
 1

Analysis of Software Artifacts
Mini Project Report

Apr. 24th 2007

Team Members:

Eunjeong Choi
Wooseok Choi

Minhyuk Oh
Taeho Kim
Jihyun Lee

 2

1. Overview
1.1 Tool Name

FindBugs Ver1.2.0-rc5 (Standalone and Eclipse plug-in)

1.2 Team Member

Name Contact Position
Wooseok Choi wchoi@andrew.cmu.edu Team Leader
Taeho Kim taehokim@andrew.cmu.edu Tool Study
Eunjeong Choi eunjeong@andrew.cmu.edu Bug Analyzer
Jihyun Lee jihyunl@andrew.cmu.edu Bug Investigator
Minhyuk Oh minhyuko@andrew.cmu.edu Presenter

1.3 Purpose of the project

The purpose of the project is to evaluate FindBugs tool by comparing between the
bugs that are found by unit test, automated test, and code review and the bugs that are
found by FindBugs in order to see the effectiveness of FIndBugs tool, and evaluate the
tool that how many false positives are found and see that the found bugs are valuable to
fix in terms of schedule pressure and cost of fixing bugs.

2. Tool Description
2.1 What is FindBugs?

A static analysis tool that examines java class or JAR files looking for potential
problems by matching java byte-codes against a list of bug patterns. With static analysis
tools, we can analyze software without actually running the program. Instead the form or
structure of the class files is analyzed to determine the program's intent, often using the
Visitor pattern.

2.2 Tool Usage

We included the screenshot of FindBugs’s main screen with the explanation of what
each field or button does. “Category, Bug Kind, Bug Pattern” are represents how the
found bugs will be sorted, and right under the sort option, the field shows the list of bugs
that are found from the application. In addition, FindBugs allow us to decide the
importance of bugs manually such as “Mostly harmless, not a bug, Should fix, Must fix,
etc”, so that we can compare our decision on importance of bugs and FindBugs’s
decision. The bottom box shows the detail information on bugs. It gives us the
suggestion of what to do and the description of why it happens. Source box is activated
whenever a bug is selected from Bug Tree. If the bug is selected, the source code is
shown and indicates where the bug occurs specifically.

 3

<Figure 2.2.1. Usage of FindBugs>

FingBugs provides several options: filter files, data mining, annotations and so on.

Rather than investigating all the options, we chose to test an annotation option, because it
provides useful functionality based on Java 5 annotation feature. FindBugs has 13 types of
annotations, and most of annotations are related to null checking. To use this feature, the
annotations.jar file must be placed on the classpath while compiling a program.

In this tool evaluation, we would like to introduce four kinds of annotations

according to <http://findbugs.sourceforge.net/manual/annotations.html>.

Annotation type Brief description Example
@CheckReturnValue It is used to denote a

method whose return
value should always be
checked after invoking
the method.

@CheckReturnValue
public Object dummyTest()
{
 return null;
}

@NonNul The annotated element
must not be null.
Annotated methods must
have non-null return
values.

@NonNull String m_str = new String("test");

@Nullable The annotated element
could be null under
some circumstances.

@Nullable Vector<String> m_vec = null;

@DefaultAnnotation Indicates that all
members of the class or
package should be
annotated with the
default value of the
supplied annotation
classes.

@DefaultAnnotation(NonNull.class)
public class ThreadTest extends Thread {
 ...
}

 4

<Figure 2.2.2 An example of class with annotation>

Figure 2.2.2 shows that ThreadTest class has DefaultAnnotation with NonNull

property, which means every filed and methods in this class will have a non-null annotation
as a default property.

<Figure 2.2.3 An example of methods with annotation>

However, as seen by figure 2.2.3, dummyTest() method returns null value, so

FindBugs marks the line of 'return null;' with a red tiny bug picture. Also, dummyTest()
method has an annotation of @CheckReturnValue, but testAnnotations method does not
check the return value while calling dummyTest() method. So FindBugs marks the line of
'dummyTest();' in testAnnotations() method.

This feature provides useful functionality which supports designer's intention, but

FindBugs still have very limited kinds of annotations, comparing to SAL annotation or
SPEC#; most of annotations of FindBugs are related to null checking issues. So, to fully
utilize this feature, we may need to wait for more later version of FindBugs.

2.3 Installation

2.3.1 Standalone FindBugs
Step 1) Access to (http://findbugs.sourceforge.net/downloads.html)

 Step 2) Download one of the zip file
 Step 3) Unzip the downloaded file in the designated folder

2.3.2 Eclipse Plug-in
 Step 1) In Eclipse, click on Help -> Software Update -> Find and Install...
 Step 2) Choose the Search for new features to install option, and click Next
 Step 3) Click New Remote Site
 Step 4) Enter the following:

 Step 5) Name: FindBugs update site
• URL: one of the following (note: no final slash on the URL)

 5

• http://findbugs.cs.umd.edu/eclipse for official releases
• http://findbugs.cs.umd.edu/eclipse-candidate for candidate releases

and official releases
• http://findbugs.cs.umd.edu/eclipse-daily for all releases, including

developmental ones
And click OK.

Step 6) "FindBugs update site" should appear under Sites to include in search.
 Click the checkbox next to it to select it, and click Finish.

Step 7) You should see FindBugs Feature under Select features to install. (You
may have to click on one or two triangles to make it visible in the
tree.) Select the checkbox next to it and click next

 Step 8) Select the I accept option to accept the license and click Next
Step 9) Make sure the location is correct where you're installing it. The default

(your workspace) should be fine. Click Finish.
 Step 10) The plug-in is not digitally signed. Go ahead and install it anyway.

Click Yes to make Eclipse restart itself.

2.4 How to use
2.4.1 Standalone

Step 1) Go to the installed directory
Step 2) Change the folder to “bin” directory
Step 3) Double click on “findbugs.bat”

2.4.2 Eclipse Plug -in
Step 1) Select the project
Step 2) Click left button on the selected project
Step 3) Select the “Find Bugs” -> “Find Bugs” as shown below

<Figure 2.4.1. Eclipse Plug-in>

 6

2.4.3 The difference between standalone and plug-in
– Standalone: We can categorize bugs as a bug pattern, priority and so on. This

feature can improve visibility of bug list.
– Eclipse plug-in: We can quickly reflect feedback from FindBugs to the source

code, because we can see the bug list in Eclipse’s problem window. The bugs in
the problem window are directly linked to the source code.

2.5 Bug Categories

This table shows the bug categories that FindBugs can find. Each category contains
a set of bug patterns.

Category Description Example

Bad practice

Violations of recommended and essential coding
practice. Examples include hash code and equals
problems, cloneable idioms, dropped exceptions,
serializable problems, and misuses of finalize. (More
false positives bugs)

Clone method may
return null

Correctness
Probable bug - an apparent coding mistake resulting
in code that was probably not what the developer
intended

Call to equals()
with null argument

Internationalization Misuse of the platform’s default encoding

Consider using
Locale
parameterized
version of invoked
method

Malicious code
vulnerability

Variables, fields or methods that are used by
unauthorized classes or packages

Finalizer should be
protected, not
public

Multithreaded
correctness

Issues that related to the thread synchronization such
an inconsistent synchronization and unconditional
wait

Field not guarded
against concurrent
access

Performance
Code that is using inefficient memory, or degrade
computation

Method invokes
inefficient new
String (String)
constructor

Dodgy

Code that is confusing, anomalous, or written in a
way that leads itself to errors. Examples include dead
local stores, switch fall through, unconfirmed casts,
and redundant null check of value known to be null.
(More false positives bugs)

Redundant
comparison of non-
null value to null

3. Tool Evaluation

The tests performed with JDK/JRE 5.0 version in Windows XP Operating System.

3.1 Evaluation with Standalone Application
3.1.1 Purpose

The purpose of this analysis is to find out that what kinds of bugs FindBugs
can find in the Othello application. We evaluate FindBugs tool that how many false

 7

positive bugs it generates. In addition, we found the bugs for Othello application
manually by using the unit, code review, manual, and automated testing. We hope
to compare the bugs that we found against the bugs that FindBugs found for Othello
application. In section 3.1, we only evaluate the bugs that FindBugs found, and the
comparison between them will be discussed in section 3.2.

3.1.2 Artifacts
We ran FindBugs on Othello Application. The application was given in the

Analysis of Software Artifact class as the second assignment. The application has
41 classes including the source files and test files, and the total size of the classes is
approximately 3877 lines of code.

3.1.3 Bug Category

FindBugs find the 7 categories of bugs: Bad practice, Malicious code
vulnerability, Multithreaded correctness, performance, and dodgy. While we
evaluated FindBugs tool with Othello application, the tool found the bugs that are
categorized below.

 Name of Category #Bugs Percentage

#Bad practice 12 60.0%
#Malicious code vulnerability 1 5.0%
#Multithreaded correctness 3 15.0%
#Performance 3 15.0%
#Dodgy 1 5.0%
#Correctness 0 0.0%

Bug Category

#Internationalization 0 0.0%
 #Total 20 100.0%

<Figure 3.1.1 Statistics of Bug Category>

3.1.4 Analysis of Bug Patterns

 8

After we ran FindBugs tool on the Othello Application, we found 20 bugs.
For found bugs, we spent time to find out why FindBugs considers this as the bugs.
After we investigate the bugs, we rate the priority as our point of view in order to
see that what bugs that FindBugs considers as high priority compared to what we
consider as high priority. Lastly, we fixed the bugs based on the comment that was
given from FindBugs, and measured the fixing time in order to see the fixing cost.
The below table shows the summary of what we analyzed from the result that
FindBugs analyzed.

The bug patterns and priority are gathered from FindBugs result, and we

measured analyzed priority, investigation time and fixing time. The analyzed
priority is decided based on our discussion. We followed the categories that
FindBugs tool provided: Must fix, should fix, mostly harmless, not a bug and needs
further study. Must fix is assigned if and only if the bug causes the system failure.
Should fix is assigned if and only if the bug can potentially make the system
perform incorrect behavior. Mostly harmless is assigned if and only if the bug
affects the system, but not causing the system failure. Not a bug is assigned if and
only if the bug does not affect the system at all. Last priority type is “needs further
study”, which requires more investigation time to analyze how much it can affect to
the system. When comparing investigation time with fixing time, investigation time
took longer time than we originally expected, because some of bug types are not
familiar with us. Until being familiar with some of bugs that FindBugs found, we
went through learning curve. As seen by figure 3.1.2, even if we investigated the
same bug patterns, 'Class defines compareTo() and uses Object equals()', time to
investigate them was different. First investigation of the same bug pattern took
more time than next ones. However, fixing time took less than investigation time,
because FindBugs gave good information about where bug occurred and what
problem is. Also, the bugs are not so complex to fix.

Bug Pattern Priority Analyzed Priority
Investig.

Time (min)
Fix. Time

(min)
Class defines compareTo(…)
and uses Object equals() Medium should fix 20.00 5.00
Class defines compareTo(…)
and uses Object equals() Medium should fix 4.20 2.00
Class names should start with
an upper case letter Medium Not a bug 0.08 0.00
Class names should start with
an upper case letter Medium Not a bug 0.02 0.00
Field names should start with an
lower case letter Medium Not a bug 0.43 0.00
Non-transient non-serializable
instance field in serialzable
calss Medium should fix 5.15 14.00
Non-transient non-serializable
instance field in serialzable
calss Medium should fix 0.03 1.00
Non-transient non-serializable
instance field in serialzable Medium should fix 3.00 6.00

 9

calss
Non-Serializable value stored
into instance field of a
serializable class High should fix 2.20 1.00
Class is Serializable, but doesn't
define serialVersionUID Medium should fix 1.78 5.00
Usage of GetResource may be
unsafe if class is extended Medium needs further study 5.50 0.00
Usage of GetResource may be
unsafe if class is extended Medium needs further study 0.25 0.00
Field isn't final but should be High mostly harmless 0.75 0.62
Inconsistent synchronization Medium should fix 4.85 1.00
Inconsistent synchronization Medium should fix 0.13 3.00
Inconsistent synchronization Medium should fix 0.17 0.17
Method invokes inefficient
Number constructor; use static
valueOf instead Medium mostly harmless 0.57 0.85
Method invokes inefficient new
String(String) constructor Medium mostly harmless 0.13 0.63
Method invokes inefficient new
String(String) constructor Medium mostly harmless 0.03 0.87
Exception is caught when
Exception is not thrown Medium Not a bug 1.80 0.30

<Figure 3.1.2 Bug Patterns that FindBugs found for Othello>

 <Figure 3.1.3 Priority that FindBugs assigned> <Figure 3.1.4 Priority that is assigned manually>

Above two figures show the percentage for each priority. The figure 3.1.3
shows the percent of priority that FindBugs found, and the figure 3.1.4 shows the
percent of priority that we rated for each bug.

 10

FindBugs considers most bugs as Medium priority, 90% of bugs, and 10%
as high priority bugs. We assume that High is critical to the system that can cause
the system failure, medium might potentially cause the system failure; but not
currently, low priority is just minor error that does not causes critical impact to the
system, and ignore is “not a bug”, which means that do not need to be considered
for the system.

However, when we investigated the bugs, we could not find the bugs that

are critical to the system. One of the examples that FingBugs found as high priority
is “Field isn't final but should be”, but the field value is not changed in the system,
which means that it could potentially cause the error, but since the field is not
changed, it does not cause the problem, so we consider this as “should fix”.
Likewise, our analysis on bugs’ priority is much different from FindBugs’s
analysis.

In addition, FindBugs does not have any ignore bugs, which can be

considered as false positive errors, but we found a couple of bugs that are not
considered as bugs. For example, there is a class that starts with lower case letter for
the class name. FindBugs catches these as bugs (medium priority), but these do not
affect the system at all. These were the style of program as we concluded.
Therefore, we consider this as not a bug. Likewise, we found 4 bugs that are not
bugs. 20% of bugs are false positives.

Based on this analysis, we will compare the result against bugs that we

found by using manual, unit, code review, and automated testing in next section.

3.2 Comparison with Assignment 2
3.2.1 Purpose

The purpose of this evaluation is to compare the bugs that FindBugs found
and bugs that we found by manual, code review, unit, and automated system
testing. By comparing these approaches, we would like to achieve information how
useful it is compared to other analysis methods, and its limitation.

3.2.2 Artifacts

 Bug description of Othello from assignment 2

3.2.3 Comparison
Now, we are about to compare the result from FindBugs with bug list of

assignment 2. In the assignment 2, we conducted four types of testing, and it can be
briefly summarized as follows, according to our answer of the assignment 2. See
appendix for Bug list information

- Manual: Manual testing finds bugs that are classified as failures and errors.
These include incorrect outputs that clearly violated the requirements
behavioral and specifications. GUI and usability issues can be also found
with manual testing.

- Automated System: Automated System testing finds behavioral bugs, both
failures and errors.

 11

- Unit: Unit testing predominantly finds faults local to a method such as
parameter ordering, as well as some violations of behavior described in the
requirements. This is the primary method by which we can find higher-level
design and architecture issues.

- Code Review: Some of these bugs are relatively low in importance, such as
an object that was not checked for being NULL, or a variable declared
public, not private. Other bugs found by code review may cause violation of
behaviors requirements as well as failures, so are significantly important.

Based on the description of each testing, we assumed that several bugs will

be overlapped with the bugs found by code review, because the manual, automatic
and unit testing are supposed to check behavioral bugs based on method contracts.
Since FindBugs is a static analysis tool, we expected FindBugs to find most of bugs
similar with the bugs found by code review.

Unfortunately, we found only one similar bug (Figure 3.2.1) in bug list of

assignment 2, comparing with the bugs of FindBugs, even if FindBugs found a lot
of unsound bugs. The bug found by assignment 2 describes a race condition issue,
but the bug is not the exactly matched with a FindBugs's bug either.

 Bug description
Bug found by

FindBugs
The fields of this class appear to be accessed inconsistently with respect to
synchronization.

Bug found by
code review

The program has a race condition when open the saved game. After a user
opens the saved game and does not one move; then, it messes up the board
due to two threads running.

<Figure 3.2.1 Bug Description>

As a result, we only found one common bug in bug list of assignment2 and

bugs from FindBug, even if FindBugs detected lots of unsound bugs. The first
reason of that is because we did code review based on both the contract of methods
and the code review checklist, but FindBugs performed the static analysis
regardless of the contract of methods since it could not verify the contracts.
Therefore, even though both approaches are static, the results are different. For
example, a race condition bug that FindBug found is not based on the contract, so
FindBugs only describes the bug generally. Even FindBugs indicates the bugs that
related to race condition issue, the bug description is not exactly matched with the
bug that we found by code review.

Another reason of that is because the Othello application does not contain

any bugs related to correctness that can be analyzed by static analysis such as Null
reference, infinite loop; in other words, if the Othello application contains those
bugs, they could be discovered by both FindBugs and Code review. However, the
Othello does not contain the correctness bugs, and the bugs that we found do not
cause the system failure; the bugs found by code review are mostly related to the
incorrect behavior of Othello. Therefore, we could not find the common bugs from
two different testing.

 12

Finally, FindBugs found many unsound bugs we couldn’t discover in code
review, because our code review usually depends on our domain knowledge, such
as Java language and Objected Oriented Programming, in spite of using a code
review checklist. Additionally, FindBugs has a bug database internally, based on
the research of a FindBug development team, so that FindBugs can find predefined
unsound bugs better than human.

These are the reasons that there is only one common bug that we could find

by using FindBugs and Code review. In addition, according to this result, we could
see that when and how we should use FindBugs. We will discuss this in the Lesson
Learned section.

3.3 Evaluation with Other Applications

3.3.1 Purpose
The purposes of this test are as follows. The first of all, comparison between

the size of code and running time on FindBugs was performed to analyze the
performance of FindBugs tool. Secondly, the percent of correctness bugs on total
bugs found by FindBugs is analyzed because correctness bugs are critical to
program, but other bugs might not be critical.

3.3.2 Artifacts

Othello, netMANj, JMSN, and JNM applications are tested on FindBugs tool
and evaluated. Refer to 3.1 for Othello application. netMANj is a network
management software in JAVA. JMSN is an open source application of the MSN
messenger client written entirely in Java under the BSD license, including instant
messaging and File Send/Receive. Java Network Monitor (JNM) is an kind of open
source Java application for the purpose of defining monitors which can poll network
services at defined intervals and execute actions defined by users when the service
status changes. JNM includes two monitor implementations: TCP monitor and
HTTP monitor.

3.3.3 Analysis

The 350 bugs from netMANj are found by FindBugs. From JNM, total 44
bugs are found. Among these bugs, most bugs are correspondent to the bad
practices and performance category. We analyzed the version 0.9 of JMSN and
checked defects that were presented in this tool. We found the total of 60 bugs,
which corresponds to a defect of 0.18/ KLOC.

For other applications, FindBugs found several correctness bugs. Especially,

unlike Othello, FindBugs found 28 correctness bugs in netMANj application.
Followings are some examples of them.

 13

<Figure 3.3.1>

Figure 3.3.1 shows that FindBugs found null pointer dereference bugs. In
this case, 'processError()' method tries to call token.line() method, even if 'token' is
equal to null value in the source code highlighted with yellow. That is, this bug
must be critical defect in the source code, and FindBugs also regarded this bug as
high priority.

<Figure 3.3.2>

Figure 3.3.2 shows that FindBugs found an apparent infinite loop bug. In
this case, while 'tok' is not equal to null value, 'System.out.println(tok);' is executed.
However, 'System.out.println(tok)' does not change the value of 'tok'. Therefore,
once 'System.out.println(tok)' is executed, while loop will be executed infinitely.
That is, this bug must be critical defect in the source code, and FindBugs also
regarded this bug as high priority.

As a result, we can know that FindBugs can still find explicit bugs, which

have critical impact on the application.

The bugs are evaluated by two ways. The statistics of bug category are shown
in Figure 3.3.2.

 14

Analysis of comparison between the size of code and running time is shown
in the Figure 3.3.1. The analysis time of each program on FindBugs is proportional
to the size of the program.

Program #Download #Lines Running Time (sec)
Othello N/A 3,877 7
JNM 7515 5396 8

JMSN 246,262 11188 17
netMANj 2417 24,933 33

<Figure 3.3.1 Test Programs Info>

The proportion of correctness bugs to the total bugs is evaluated in order to
analyze how FindBugs can find critical bugs because the correctness bugs are
critical to the system compared to other bug categories such as bad practice, dodgy,
performance, malicious code vulnerability, and multithreaded correctness.
However, as shown in Figure 3.3.2, the percent of the correctness bugs are the
smallest compared to other bug categories, and other bugs do not cause the serious
problems. Therefore, if the project is under time pressure, it is not a good idea to
use FindBugs tool to find bugs because FindBugs finds more bugs that are not
directly related to the system failure or other bugs that violate the requirements.

Program
Bad

Practice
(%)

Malicious code
vulnerability

(%)

Multithreaded
correctness

(%)
Performance

(%)
Dodgy

(%)
Correctness

(%)
Total
(%)

Othello 60.00% 5.00% 15.00% 15.00% 5.00% 0.00% 100.00%
netMANj 13.14% 8% 0.57% 59.72% 10.57% 8.00% 100.00%

JNM 56.8% 11.4% 2.3% 29.5% 0.0% 0.0% 100.00%
JMSN 71.7% 3.3% 1.7% 6.7% 13.3% 3.3% 100.00%

Average 50.41% 6.93% 4.89% 27.73% 7.22% 2.83% 100.00%
<Figure 3.3.2 Statistics of Bug Category>

4. Lesson Learned

4.1 Benefits
FindBugs provides the various versions of application: standalone, eclipse plug-in,

or web applet. It also easy to use since it only has the couple of options to select, and it
performs the operation in reasonable time even though the testing files are big. FindBugs
can analyze the 276 types of bugs that not only include correctness, but also
performance, code vulnerability, and others, so that it improves the robustness of the
application even though the bugs are not critical to the application. In addition, it
provides the traceability where bugs occur in the source code and detail information that
describes what the problem is, so it helps the developers fix bugs easily and quickly.

4.2 Drawbacks

 15

Since FindBugs analyzes the application statically, it could not find the bugs that
could happen in runtime such as race condition, and also it could not analyze the
contract, so that FindBugs finds the bugs mechanically. Even though we can add
annotation to let FindBugs understand our design intension (contracts), FindBugs could
not find all bugs based on the contract due to the limited annotations, which are mostly
related to null dereference checking. In addition, as we discussed in section 3.2,
FindBugs tool could not find all the bugs, so that it should be used with other testing
tools and methods.

4.3 Scope of applicability

FindBugs has disadvantages, but it still helps to ensure the quality of applications.
This tool is mainly used for analyzing the applications statically to check null
dereference, infinite loop, type checking, and others that related to the correctness,
performance, and vulnerability issue. Therefore, developers can use this tool for pre-
inspection in early development stage, so that it could reduce the testing time in later test
phase.

5. References

[1] http://findbugs.cs.umd.edu/
[2] http://findbugs.sourceforge.net/
[3] http://www-128.ibm.com/developerworks/java/library/j-findbug1/

 16

Appendix – Bug list of Assignment 2

Bug Description File (if known) Lines Found with

1
The program supposes to save the file with its own
extension such as “.oth”, but it does not provide the
extension automatically when the game is saved.

BoardGameWin.

java

223,

246 ~

256,
308 ~

316

Manual
System

Testing, Unit
Testing, Code

reviews,
Automated

System
Testing

2

The program supposes to open a game with the
saved file, but the program could not recognize the
file, which is made through the saving procedure in
the program. But, it read a file with .oth extension.

Manual
System
Testing

3 The program does not provide the information that
who won the game at the end of the game.

Manual
System
Testing,

Automated
System
Testing

4

When the Minimax depth is set to 0, the
computer’s move should be occurred randomly and
only in valid spot, but it always goes to the
coordinate (0,0) because the algorithm for minimax
level could not understand level 0 due to the code,
“level < mLevel”. This should be level <= mLevel.

AIThread.java 100

Manual
System

Testing, Code
reviews

5

The history of the game should be displayed
properly, but it does not work on MS Windows. It
works in Mac OSX. It needs pack() to regenerate
the screen correctly.

Manual
System
Testing

6
(Require Clear Explanation) The program undoes
just one movement. However, the user expects the
undo as changes the status back to the user.

Manual
System
Testing

7

In the othello rule window, the side weight and near
side weight give confusion because of the position.
The position of side and near side seems to be
switched in GUI.

Manual
System
Testing

8

The program has a race condition when open the
saved game. After a user opens the saved game and
does one move; then, it messes up the board due to
two threads running.

BoardGameWin.
java

359

Manual
System

Testing, Code
reviews

9
The program provides an error messages to the .out
file when an undo is performed right after loading a
saved game file.

 Automated
System

 17

Testing

10 The program doesn’t show the message of “Game
Over” when the game is finished.

Automated
System
Testing,

Manual Test

11 The program shows a wrong message, ‘Bad end of
game: XX’, when the game is over.

Automated
System
Testing

12
The program doesn’t reflect the new weight values
to all the pieces in case the weights are changed to
new values.

Automated
System
Testing,

Manual Test

13

In checkWeightEqual method, the method invokes

getWeight method with switched row and column.

Ex) opts.getWeight(r, c) ==

 opts2.getWeight(c, r)

This should be opts2.getWeight(r,c)

CloneTest.java 62
Unit Testing,

Code reviews

14

In getWeight method, the method receives row (r)
and column (c) as arguments, but when it uses, row

is used as column and column is used as row.

Ex) public int getWeight(int r, int c)

 { return mWeights[c][r]; }

Options.java 76
Unit Testing,
Code reviews

15
In the middle of the game, if I do passmove, and

undo the passmove, and do passmove again. Then,

the game is over, which it should not be.

OthelloBoard.ja

va
 Unit Testing

16

toString method recognizes as Passmove only if
row is -1, but when a row is less than -1 such as -2,

-3, it should be passmove as well. However, it does

not.

OthelloMove.jav
a

59
Unit Testing,
Code reviews

17

The method, clone(), copies a reference rather than

actual values for int[][]. It means that if the original

object gets changed, the copied one also gets

changed. This is not proper clone method.

Options.java 53
Unit Testing,

Code reviews

18
In unDoLastMove method, the mValue is not
calculated properly.

OthelloBoard.ja
va

265 ~
267

Unit, Code
reviews,

Manual

System,

Automated

System

 18

19

Othello’s extension is supposed to be “.oth” since it

only reads the file with the extension “.oth”, but the

system recognizes “.othello” as readable file name,

and even it can’t be opened

Othello.java 26

Code Review,

Manual

System

Testing

20

After a user plays a game with a status opened, if a

user plays a new game, the status does not get
changed until the user does his new move. Then,

the status view is updated. (The status should be

updated as long as new game is clicked.)

BoardGameWin.

java
273 ~

300

Code

reviews,
Manual

System

Testing

21
Once a file is opened for use, it should be closed,

but it does not.
BoardGameWin.

java
308 ~

316
Code reviews

22

If a user opens a saved game when the system just

launched, the status view, game config, swap

function, etc are disabled. Those should be enabled
when the game starts.

BoardGameWin.

java
332 ~

370
Code reviews

23

mNumPass is located in the wrong place because it

should be increased before the system checks

isGameOver(). Otherwise, the system could not

print out the message “Game over”.

OthelloBoard.ja

va
96 ~

107
Code reviews

24
(writeObject method) When the system saves the

file, does not record the history of the moves. This

is necessary for Undo.

OthelloBoard.ja

va
364 ~

370
Code reviews

25
(readObject method) When a file is opened, the
history is always created as new history rather than

bringing the saved history.

OthelloBoard.ja
va

380 Code reviews

26

The program receives “MakeMove” when the game
is over. For example, when pass and pass occur, the
program is over, but if the test executes
“MakeMove” several times, then the sequence of
output will be pass, pass, (0,0), pass, pass, (0,0), …

Automated

System
Testing

27

When the program is launched, and a user tries to
open the saved game, it will causes error because at
first there is no running thread, but the opening file
method tries to catch a thread to stop.

BoardGameMod
el.java 120

Manual
System

Testing, Code
reviews

28

mWhosTurn variables is not properly set. For
example, in the code, mWhosTurn = new JLabel
(“Black Wins”); However, in the code, mWhosTurn
should be set to the screen by using “setText” rather
than creating new JLabel.

StatusView.java 75 Code reviews

