
1

Software Excellence via
Program Analysis

at Microsoft

Manuvir Das

Center for Software Excellence
Microsoft Corporation

Used by permission for 17-654/17-754:
Analysis of Software Artifacts
Jonathan Aldrich, Instructor

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation2

Talking the talk …

� Program analysis technology can make a
huge impact on how software is engineered

� The trick is to properly balance research on
new techniques with a focus on deployment

� The Center for Software Excellence (CSE) at
Microsoft is doing this (well?) today

2

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation3

… walking the walk

� Program Analysis group in June 2005
– Filed 7000+ bugs
– Automatically added 10,000+ specifications
– Answered hundreds of emails
(one future version of one product)

� We are program analysis researchers
– but we live and breathe deployment & adoption
– and we feel the pain of the customer

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation4

Context

� The Nail (Windows)
– Manual processes do not scale to “real” software

� The Hammer (Program Analysis)
– Automated methods for “searching” programs

� The Carpenter (CSE)
– A systematic, heavily automated, approach to

improving the “quality” of software

3

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation5

What is program analysis?

� grep == program analysis
� program analysis == grep

� syntax trees, CFGs, instrumentation, alias analysis,
dataflow analysis, dependency analysis, binary
analysis, automated debugging, fault isolation,
testing, symbolic evaluation, model checking,
specifications, …

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation6

Roadmap

� (part of) The engineering process today

� (some of) The tools that enable the process

� (a few) Program analyses behind the tools

� (too many) Lessons learned along the way

� (too few) Suggestions for future research

4

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation7

Engineering process

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation8

Methodology

Root Cause
Analysis

Measurement

Analysis
Technology

Resource
Constraints

Engineering
Process

5

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation9

Root cause analysis

� Understand important failures in a deep way
– Every MSRC bulletin
– Beta release feedback
– Watson crash reports
– Self host
– Bug databases

� Design and adjust the engineering process to
ensure that these failures are prevented

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation10

Measurement

� Measure everything about the process
– Code quality
– Code velocity
– Tools effectiveness
– Developer productivity

� Tweak the process accordingly

6

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation11

Process – Build Architecture

Main
Branch

Team
Branch

Desktop

Team
Branch

Team
Branch

Desktop

…… ……

……

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation12

Process – Quality Gates

� Lightweight tools
– run on developer desktop & team level branches
– issues tracked within the program artifacts

� Enforced by rejection at gate

Main
Branch

Team
Branch

Desktop

Team
Branch

Team
Branch

Desktop

…… ……

……

7

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation13

Process – Automated Bug Filing

� Heavyweight tools
– run on main branch
– issues tracked through a central bug database

� Enforced by bug cap

Main
Branch

Team
Branch

Desktop

Team
Branch

Team
Branch

Desktop

…… ……

……

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation14

Tools

8

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation15

QG – Code Coverage via Testing

� Reject code that is not adequately tested
– Maintain a minimum bar for code coverage

� Code coverage tool – Magellan

� Based on binary analysis - Vulcan

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation16

Magellan

� BBCover
– low overhead instrumentation & collection
– down to basic block level

� Sleuth
– coverage visualization, reporting & analysis

� Blender
– coverage migration

� Scout
– test prioritization

9

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation17

QG – Component Integrity

� Reject code that breaks the componentized
architecture of the product
– Control all dependencies across components

� Dependency analysis tool – MaX

� Based on binary analysis - Vulcan

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation18

MaX

� Constructs a graph of dependencies
between binaries (DLLs) in the system
– Obvious : call graph
– Subtle : registry, RPC, …

� Compare policy graph and actual graph

� Some discrepancies are treated as errors

10

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation19

Vulcan

� Input – binary code
� Output – program abstractions

� Adapts to level of debug information
� Makes code instrumentation easy

– think ATOM

� Makes code modification easy
– link time, post link time, install time, run time

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation20

QG – Formal Specifications

� Reject code with poorly designed and/or
insufficiently specified interfaces

� Lightweight specification language – SAL
– initial focus on memory usage

� All functions must be SAL annotated

� Fully supported in Visual Studio (see MSDN)

11

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation21

SAL

� A language of contracts between functions
� preconditions

– Statements that hold at entry to the callee
– What does a callee expect from its callers?

� postconditions
– Statements that hold at exit from the callee
– What does a callee promise its callers?

� Usage example:
a0 RT func(a1 … an T par)

� Buffer sizes, null pointers, memory usage, …

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation22

SAL Example

� wcsncpy
– precondition: destination must have enough

allocated space

wchar_t wcsncpy (
wchar_t *dest, wchar_t *src, size_t num);

wchar_t wcsncpy (
__pre __writableTo(elementCount(num)) wchar_t *dest,
wchar_t *src, size_t num);

12

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation23

SAL Principle

� Control the power of the specifications:
– Impractical solution: Rewrite code in a different

language that is amenable to automated analysis
– Practical solution: Formalize invariants that are

implicit in the code in intuitive notations
� These invariants often already appear in comments

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation24

Defect Detection Process – 1

Code Base

Local

Checking

Code Review

Potential

Defects
Annotation
Fixes,

Bug Fixes

Annotated
Code

Manual
Annotations

13

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation25

QG – Integer Overflow

� Reject code with potential security holes due
to unchecked integer arithmetic

� Range specifications + range checker – IO

� Local (intra-procedural) analysis

� Runs on developer desktop as part of regular
compilation process

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation26

IO

� Enforces correct arithmetic for allocations

� Construct an expression tree for every
interesting expression in the code

� Ensure that every node in the tree is checked

size1 = …
size2 = …
data = MyAlloc(size1+size2);
for (i = 0; i < size1; i++)

data[i] = …

14

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation27

QG – Buffer Overruns

� Reject code with potential security holes due
to out of bounds buffer accesses

� Buffer size specifications + buffer overrun
checker – espX

� Local (intra-procedural) analysis
� Runs on developer desktop as part of regular

compilation process

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation28

Bootstrap the process

� Combine global and local analysis:
– Weak global analysis to infer (potentially

inaccurate) interface annotations - SALinfer
– Strong local analysis to identify incorrect code

and/or annotations - espX

15

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation29

Defect Detection Process - 2

Code Base

Annotation

Inference

Local

Checking

Code Review

Potential

Defects
Annotation
Fixes,

Bug Fixes

Annotated
Code

Manual

Annotations

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation30

void work()
{

int elements[200];
wrap(elements, 200);

}

void wrap(int *buf,
int len)

{
int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

}

void zero(int *buf,
int len)

{
int i;
for(i = 0; i <= len; i++)

buf[i] = 0;
}

SALinfer

Track flow of values through the code

1. Finds stack buffer
2. Adds annotation
3. Finds assignments
4. Adds annotation

void work()
{

int elements[200];
wrap(elements, 200);

}

void wrap(pre elementCount(len) int *buf,
int len)

{
int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

}

void zero(int *buf,
int len)

{
int i;
for(i = 0; i <= len; i++)

buf[i] = 0;
}

void work()
{

int elements[200];
wrap(elements, 200);

}

void wrap(pre elementCount(len) int *buf,
int len)

{
int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

}

void zero(pre elementCount(len) int *buf,
int len)

{
int i;
for(i = 0; i <= len; i++)

buf[i] = 0;
}

16

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation31

void work()
{

int elements[200];
wrap(elements, 200);

}

void wrap(pre elementCount(len) int *buf,
int len)

{
int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

}

void zero(pre elementCount(len) int *buf,
int len)

{
int i;
for(i = 0; i <= len; i++)

buf[i] = 0;
}

Building and solving constraints

1. Builds constraints
2. Verifies contract
3. Builds constraints

len = length(buf); i ≤ len
4. Finds overrun

i < length(buf) ? NO!

espX

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation32

QG – Code Correctness

� Reject code with potential crashes due to improper
usage of memory

� Pointer usage specifications + memory usage
checker – PREfast

� Managed code – PREsharp
� Local (intra-procedural) analysis
� Runs on developer desktop as part of regular

compilation process

17

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation33

ABF – Code Correctness

� Tease out hard to find inter-component bugs
that lead to crashes
– null dereference, un-initialized memory, leaks, …
– difficult to find accurately on the desktop

� Inter-procedural symbolic evaluation - PREfix

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation34

PREfix

� Bottom-up process on the call graph

� Symbolic evaluation of a fixed number of
distinct paths through each function
– use symbolic state to remove infeasible paths
– report defects
– build function models for use by callers

� Solved all the difficult engineering problems
for the inter-procedural tools to follow

18

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation35

ABF – Security

� For every new security issue, map it to a
coding defect and root out all other instances
– Each coding defect is a different pattern, but most

can be viewed as finite state properties

� Heavyweight, thorough, property-based inter-
procedural analysis - ESP

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation36

Property-based analysis

void main ()
{

if (dump)
fil = fopen(dumpFile,”w”) ;

if (p)
x = 0;

else
x = 1;

if (dump)
fclose(fil) ;

}

Closed

Opened

ErrorOpen

Print
Open

Close

Print/Close

*

void main ()
{

if (dump)
Open;

if (p)
x = 0;

else
x = 1;

if (dump)
Close ;

}

19

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation37

ESP

� Symbolically evaluate the program
– track FSA state and execution state

� At control flow branch points:
– Execution state implies branch direction?

� Yes: process appropriate branch
� No: split state and process both branches

� At control flow merge points:
– States agree on property FSA state?

� Yes: merge states
� No: process states separately

Example

[Opened|dump=T]

[Closed]

[Closed |dump=T]

[Closed |dump=F]

[Opened|dump=T,p=T,x=0] [Opened|dump=T,p=F,x=1][Opened|dump=T] [Closed |dump=F]

[Closed]

entry

dump

p

x = 0 x = 1

Open

Close

exit

dump

T

T

T

F

F

F

20

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation39

Lessons

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation40

Forcing functions for change

� Gen 1: Manual Review
– Too many paths

� Gen 2: Massive Testing
– Inefficient detection of common patterns

� Gen 3: Global Program Analysis
– Stale results

� Gen 4: Local Program Analysis
– Lack of context

� Gen 5: Specifications

21

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation41

Don’t bother doing this without -

� No-brainer must-haves
– Defect viewer, docs, champions, partners

� A mechanism for developers to teach the tool
– Suppression, assertion, assumption

� A willingness to support the tool

� A positive attitude

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation42

Myth 1 – Soundness matters

Sound == find only real bugs

� The real measure is Fix Rate

� Centralized: >50%

� Desktop: >75%

� Specification inference
– Is it much worse than manual insertion?

22

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation43

Myth 2 – Completeness matters

Complete == find all the bugs

� There will never be a complete analysis
– Partial specifications
– Missing code

� Developers want consistent analysis
– Tools should be stable w.r.t. minor code changes
– Systematic, thorough, tunable program analysis

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation44

Myth 3 – Developers only fix real bugs

� Key attributes of a “fixable” bug
– Easy to fix
– Easy to verify
– Unlikely to introduce a regression

� Simple tools can be very effective

23

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation45

Myth 4 – Developers hate specifications

� Control the power of the specifications

� This will work
– Formalize invariants that are implicit in the code

� This will not work
– Re-write code in a different language that is

amenable to automated analysis

� Think like a developer

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation46

Myth 5 – Whiteboards are useful

� Whiteboards have held back defect detection

� The most useful analyses and tools mimic
the thinking of the developer
– e.g. do developers consider every possible

interleaving when writing threaded code? No!

24

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation47

Myth 6 – Theory is useless

� Fundamental ideas have been crucial
– Hoare logic
– Abstract interpretation
– Context-sensitive analysis with summaries
– Alias analysis

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation48

Don’t break the shipping code ☺☺☺☺

b = a + 16; Use(b);

b = __invariant(a) + 16; Use(b);

__invariant(a); b = a + 16; Use(b);

� __invariant() is an annotation macro
– generates code in the tools build, noop in the real build

� Before:

� After (correct code):

� After (incorrect code):

� Incorrect usage silently breaks the code!

25

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation49

Research directions

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation50

Concurrency tools

� Developers working on large projects follow
sequential locking disciplines
– Sequential analysis to mimic the developer
– Language constructs to help the developer

� Indirect defects reported on a single thread
are much easier to fix

26

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation51

Static & dynamic analysis

� Static followed by dynamic
– Instrument problem areas using static analysis
– Gather dynamic traces to diagnose defects

� Dynamic followed by static
– Use dynamic analysis to create a signature for good

execution traces
– Use static analysis to find execution traces that do not

match the signature

� Common intermediate information
– Code coverage, …

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation52

Users as automated testers

� Huge opportunity to improve code quality
– Find out what’s failing, where, how often
– Diagnose the failures
– Early warning data

� Avoid falling into the trap of the long awaited
“code review editor”
– Need to find limited, concrete scenarios

27

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation53

Evolutionary tools

� Specification-based tools evolve a language
– Introduce a programming discipline
– Increase the portability of legacy code

� We have tackled memory usage
– Rinse and repeat

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation54

Summary

� Program analysis technology can make a
huge impact on how software is developed

� The trick is to properly balance research on
new techniques with a focus on deployment

� The Center for Software Excellence (CSE) at
Microsoft is doing this (well?) today

28

© 2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

http://www.microsoft.com/cse
http://research.microsoft.com/manuvir

