacted blocks

Slide adapted from ICFEM talk by Amitabh Srivastava

6

6 April 2006 11

Computing Coverage

• Computed for each test T
• Old block b

• Covered if T covered b in old binary

• New block
• Covered if at least one predecessor and

successor were covered in old binary
• Heuristic: predict branches taken
• Heuristic: don’t check predecessors for

indirect call targets

6 April 2006 12

Scout (Echelon): Test Prioritization System

Old Image

Coverage

New Image

Old Image

Image Change Analysis

Coverage Impact Analysis

Test Prioritization

Output 2Output 2Output 2Output 2

List of impacted blocks not

covered by the existing

tests

Output 1Output 1Output 1Output 1

Prioritized list of test cases

based on coverage of the

impacted blocks

What changed?What changed?What changed?What changed?

Detect impacted blocks

(new + old changed)

What can be leveraged?What can be leveraged?What can be leveraged?What can be leveraged?

Detect impacted blocks likely to

be covered by existing tests

What order should tests be run? What order should tests be run? What order should tests be run? What order should tests be run?

Detect minimal set of test cases

likely to cover the impacted blocks

Slide adapted from ICFEM talk by Amitabh Srivastava

7

6 April 2006 13

Prioritization Algorithm
Test Blocks .
t1 b2,b7
t2 b1,b2,b3,b8
t3 b7
t4 b6
t5 b1,b2,b5
t6 b4,b5

Impacted: b1,b2,b4,b7,b8

Seq1:
Seq2:
Seq3:

t2 t1 t6
t5 t3
t4

6 April 2006 14

Prioritization Algorithm Improvement
• “As we keep a sorted list of

tests by weight, we
terminate the search for a
test when the new
computed weight is
greater than the original
weight of the next test.
This helps the algorithm to
converge faster.” [Srivastava
02]

8

6 April 2006 15

Prioritization Algorithm Improvement
• “As we keep a sorted list of

tests by weight, we
terminate the search for a
test when the new
computed weight is
greater than the [original
previous] weight of the
next test. This helps the
algorithm to converge
faster.” [Srivastava 02]

if (Seq ≠ ∅ ∅ ∅ ∅) then
if Weight(t) > Weight(s) then

break
Where:

s is the next element of TestList
after t

Weight(s) holds its old value

6 April 2006 16

Prioritization Algorithm Improvement
• “As we keep a sorted list of

tests by weight, we
terminate the search for a
test when the new
computed weight is
greater than the [original
previous] weight of the
next test. This helps the
algorithm to converge
faster.” [Srivastava 02]

if (Seq ≠ ∅ ∅ ∅ ∅) then
if Weight(t) > Weight(s) then

break
Where:

s is the next element of TestList
after t

Weight(s) holds its old value

Non-increasing
cardinality per
iteration

9

6 April 2006 17

Prioritization Algorithm Extensions

Test Features:

Contextual coverage

Execution Time
Overall coverage
Rate of fault detection
…

[Srivastava 02] mentions using
other features when ties
occur on the main feature

Alternatively, the features can be
weighted and combined

6 April 2006 18

Prioritization Algorithm Extensions

Test Features:

Contextual coverage

Execution Time
Overall coverage
Rate of fault detection
…

Weight(t)
= wcoverage

* count[CurrBlkSet ∩ Coverage(t)]

+ wexec_time * [ExecTime (t)]-1

10

6 April 2006 19

Prioritization Algorithm Extensions

Test Features:

Contextual coverage

Execution Time
Overall coverage
Rate of fault detection
…

Weight(t)
= wcoverage

* count[CurrBlkSet ∩ Coverage(t)]

+ wexec_time * [ExecTime (t)]-1

Caveat:
Must normalize units

6 April 2006 20

Prioritization Algorithm Extensions
Weight(t)

= wcoverage

* count[CurrBlkSet ∩ Coverage(t)]

+ wexec_time * [ExecTime(t)]-1

TestsToExecute: seq seq test

Σs∈∈∈∈ran TestsToExecute Σt∈∈∈∈ran s
ExecTime(t) ≤
TimeAllottedForTesting

ran TestsToExecute = arg maxss: P seq test

[∪∪∪∪s∈∈∈∈ss ∪∪∪∪t∈∈∈∈ran s Coverage(t)]

…are biases to approximate the optimal…

11

6 April 2006 21

Echelon Performance: ProductX.EXE

3,128

22,651,904

8,880,128

668,274

31,026

01/29/2001

Build 2529.0

3,128Number of
Traces

22,602,752PDB size

8,880,128File size

668,068Blocks

31,020Functions

12/11/2000Date

Build 2411.1

Scout took about 210 seconds

378
(220 New, 158 OC)

Impacted Blocks

176 Blocks
Likely Covered by
existing tests (LC)

1,225
Number of sets in
prioritized list

16 Traces
Traces needed to
cover LC (Set 1)

Image Info Results

1.8 million lines of source code

Slide adapted from ICFEM talk by Amitabh Srivastava

6 April 2006 22

Test Sequence Characteristics

12

6 April 2006 23

Prediction Errors

1-4% False Positives 4-5% False Negatives

6 April 2006 24

Defect Detection
Program A Program B

13

6 April 2006 25

Summary: Test Prioritization

• Effectively being used in MS Windows, SQL, and
Exchange development process
• Quickly identifies tests most likely to detect errors

• Scales to production environments - millions of tests
and thousands of binaries

• Combination of approximations and static analysis to
eliminate manual methods

• Collect information about development process

Slide adapted from ICFEM talk by Amitabh Srivastava

