Carlos Simoes

Miguel Graga Oliveira

|[ANALYSIS ASSIGNMENT 10|

INTRODUCTION

The purpose of this project is to evaluate a testing tool chosen by the team and provide feedback
about its usage, its advantages and its disadvantages.

THE TOOL

For this project, we are evaluating the tool FindBugs, version 1.3.8. The tool has its source code, as
well as precompiled binaries, available at the FindBugs website [1].

EVALUATION PLAN

In order to evaluate the tool we will be run it through both previous work done by the team and a third
party, open source, project. We will evaluate the results obtained and, through that evaluation, assess
how accurate is the tool and how beneficial would be its usage on a software project.

TOOL DESCRIPTION

OVERALL VIEW

FindBugs is bug finder for Java programs. It uses static analysis to inspect Java byte code (compiled
class files). This means that you do not even need the program's source code to analyze it, nor
execute the program in order to detect bugs.

It is based on the concept of bug patterns. A bug pattern is a code idiom that is often an error. Bug
patterns arise for a variety of reasons:

o Difficult language features

e Misunderstood API methods

e Misunderstood invariants when code is modified during maintenance
Garden-variety mistakes: typos, use of the wrong Boolean operator

Thus, the tool inspects Java byte code for occurrences of bug patterns.

FindBugs is free software, available under the terms of the Lesser GNU Public License. It is
implemented using Java, and can run on any virtual machine compatible with Sun's JDK 1.5. It can
analyze programs written for any version of Java.

Nowadays, the analysis engine reports nearly 300 different bug patterns. FindBugs also supports a
plug-in architecture allowing anyone to add new bug detectors. Therefore, with new bug detectors
the number of bug patterns found by the tool can increase even more.

FindBugs uses the Byte Code Engineering Library (BCEL) to analyze Java byte code. The tool also
supports bug detectors written using the ASM byte code framework. FindBugs uses dom4;j for XML
manipulation.

The tool’s detected bugs are grouped into a number of categories (e.g. correctness, performance) as
well as attributed priorities (high, medium or low) to each of the bug reports. These priorities are
determined by heuristics within each detector/pattern and are not necessarily comparable across
bug patterns.

FindBugs can be run from the command line, Ant or Maven, or in a GUI, Eclipse or NetBeans. The
analysis results can be saved in XML, which can then be further filtered, transformed, or imported
into a database.

HOW TO INSTALL

The installation of the tool is very simple no matter the flavor. In the context of this project, we are
using the Swing interface version.

In order to install the tool, just follow these steps:

1. Go to the tool download page (http://findbugs.sourceforge.net/downloads.html);
2. Select the swing interface version you want to install in your machine;
3. After download it, double-click on the file you just download and it is ready to use.

HOW TO USE IT

To begin using the tool, you need to create a project. To do that you can go to the option menu
“File\New Project”, or simply type CTRL+N.

A new screen will open requiring a project name and some others information. Figure 1 shows the
screen to be fulfilled.

x

¥ New Project

Project name (i.e., description)

Class archives and directories to analyze

Add

g
E
!

Auxiliary class locations

Remove

Source directories

Add

Remove

=
=
EI|: I=

| Finish || Cancel

FIGURE 1 - SCREEN TO CREATE A NEW PROJECT ON THE TOOL.

On the project name field, you are able to input a small description that identifies to project your
analyzing. Under the “Class archives and directories to analyze”, you should provide the directory
containing the java byte code to be analyzed (usually the “/bin” directory on the project). To do
that, click on the Add button and inform the directory containing the application byte code.

In case you also have the source code and you would like to see it on the tool while browsing
throughout detected bugs, you can inform where is located the application source code. To do that
just click on the Add button under “Source directories” and inform the directory where the source
code is located.

In addition to this, please note that we are able to add external libraries (in the Auxiliary class
locations section) and add multiple directories for each of the project directory categories.

After fulfilling this information, click on “Finish”. At this point, the tool will start analyzing the
application provided. The screen now should be similar to the one shown on Figure 2.

I3l

File Edit Mavigation Designation Help

= o 4/810LotsOMBugs.java in edu.chu.pidgin.a10
Category | Bltriind ‘ ButrBatterm | & ‘ Eringly; | ¥ I public static vold Lain(Stringl] args) | =
[Bugs (5) i 1z Al0Lots0fBugs run = new Al0LotsOfBugs(): =
& [Bad practice (2) : 13 run. run(j
& 3 Correctness (2 : 14 } ||
¢ 3 Doduy (1) 1) .
¢ [Dead lacal stare (13 i i: puv:te ‘";m run() { i . " 5 “ =
. . 1stLString> castlist = mew ArrayList<Strings():
¢ [Dead store to local variahle (1) . : i Tnteger a - Integer.lUX_VALUE:
D Dead store to a in edu.crmu. pidgin.a10.A10LotsOBugs.rund g 19 it I
i 0 testCastProblen(castlist);
21 frtestCastProblenString('o')
T : 22 testCastProblen (null):
must fix : 23 bugl bl = new bugl();
: 24 testCastProblen?(bl);
‘ | 25 testConparisonTwolbjects () —
: £ 1 X
"| i ‘ | | Fintd | | Find Next | | Find Previous
A e T e T
Dead store to a in edu.crmu.pidgin.al0.A10LotsOfBugs.rund
AtA10L0ts0MBuUgs java:[line 19]
In method edu.cmu pidgina0.A10LotsOfBugs. rund [Lines 17 - 26]
Local variable hamed a
T
-
Dead store to local variable =
This instruction assigns a value o a local variable, butthe value is not read or used in any subsequent instruction. Often, this indicates an etror, because the value computed is never |
used =]
UNIVERSITY OF
httpzifindbugs.sourceforge.net/ @} MARYLAND

FIGURE 2 - MAIN SCREEN AFTER FINDBUGS ANALYSIS ON APPLICATION BYTECODE.

This screen has three major sections that are provided to support main tool operations. The first
one contains a list of detected bugs by the tool and an option to categorize this bus according to the
options provided by the tool. Figure 3 shows this screen section.

Eile Edit HNavigation Designation Help

Category | Bug Kind | Bug Pattern | <3 | Priority |
[Bugs (5)

o= [Bad practice {2)
o[Correctness (2)
1 Doday (1)

¢ [Dead local stare (1)
¢ [Dead store to local variable (1)
D Dead store to ain edu crmu pidgin.a10.A1 0LotsOBugs.run

>

must fix |v|
-]
a

FIGURE 3 - BUG LIST SECTION FROM THE TOOL MAIN SCREEN

The right section on the main screen shows the source code where a bug was detected. When a bug
is selected from the list provided on the bug list (shown on figure 3), the tool opens the
corresponding source code on this screen. Figure 4 show this code section.

1l1ﬂ.mlmumhmwulﬂ
] PRI WA veld SAIRIISEIRG]] argEl | -

AlOLocadffogs oun = new ALQLocsdiBugsihs
Tun . eEm(]

private wid o) |
biscitring: casclist = mew Arcaylisc<Strings{)’
Ineeger a = Integer. HAX TALIE:
ah;
teaclastFooblen [cay

tentCatProbl
bugl bl =
taatlaatPoedlnd

tenclsupari FanTw

FIGURE 4 - CODE SECTION FROM THE TOOL MAIN SCREEN.

The lower section on the main screen presents the details about the bug selected from the bug list.
It also shows the line within the source coude were this bug was found. Figure 5 shows this bug
information section.

Crarad Shor bo @ in edu omu phogin e 01 SLote0Bugs 1und)
ALATOLots OfBugs java fine 13|

In Fithod edu trw plagin sl 0ATSLokOMegd run [Lines 17 - 26
Lot al vairiabds nasrwd §

Dead store to local variable
This instruchon asSigns 4 value 10 2 Mol vanatile, Bul M value is nal nead o2 wsd in sy ssbsaquent instructan. Often, his indcales an evor, Because the viled compuied is niver
i -

ilﬂpcm:.imurorwm. '%_. UK ;\i{{rﬂi: [a]]
FIGURE 5 - BUG DETAIL SECTION FROM THE TOOL MAIN SCREEN.

After the tool completing the report with the all the found bugs, we are able to assess these results,
categorize the bugs found and also export these results to further analyzes and reports.

For more information about how to use the tool, you can go to the on-line user manual for the tool

available at http://findbugs.sourceforge.net/manual/index.html [1].

TOOL EXPERIMENTS

In order to follow the evaluation plan we chose two different projects to run the tool on and analyze
its results. The two selected projects in this work were the Plural project and the Game checkers
project (this project includes both GUIs, the Framework and the game plugin, which was developed
by our team).

The assessment done on the experiments will follow the following process:

1. Once with the projects source code available, we start tool analyzes on the code;

2. The list of bugs produced by the tool shall be assessed to looking for: false positives, true
positives irrelevant to the project and true positives relevant to the project.

3. Log the results of this assessment.

RESULTS

After using the tool and assessing the bugs found we came up with the results presented on Table 1.

TABLE 1 - DEFECT BREAKDOWN

Plural Checkers
game
Total defects 68 45
False positives 2 1
Defects/KLOC 2.44 12.86
Defects not relevant 8 10

Defects found for each project are grouped by category as described on the following figures. Figure
6 shows the defects found on Plural Project

Amount of bugs found per category

PERFORMANCE, 13

MALICIOUS_CODE,
5

CORRECTNESS, 4

FIGURE 6 - AMOUNT OF BUGS FOUND PER CATEGORY

We can see from this graph that most of the defects found o Plural was due to Bad Practices
(corresponding to 59% of the defects found).

Figure 7 shows the defects found for Checkers game.

Amount of bugs found per category

EXPERIMENTAL, 1

\ MALICIOUS_CODE, 3

FIGURE 7 - AMOUNT OF BUGS FOUND PER CATEGORY

On the Checkers game project we can see that style, bad practices and performance bugs are
responsible to most of the defects found by the tool.

TRUE POSITIVES RELEVANT TO THE PROJECT

The true positives releavant to the project are the total bugs found by the tool minus false positives
and irrelevant true positivies. With these in mind, the true positives relevant to each project are
seen on Table 2.

TABLE 2 - AMOUNT OF DEFECTS BY PROJECT

Project Amount of defects
Plural 58
Checkers 34

In the following sections, we present some examples that provide a sample for the defects found by
the tool.

PLURAL

DEFECT: METHOD WITH BOOLEAN RETURN TYPE RETURNS EXPLICIT NULL

This code has some methods that return Boolean objects as results. This can be seen on
figure below, where we have for instance the method: public Boolean visit (BinaryExpAP
binaryExpr).

=8|

File Edit Navigation Designation Help

Category | Bug Kind | Bug Pattern | (_)| Priority| 4 Concretel Utils.java in edu.cmu.cs.plural.concrete
L T H0verride =
[Bugs (68) 229 public Boolean visit{BinaryExpriP hinaryExpr) |
) . - ; _
¢ [Bad practice (40) 230 Pair<iliazing, ? extends VarishlePredicate> p
¢ [Mull pointer dereference (40) 231 handleBinary (binaryExpr.getEinExpr ()] :
& [Method with Boolean return type returns explicit null (40 232 if(p != null) {
[WisitBinanExprar) has Boclean return type and returns explicit Ul 233 result. add(p. £5t());
o % . T 5 preds. add(p);
D visit{Conjunction) has Boolean return type and returns explicit null - ,
D Vfot(DlSjuletan) has.Elo.olean return type and returns explicit null . = return null: =
D visit{Permissionimplication) has Boolean return type and returns expli 237 y T
[T wizitiotataninbi has Baolasn raturn fna and rahirne avnlicit aoll 238
] i [*]
- 233 [E0verride
' mostly harmless Z40 public Boolean wisit{EqualsExpr equalsExpr) {
241 throw new IllegalZtateException(”Should be handled | |
2432 1 fieeh
1 \ [
| | Find | | Find Mext | | Find Previous

T L L

visitBinaryExpraP) has Bodlean return type and returns explicit null
At ConcreteAnnotationUtils java:[line 236]
In method edu.cmu.cs.plural.concrete. ConcreteAnnotationUtilsfConcreteVisitorvisit(BinaryExpraP) [Lines 231 - 236]

-

T e v B Sy v 7

Method with Boolean return type returns explicit null
A method that returns either Boolean TRUE, Boolean.FALSE ar null is an accidentwaiting to happen. This method can be invoked as though it returned a value of type boolean, and the
compiler will insert automatic unbaxing of the Boolean value. If a null value is returned, this will resultin a NullPainterException.

UNIVERSITY OF
http:ifindbugs.sourceforge.net/ @) MARYLAND

FIGURE 8 - RETURN EXPLICIT NULL

This is a true positive because, as exposed by the tool, because this method can be invoked as
though it retuned a value of type Boolean, and the compiler will insert automatic unboxing. Thus,
return null can cause a NullPointerException.

DEFECT: METHOD USE THE SAME CODE FOR TWO BRANCHES

This example code has a method in which perform some value verification using the syntax:
<Condition> : <do this if Condition is true>, <do that if Condition is false>.

==l x]

Mawvigation Designation Help

Bug Kind | Bug Pattern | 7Y | Priority | 4 Hullmplication java in edu.cmu.cs.plural.concrete
e * eanPredicate ant, MullPredicate con) | -
wrnance (143 e

1w (B afon

tead local store (23

uplicate Branches (1) n createlflullInplication(dliasing v_l, boolean iz_wl_true,
S Method uses the same code fortwa branches (1) |= i Aliasing v_2, boolean is_vZ_mull) {

D|Meth0d createMulllmplicationiAliasing, booleafT f: i ue 7 2 T T SarPrediv 5 rE
lisuse of static fields (1) | v2_nu 7flullPredicate. createNullVarPred(v_Zi, HullPredicate.createNullVarPred(v_2)) 3
onlant,con);

lull pointer dereference (1)

7l thllewintecedant (Aliasing other) [
on((BooleanPredicate)this. antecedantPred. createldentical Prediother),
4| \ Il [[*]

| || Find || Find Mext H Find Previous

stelullimplication{Aliasing, boalean, Aliasing, boolean) uses the same code far two branches

sation.java:[line 68]

du.cmu.cs.plural.concrete. Mulllmplication.createMulllmplicationiAliasing, boolean, Aliasing, boolean) [Lines 67 - 9]
cation.iava:lline G681

« e

uses the same code for two branches
juses the same code to implement two branches of a conditional branch. Check to ensure that this isn't a coding mistake.

fﬁﬂ UNIVERSITY OF

1gs.sourceforge.net/ })

FIGURE 9 - WINDOW WITH THE BUG IDENTIFIED

We are able to confirm, from Figure 9 that this is a true positive since both actions on the then-
clause and the else-clause are the same.

CHECKERS

DEFECT: COMPARISON OF STRINGS USING ==

This bug has an if-statement where the comparison is between two objects using the operator ==.
This means that we are not comparing the content of the objects but references, which, of course, is
a bug in the context of the program.

We are able to confirm, from Figure 10, that this is a true positive.

| FindBugs: A9

File Edit Mavigation Designation Help

Category| Bug Kind | Bug Pattern | =3 | Priority | ﬁCheckersW\'ndowU\.java in edu.cmu.mse.CheckersGUI

= 257 return true;
=] Bugs (45) 258 lelse |

(=] Bad practice (13) = 259 return false;
¢ [£] Checking String equality using == or = (1) S .)
¢ [Comparison of String parameter using == or 1= (1) 261 1
0 }Compaﬁson of String parameter using == or I= in edu.cmu.mse.CheckersGUI. 262
o~ [3 Confusing method name (4) ; 263 [**
o 3 Dubious method used (1} 264 * Display Congratulation mesaage.
e 3 Incorrect definition of Serializable class (3) il zes ¥ r@pa:am winner

266)
o Incorrect use of finalizers (2
lj 3 267 public void showVictory(String winner) {
o= [Z3 Stream not closed on all paths (1)

: 268 Image img = null;
o [Correctness (5) 4 zes
o [Experimental (1) =i z70 if {winner == "black") {
4 1 271 img = Toolkit.getDefaultToolkit () .getImage {"images\\Vi
- A z72 } else |
273 img = Toolkit.getDefaultToolkit () .getImage ("images\\Vi
274 1
275
276 ImageIcon fin = new ImageIlcon(img);
277 checkersWindowUIBoard.setIcon(£fin);
278

unclassified

[ENIN|

I [+]
|| Find || Find Next || Find Previous

Comparison of String parameter using
This code compares a java. lang. String parameter for reference equality using the == or 1= operators. Requiring callers to pass only String constants or interned strings to a method is
unnecessarily fragile, and rarely leads to measurable performance gains. Consider using the equals (Object) method instead.

w UNIVERSITY OF
http:/findbugs.sourceforge.net/ /ﬁ) MARYLAND

FIGURE 10 - COMPARISON OF STRING PARAMETER USING ==

DEFECT: CLASS DEFINES FIELD THAT MASKS A SUPERCLASS FIELD

This class defines a field with the same name as a visible instance field in a superclass. This is
confusing, and may indicate an error if methods update or access one of the fields when they
wanted the other.

In this case, this is a bug because the framework is defining the attribute game, which has certain
properties, and, when redefined on the instantiation of the class will lead to errors as some
methods use the parent object and others use the local object.

We are able to see the game redefinition on Figure 11.

" FindBugs: A9
File Edit Navigation Designation Help

Category| Bug Kind | Bug Pattern | Py | Priority | ﬁTestindowjava in edu.cmu.mse.CheckersGUI
: import edu.cmi.mse.BoredFW.Board:
b rt edu.cmi.mse.BoredEW.Game;
i lj Bad practice (13) 1ﬁrt edu.cmi.nse.BoredFW.Move
¥ lj Correctness (3) ! import edu.cmu.mse.BoredFW.Pieces;
§- (=] Masked Field (1) import edu.cmi.mse.BoredFW.Player;
¢ [Class defines field that masks a superclass field (1) i import edu.cmu.mse.ui.MainWindowHelper;
D Field TestWindow.board masks field in superclass edu cmu.mse.uiMainWind{=| :
o= [Null pointer dereference (2) H
o [Redundant comparison to null (1) * Bauthor secngyol
o= [Suspicious calls to generic collection methods (1) i 7
o= [Experimental (1)
o [Malicious code vulnerability (3)
o= [Performance (12) B public Geme game;
2 | public Board board;
ul‘1€la55|'hed public boolean turnedFlag = false;

Fil]

[—] Bugs (45)

fhk

e f

public class TestWindow extends MainWindowHelper |

*
oy
public TeatWindow() {
this.loadConfiguration() s
game = this.getGameInstance(): adl
i [[}]
| | Find | | Find Next | | Find Previous |

Class defines field that masks a superclass field
This class defines a field with the same name as avisible instance field in a superclass. This is confusing, and may indicate an error if methods update or access one of the fields when they
wanted the other.

w UNIVERSITY OF
http:/findbugs.sourceforge.net/ /ﬁ) MARYLAND

FIGURE 11 - CLASS DEFINES FIELD THAT MASKS A SUPERCLASS FIELD

TRUE POSITIVES NOT RELEVANT TO THE PROJECT

Assessing the results provided by the tool we realize that some code, while true positives where
irrelevant to the project. From the Plural project, for instance, we found that many defects on code
tagged as “deprecated” was counted by the tool. This should not be relevant to the project since
these lines of code are no longer important. The following picture shows this example taken from
the tool.

File Edit MNavigation Designation Help

Category ‘ Bug Kind | Bug Pattern | = | Priority | ‘Fractio---'" ination.java in edu.cmu.cs.plural.fractions.elim

= £ 55 import edu.cmu.cs.plural.fractions.elim.SimpleFractionSum.
[Bugs (61) : 56 fi
o= [Bad practice (33) 57 pes
o [Correctness (4) 53 = Kex rhofs
o= [Malicious code vulnerability (5) 59 % VariableElimination instead
¢ [Performance (13) &0

o= [Inefficient Map Iterator () of public class FractionElimination {

o= [Inner class could be made static (5)

rivate Set<RelationFractionPair> groundRelations;
o [Questionable Boxing of primitive value (1) o 2l

¢] Unread field (1) / public Set<RelationFractionPair> eliminateVariables (5S¢
¢ [CJ Unread field (1) 5 Set<RelationFractionPair> rels = normalizeConatrail
D|Unread field: edu.cmu.cs.plural fractions.elim FractionElimination.g - Set«VariableFraction> vars = collectVariables(rels

° (X1 Dedgy ()

// every iteration through the loop eliminates thg
for (VariableFraction X : vars) {
rels = eliminateVariable (rels, x);

}
groundRelations = rels;
return rels;

}

private Set<RelationFractionPair> eliminateVariable(
Ser<RelationFractionPair> rels, VariableFracti

| [*]

|| Find || Find Next || Find Previous |

T

Unread field: edu.cmu.cs.plural.fractions.elim.FractionElimination.groundRelations
At FractionElimination java:[line 73]
Field edu cmu cs plural fractions elim FractionElimination groundRelations

W o

Unread field
je This field is never read. Consider removing it from the class.

| UNIVERSITY OF
7 bugs hidden by filters /ﬁ.} MARYLAND

FIGURE 12 - UNREAD FIELD

FALSE POSITIVES

Regarding false positives, we could conclude that only few false positives were found on the
projects analyzed by the tool. Here are some examples on the false positives found by the team.

PLURAL

DEFECT: DEAD STORE TO LOCAL VARIABLE

This instruction assigns a value to a local variable, but the value is not read or used in any
subsequent instruction. Often, this indicates an error, because the value computed is never used.
Note that Sun's javac compiler often generates dead stores for final local variables. Because
FindBugs is a byte code-based tool, there is no easy way to eliminate these false positives. Figure 13
shows the defect found by the tool.

Category| Bug Kind | Bug Pattern | (_)| Priority ‘ 4 LinearOperations.java in edu.cmu.cs.plurallinear
B (68) = 630 TensorPluralTuplelE value, Aliasing thisLoe, -~
g ! 631 CallHandlerContinuation cont) {
i d Bad practice (40) 632 super (node, value, thisLoc, cont);
o 7 Cormrectness (4) A sas '
B E Malicious code vulnerability (5) 634
il = =3 Perfarmance (13) _|i] s3s @override
¢ 9 Doday (6} =i &3e protected boolean doSplitOffInternal(=
[d Dead local store (2) 837 Aliasing var, TensorPluralTuplelE value, W
[ﬂDead store to local variable (2) : 638 PermissionSetFromAnnotations perms, boolean forceFail) {
if (£
[[Dead store to value in eou cmu cs plural inear LinearOperations§LazyPrecqpd gzi 1f(_ur:eFa:Ll) SRR e 9 s
5 2 = : return super.doSplitOffInternal (var, value, perms, force
D Dead store to pred in edu.cmu.cs.plural.concrete.DynamicStateLogic.solve\WitH "'l - ' ' re
o [Duplicate Branches (1) NE \:N , off permission
o [Misuse of static fields (1) T 643 mearopera:inns.splir.Off(ver, value, perms);
D I OTHYR Lrue; // ignore checks
unclassified i o b
646
647 @B0verride
648 protected boolean checkStatelnfolnternal (Rliasing var,
649 Set<String> stateInfo, boolean inFrame) [
650 return true; // ignore this check
B51 }
652
653 Boverride
654 public boolean checkFalse({Aliasing var, String var name) { =
Ii [D
| | Find | ‘ Find Next | ‘ Find Previous

Dead store to value in edu.cmu.cs.plural linear.LinearOperations$LazyPreconditionHandler.doSplitOfinternal(Aliasing, TensorPluraiTupleLE, PermissionSetFromAnnotations, boalean)

At LinearOperations.java:lline 643]

In method edu.cmu.cs plurallinear.LinearOperations SLazyPreconditionHandler.doSplitOffinternal(Aliasing, TensorPluralTupleLE, PermissionSetFromAnnotations, boolean) [Lines 639 - 544]
Local variable named value

Dl

[

Dead store to local variable
This instruction assigns avalue to a local variable, but the value is not read or used in any subsequent instruction. Often, this indicates an error, because the value computed is never used.
Mote that Sun's javac compiler often generates dead stores for final local variables. Because FindBugs is a bytecode-based tool, there is no easy way to eliminate these false positives.

| . UMIVERSITY OF
hitp:/ifindbugs.sourceforge.net @ MARYLAND

FIGURE 13 - DEAD STORE

This error is a false positive because the variable being identified as a dead store - value - is in fact a
parameter of the method. This, of course, means that any operation, on the scope of the method,
performed on that variable, are changes made to the variable that was passed as a parameter on the

scope of the parent method.

CHECKERS

DEFECT: NULL VALUE IS GUARANTEED TO BE DEREFERENCED

A statement or branch if executed guarantees that a value is null at this point, and that value that

guaranteed to be dereferenced (except on forward paths involving runtime exceptions). This defect

can be seen on the Figure 14.

is

 FindBugs: Ad Final =TS [

File Edit HNavigation Designation Help

Category | Bug Kind | Bug Pattern | € | Priority | :CheckerJmee.J,ava in edu.cmu.mse.ui
: 256 -
=) - il
=] Bugs (45) M : 257 private void changeIcon(Point currPoint) {
L d Bad practice (13) 258 changeIcon {boardCell [currPoint.x] [currPoint.y], pieces[currPoint
¢ 1 Cormrectness (5) i zsa 1
o= [Masked Field (1) A zeo
93 Mull pointer dereference (2) 4 261
& [Mull value is guaranteed to be dereferenced (1) e 282 private void changeIcon(JLabel plabel, UIFiece pFiece) {
[} pLabel could be null and is guaranteed to be dereferenced in edu.cmu. i i) 263 if{ plabel == mll || p?““:ﬂ“u’ ;
o [Possible null pointer dereference (1) m% 'ﬁ 268 SygLenouL urintinGolng =ikl TR eRreceS il

if (pPiece.getType () .equals("king”)) {

if (pPiece.getColor () .equals({"black™)){

if{ pPiece.ishActive()){
System.out.println("change active-atatic");
Label.setIcon{new Imagelcon (BKSImg)):
pPiece.changeState();

o~ (] Redundant comparison to null (1) \\
o= [Suspicious calls to generic collection methods (1) :
o [Experimental (1)
rlrﬁmahcmus code vulnerablllltl\ldﬁ) =

}

else|

System.out.println("change static-active");
pLabel.setIcon({new Imagelcon (BKAImg)):
pPiece.changeState () s

unclassified

}
}
elsef
if({ pPiece.ishActive()){
System.out.println("change active-static"):

Ii [[»]
|| Find H Find Next H Find Previous

CIETETETENCE HCRE Te209]

Dereferenced at CheckerdFrame java:(line 28]
Dereferenced at CheckerdFrame java:(line 274]
Known null at CheckerJFrame.java:lline 263]

D

<[]

Null value is guaranteed to be dereferenced
There is a statement or branch that if executed guarantees that a value is null atthis point, and that value thatis guaranteed to be dereferenced (except on forward paths involving runtime exceptions).

. UNIVERSITY OF
hitp:/ifindbugs.sourceforge.net @ MARYLAND

FIGURE 14 - GUARANTEED NULL DEREFERENCE

For this project, FindBugs discovered what the tool says is a guaranteed null dereference. This,
however, is a false positive. Even though the variable is possibly null (this, in fact, is identified as a
different bug), we do not have the guarantee that it is null at any point of the method, except on the
body of the if-clause in question (line 263).

CONCLUSIONS

The tool is very easy to use. After installing the program in your machine, you should be able to use
it to look for bugs in a Java code.

When using the tool to detect bug on code we achieve and ratio of defect/hour much higher from
our ratio obtained on previous tests work (average of 2 defects per hour) . Considering the size of
the LOC on the project being tested, the number of defects found and the time spent by the too], it
was certanlly worthy using the tool.

Nevertheless, manual inspection by humans is not limited to predefined algortihm or patterns.
During code inspections process different bug patterns can arise, therefore finding different types
of errors that an automated tool could not find. Although with less bug/hour ratio than an
automated tool, code inspections and other kind of tests are still necessary in order to improve
software quality.

We intend to use FindBugs in our studio project before doing our unit testing. We expected that this
approach can help us improve software quality and improve our defect/hour ratio, reducing the
number of defects during unit testing.

The FindBugs tool allows the user to filter the bugs reported using several customizable filter.

It is possible to customize the following filters:

e Version
e Priority
o High
o Medium
e (lass
e Package
e Package prefix
e (ategory

o Bad practice
o Correctness
o Malicious code vulnerability
o Performance
o Dodgy
e Designation
o needs further study
not a bug
mostly harmless
should fix
must fix
bad analysis
unclassified
o obsolete/deprecated/unused code; will not fix
e Bugkind
o Bad casts of object references
Dead local store
Dubious method invocation
Duplicate Branches
Inefficient Map Iterator
Inner class could be made static
Method returning array may expose internal representation
Misuse of static fields
Mutable static field
Null pointer dereference
Questionable Boxing of primitive value
Suspicious calls to generic collection methods
Switch case falls through
o Unread field
e Bug pattern
o Impossible cast
o Method uses the same code for two branches

O O O O O O

O O O O O O O O O O O O

Dead store to local variable

Invocation of toString on an array

Method invokes inefficient Number constructor; use static valueOf instead
May expose internal representation by returning reference to mutable object
No relationship between generic parameter and method argument

Field isn't final and can't be protected from malicious code

Field should be package protected

Field isn't final but should be

Method with Boolean return type returns explicit null

Load of known null value

Switch statement found where one case falls through to the next case
Should be a static inner class

Write to static field from instance method

Unread field

Inefficient use of keySet iterator instead of entrySet iterator

O O 0O O O O O O O O O O O O 0O

All these filters can be combined so that the user will only see the bugs he finds important.

A filter configuration can be saved to a file to be reused. For example, a filter configuration file can
be created by the enterprise Quality department and then spread across the development teams to
enforce an enterprise wide quality plan.

The filter configuration can also be very handy to teach Java best practices to people that is starting
to program in Java.

For example, the bug category “Bad practice” reports bugs related with code conventions, calling
dangerous methods, badly written finalizers, and so on. These bug warnings are great to enforce
good practices in two members of our team, which are learning or reminding the language. While
they can be proficient in the language (because they have knowledge of C#), there are some
common language glitches that require a certain amount of practice to learn. Alternatively, require
a mentorship by some Java expert.

By using FindBugs, these developers can quickly learn to avoid certain bad practices.

On the other hand, seasoned Java developers might already know these bad practices, but might
need to make use of some of them for some reason, like for example to tweak performance. Using
the FindBugs filters, they can turn off that category of bugs.

Other bugs might not be considered errors by experienced Java users. These can also be turned off.

All the other category of warnings are very useful, and should not be turned off.

REFERENCES

[1], FindBugs. FindBugs. [Online] [Cited: April 7, 2009.] http://findbugs.sourceforge.net/.

