Software
Analysis

Security
1. Motivation

0

8 Jonathan Aldrich

N Carnegie Mellon University

—

g Slides by Paulo Marques, University of Coimbra, Portugal
Why?

Reliability

Software Quality

Strong Language
i Ny in Dr. Dobb’s Journal, CMP Publishers, October 2005

CAN-2004-1137: Multiple vulnerabilities in
the IGMP functionality for Linux kernel

242210 2.4.28, and 2.6. ;
o an(tioremote Zi;ckerf fé? CAN-2004-0258: Multiple buffer overflows

of service or execute ahitrg in RealOne Player, RealOne Player 2.0, Real-
the ip_mec_source function| :
ments a connter to 1, or @ One Enterprise Desktop, and RealPlayer En-
e which dog terprise allow remote attackers to execute
val € message paraj . .

by arbitrary code via malformed (1) .RP, (2)

forms an out-of-bounds red
RT, (3) .RAM, (4) .RPM or (5) .SMIL files.

CAN-2005-1263: The elf core_dump func-
: : If.c for Linux kernel 2.x.x
CAN"ZOOS“‘].Z].]. Buffer OVGI‘ﬂOW m the PNG X tO 2_45].1)1'617 and 2.6.x
image rendering component of Microsoft In- pws E)Lclglbvsers e

: an inary that, in cer-
ternet Explorer allows remote attackers to ex- oins e
ecute arbitrary code via a crafted PNG file. |uses a negative length ar-
signed integer comparison,
| leading to a buffer overflow.

So, what exactly is a buffer
overflow?

A very simple program

#include <stdio.h>

foid print_it(void)

L

char s[8];

")
%s\n", s);

scanf("%
printf(

1
¥

int main(void)
I
L

print_it();

. return 0;: £ Temp/1S =13
I5% gcc -Wall echo.c -o echo
emp/IS$. /echo
/Temp/15$ Nl
Extra code

Our objective is to have hack() executed!
m For now, don’t worry about where hack() comes from...

#include <stdio.h>
#include <stdlib.h>

Yoid print_it(void)
char s[B8];

scanf("%s", s);
printf("%s\n", s);
1

Yoid hack (void)

L o
It could be printf("I've been hacked!\n");

1 system("1s -1");
alot worse! printf("Done!\n");

}
int main(void)
f
L

print_it();

return 0:

#include <stdio.h>
#include <stdlib.h>

void print_it(void)

char s[8];

printf(

printf("stack
printf(" \t %
printf(" \E
printf("

) printf("

void hack(void)

system("ls -1
printf("Done!

int main(void)
printf("Address of hack:
print_it();

return 0;

printf[”Stagk before Ehe call:\n" H

printf(" \t %08x \n", * ((
printf(" vt %08x \n", *
printf(" \t %08x \n", *
printf(" Nt %08x \n", * ((
scanf(;W,

printf("I've been hacked!\n");

printf("Address of print_it:

Examining some internal aspects of our program...
_— — —————

Mo O

Moo O

o+
.

\n", print_it);
\n'", hack);

Result of executing it

./echol
0x401050
0x40112e

6110114c
00000021
0022cce8
004011b1

tack after the call:
61100041
00000021
0022cce8
004011b1

|

&£ [Temp/IS

emp chol
Address of pri 0x401050
Address of hack: 0x40112e
Stack before the call:
6110114c

0022cce8
004011b1

AAAAAAA

AAAAAAA

Stack after the call:
41414141
00414141
0022cce8
004011b1

5

The ASCII code of ‘A’ is 0x41!

Execution Stack on x86

Stack Bottom —

Call Arguments

Return Address
%EBP (saved)

Saved Registers

Local Variables

%ESP =—>
(stack pointer)

J\.

Stack Frame of
who calls the
routine

Current
Stack Frame

The Attack!

Stack Bottom —_—

Call Arguments

Write until the
return address
is modified!

The “s” buffer
is here

J\.

Stack Frame of
who calls the
routine

Current
Stack Frame

The execution revisited

& Memp/IS

EE®

_ '1S$. /echo?
Address of print_it: 0x401050
Address of hack: 0x40112e
Stack before the call:
s[0-4] 6110114c
s[4-8] 00000021
BP 0022cce8

[RETURN] 004011b1
AAAAAAA

AAAAAAA

Stack after the call:

Put the address of
hack() into the return
address of the function!

s[0-4] 41474141

s[4-8]
BP
[RETURN]

00414141
0022cce8
004011b1

/Temp/IS$ i

Quite Simple...

& [Memp/IS

$ echo -e "AAAAAAAAAAAAN\XZe\x11\x40\x00"
i 0x401050
0x40112e

Address of prin

Address of hack:

Stack before the call:
s[0-4] 6110114c
s[4-8] 00000021
BP 0022cce8
[RETURN] 004011b1
AAAAAAAAAAAA . @

Stack after the call:
s[0-4] 41414141
s[4-8] 41414141
BP 41414141
[RETURN] 0040112e
I've been hacked!

total 48

None 182
None 9040
None 863
None 9710
None 911
None 9710

echo.c
echo.exe
echol.c
echol.exe
echo?.c
echo?.exe

pmarques
pmarques
pmarques
pmarques
pmarques
pmarques

-rwxr-xr-x 1
-rwx------ 1
-rwxr-xr-x 1
Done!

Segmentation fault (core dumped)

| echo?

What’s happening?

& Temp/IS

echo -e "AAAAAAAAAAAA\X2e\x11\x40\x00" | echo2
UX'-lU}EJ:-U
String is longer than L
the buffer size. Return 1 6110114c
. 00000021
address is

overwritten.

BP 0022cce8
[RETURN] 004011b1
AAAAAAAAAAAA

.a
Stack after the call:
s[0-4]
s[4-8] 4
BP 41414141
[RETURN] 0040112e
I've been hacked!
Malicious code al 48
. pmarques None 182

executlng < 1 pmarques None 9040
1 pmarques None 863
1 pmarques None 9710 .
1 pmarques None 911 = echo2.c
1 pmarques None 9710 E echo2.exe

i
Segmentation fault (core dumped)

It crashes at the end. Tenp/155 I

But... the harm is
already done!

But where does the hack() function comes from???
_ |

CAN-2005-1211: Buffer overflow in the PNG
image rendering component of Microsoft In-
ternet Explorer allows remote attackers to ex-
ecute arbitrary code via a crafted PNG file.

Normally, buffers are not long enough to store the code directly
(e.g. s[] is only 8 bytes long — not enough for hack()). But, if
your program reads data from some other source, storing it in
memory, it’s normally easy to find out the address of that
buffer. In that case, the return address of the exploitable
function is to be filled in with the address of the relevant buffer.
E.g. an image!

But...

#include <stdio.h>
#include <stdlib.h>

\(Juid print_it(void)

printf(" \t %08x \n", * ((int*)(s + 1
scanf("%s", s);
printf("%s\n", s);
printf("stack after the call:\n");
printf(" \t %08x \n", * ((int*
printf(" N\t %08x \n", * ((int*)(s +

, printf(" \t %08x \n", * C Gint*)(s + 1

\{mid hack (void)
printf("I've been hacked!\n");

system("1s -17);
printf("Done!\n™);

char s[8];

printf("stack before the call:\n");

printf(" Nt %08x \n", * ((int*)(s + 0)));

printf(” \t %08x \n", * C (int*)(s + 4)) J):

printf(" \t %08x \n", # ((int*)(s + Eg g g;
2

0) 7))
4)) 2
printf(" N\t %08x \n", * ((int*)(s + 8)));
YD IDH

}

Ent main(void)
printf("Address of ﬁrint,it: \t %p \n", Erint,it);
printf("address of hack: \t %p \n", hack);
print_itQ;
return 0;

}

Hackers do not have access to the source code to find out
the size of buffers. How do they do it?

Just increase the size of the
data you feed to the application
until it crashes. Then, the
buffer size becomes known!

Corrected Code

#include <stdio.h>

void print_it(void)
char s[8];
scanf("%7s", s);

int main(void)
print_it();

return 0;

printf("%s\n", s);

Do not use “unsecure” functions!!!
Be very careful!
gets()/fgets()
scanf()/fscanf()
strcat()/strcpy()

Some compilers are getting “smarter”...
_ |

void print_it{void)
{

00411330 push
00411331 mov
00411333 sub
00411333 push
00411332 push
11338 push

0041133C

00411342

00411347 n

0041134C rep stos
char s[81;

scanf ("%s", s5);
0041134
00411350 1lea
00411352 push

mov

push
call
add

00411362 o

00411364 eall

00411369 mov
0041136E 1le=z

push
push
call

printf("%s\n", 317

| Microsoft Visual Studio 2005

ebp
ebp, esp
esp, 0D0h
ebx
esi
edi
edi, [ebp-0D0R]
ecx, 34h

eax, h
dword ptr es:ledil

"&s"™ (415640h)

esi,esp
@ILT+270(__RTC_CheckEsp) (411113h)

Check if the stack has
esi,esp been corrupted!

eax, [s]

eax

ing "%s\n" (415&3Ch
[__imp_ prince (418

Some compilers are getting “smarter”...

Q Debug Error!
Program: c:\temp'hellobuffer\debug'HelloBuffer.exe
Module: c:\tempihellobuffer\debug'HelloBuffer.exe
File::

Run-Time Check Failure #2 - Stack around the variable 's' was corrupted,

(Press Retry to debug the application)

Retry Ignore

So...

CAN-2004-1137: Multiple vulnerabilities in
the IGMP functionality for Linux kernel

242210 2.4.28, and 2.6. ;
o an(tioremote i fé? CAN-2004-0258: Multiple buffer overflows

of service or execute arbitrd i RealOne Player, RealOne Player 2.0, Real-

correct code. The devil is in the details.

Software engineering processes are essential for
writing secure code. And, even then...

These engineers were quite sure they were writing

image rendering component of Microsoft In- pws local users to execute

. an ELF binary that, in cer-
ternet Explorer allows remote attackers to €x- |, jvine the create. elf ta-
ecute arbitrary code via a crafted PNG file. |uses a negative length ar-
signed integer comparison,
| leading to a buffer overflow.

So, why Security?
|
Applications nowadays run on the “"Wild-West” of the
Internet, they will be attacked

Security problems are expensive to fix!

m Cost of code patching
(developing, documenting, testing, re-designing)

Cost of redistributing
Loss of credibility
Loss of revenue

Loss of productivity
Possible lawsuits

«The Microsoft Security Response Center believes a
security bug that requires a security bulletin costs in
the neighborhood of $100.000.»

[Howard2002]

20

10

Software
Analysis

Security
2. Real security attacks

Jonathan Aldrich
Carnegie Mellon University

Mar 2008

Slides by Paulo Marques, University of Coimbra, Portugal

Why Cryptosystems Fail

Ross Anderson, "Why Cryptosystems Fail", in Proc. of the
1st ACM conference on Computer and Communications Security,
Fairfax, Virginia, United States, 1993

In this article, we present the results of a survey of the
faillure modes of retail banking systems, which constitute
the next largest application of cryptology. It turns out that
the threat model commeonly used by cryptosystem designers
was wrong: most frauds were not caused by cryptanalysis or
other technical attacks, but by implementation errors and
management failures. This suggests that a paradigm shift
15 overdue 1n computer security; we look at some of the al-
ternatives, and see some signs that this shift may be getting
under way.

22

11

Some Examples (Inside Jobs)

Many frauds are carried out with some inside knowl-
edge or access, and ATM fraud turns out to be no

In a recent case, a housewife from Hastings, Eng-
land, had money stolen from her account by a

bank clerk who issued an extra card for it. The

Technical staff also steal clients’ money, know-
ing that complaints will probably be ignored. At
one bank in Scotland, a maintenance engineer fit-
ted an ATM with a handheld computer, which

recorded customers’ PINs and account numbers.
He then made up counterfeit cards and looted
their accounts [C1] [C2]. Again, customers who
complained were stonewalled; and the bank was

One bank had a well managed system, in which
the information systems, electronic banking and
internal audit departments cooperated to enforce
tight dual control over unissued cards and PINs in
the branches. This kept annual theft losses down,
until one day a protegé of the deputy managing
director sent_a circular to all branches announcing
that to cut costs, a number of dual control pro-
cedures were being_abolished, including that on

cards and PINs. This was done without consul-
tation, and without taking any steps to actually
save money by reducing staff. Losses increased
tenfold; but managers in the affected departments
were unwilling to risk their careers by making a
fuss. This seems to be a typical example of how
computer security breaks down in real organisa-

tions.
23
Some Examples (Outside Jobs)
_ |
In a recent case at Winchester Crown Court in
England [RSH], two men were convicted of a sim-
ple but effective scam. They would stand in ATM
queunes, observe customers’ PINs, pick up the dis-
carded ATM tickets, copy the account numbers
from the tickets to blank cards, and use these to
loot the customers’ accounts.
This trick had been used (and reported) several The fastest growing modus operandi is to use false
years previously at a bank in New York. There A ——
the culprit was an ATM technician, who had been terminals to collect customer card and PIN data.
fired, and who managed to steal over $80.000 be- Attacks of this kind were first reported from the
fore the bank saturated the area with security US_A mn 1988; there, crooks built a vending ma-
men and caught him in the act. chine which would accept any card and PIN, and
These attacks worked because the banks printed .Chspen_se a packet O_f cigarettes. They put their
the full account number on the ATM ticket, and invention in a sho_ppmg mall, and harvested PINs
because there was no cryptographic redundancy and I.na.gnetlc Strlpl cl.a,ta by moflem. A more re-
on the magnetic strip. One might have thought clent mstance ‘?f‘thls n CDHDECthUIt got substan-
tial press publicity [J2], and the trick has spread
to other countries too: in 1992, criminals set up
a market stall in High Wycombe, England, and
customers who wished to pay for goods by credit
card were asked to swipe the card and enter the
PIN at a terminal which was in fact hooked up to
a PC. At the time of writing, British banks had
still not warned their customers of this threat.
24

12

Some Examples (Technical)

Another technical attack relies on the fact that
ticate the authorisation response to the ATM.
This means that an attacker can record a ‘pay’
response from the bank to the machine, and then
keep on replaying it until the machine is empty.
This technique, known as ‘jackpotting’, is not lim-
ited to outsiders - it appears to have been used
in 1987 by a bank’s operations staff, who used
network control devices to jackpot ATMs where
accomplices were waiting.

Another bank’s systems had the feature that when
a telephone card was entered at an ATM, it be-
lieved that the previous card had been mserted
again. Crooks stood m Lne, observed customers’
PINs, and helped themselves. This shows how
even the most obscure programming error can
lead to serious problems.

Test transactions have been another source of trou-
ble. There was a feature on one make of ATM

which would output ten banknotes when a four-

teen digit sequence was entered at the keyboard.

One bank printed this sequence in its branch man-

ual, and three years later there was a sudden spate

of losses. These went on until all the banks using

the machine put in a software patch to disable the

transaction.

One small institution issued the same PIN to all
its customers, as a result of a simple programming
error. In vet another, a programmer arranged
things so that only three different PINs were is-
sued, with a view to forging cards by the thou-
sand. In neither case was the problem detected
until some considerable time had passed: as the

25

Programmers at one bank did not even go to the
trouble of setting up master keys for its encryp-
tion software. They just directed the key pomters
to an area of low memory which is always zero at
system startup. The effect of this was that the
live and test systems could use the same crypto-
graphic key dataset, and the bank’s technicians
found that they could work out customer PINs
on their test equipment. Some of them used to

When the bank wished to establish a zone key with
VISA using their security module, they found they
had no terminal which would drive it. A contractor
obligingly lent them a laptop PC, together with soft-
ware which emulated a VT100. With this the various
internal auditors, senior managers and other bank dig-
nitaries duly created the required zone keys and posted
them off to VISA.

However, none of them realised that most PC termi-
nal emulation software packages can be set to log all
the transactions passing through, and this is precisely
what the contractor did. He captured the clear zone
key as it was created, and later used it to decrypt the
bank’s PIN key. Fortunately for them (and VISA), he
did this only for fun and did not plunder their network

Some Examples (Technical) (2)

Some brands of security module make particular
attacks easier. Working keys may, for example, be
generated by encrypting a time-of-day clock and
thus have only 20 bits of diversity rather than the
expected 56. Thus, according to probability the-
ory, it is likely that once about 1,000 keys have
been generated, there will be two of them which

are the same. This makes possible a number of

We know of cases where a bank subcontracted all
or part of its ATM system to a ‘facilities man-
Ee_ment.‘ firm, and gave this firm its PIN key.
There have also been cases where PIN keys have
been shared between two or more banks. Even
if all bank staff could be trusted, outside firms
may not share the banks’ security culture: their
stall are not always vetted, are not tied down for
life with cheap mortgages, and are more likely to
have the combination of youth, low pay, curiosity
and recklessness which can lead to a novel fraud
being conceived and carried out.

26

13

Quite Serious!

out.

Cryptanalysis may be one of the less likely threats to
banking systems, but it cannot be completely ruled

Security by Obscurity

Since world war two, a curtain of silence has descended
on government use of cryptography. This is not surpris-
ing, given not just the cold war, but also the reluctance of
bureaucrats (in whatever organisation) to admit their fail-
ures. But it does put the cryptosystem designer at a se-
vere disadvantage compared with engineers working in other
disciplines; the post-war years are precisely the period in
which modern eryptographic systems have been developed

Misunderstanding Technology

Underlying many of these control failures is poor
design psychology. Bank branches (and computer
centres) have to cut corners to get the day’s work
done, and only those control procedures whose

and brought into use. It is as if accident reports were only purpose is evident are h}““]y to be strictly ob-
published for piston-engined aircraft, and the causes of all served. For example, sharing the branch Sa,i:e keys
jet aircraft crashes were kept a state secret. between the manager and the accountant is well
understood: it protects both of them from having
their families taken hostage. Cryptographic keys
Wrong Risk Model are often not packaged in as nser-friendly a way,
and are thus not likely to be managed as well,

The basic assumptions behind this program are that im- |Devices which actually look like keys (along the
plementation and operation will be essentially error-free, |lines of military crypto ignition keys) may be part
and that attackers will possess the technical skills which are |of the answer here.

available in a government signals security agency. It would
therefore seem to be more relevant to military than civilian
systems, although we will have more to say on this later.

Human Factor

Corporate politics can have an even worse effect, as we
saw above: even where technical staff are aware of a security
problem, they often keep quiet for fear of causing a powerful
colleague to lose face.

27

Software
Analysis

Security
3. Basic Concepts

Jonathan Aldrich
Carnegie Mellon University

Mar 2008

Slides by Paulo Marques, University of Coimbra, Portugal

14

Security — Basic Aspects
|
Authentication: Mechanisms that allow to identify a user
in the system

Authorization: Guaranteeing that only certain
authenticated users can perform certain operations

Protection: Guaranteeing that certain resources are not
used by non-authorized users

Security Management: What policies are in place for
managing security concerns; how are security breaches
handled?

29

Protection — Main Concerns

Confidentiality:

m Protection against revealing secrets
Integrity:

m Protection against tampering with data
Non-Repudiation:

m Protection against denying actions previously performed
Denial of Service:

m Protection against a service being unavailable for legitimate users
Software Faults:

m Protection against undue access because of coding errors
Physical Protection:

m Protection against systems being physically compromised

30

15

Some Typical Examples

Concern Ways to Address it (Examples)
Authentication Username/Password; Kerberos
Authorization Access Control Lists (ACL); Permission Tokens
Protection
Confidentiality Data Encryption
Integrity Digital Signatures

Non Repudiation

Digital Signatures

Denial of Service Attacks

Dynamic Firewalls; “intelligent” routers

Software Faults

Software Engineering; Proofs

Physical Protection

Locked doors; Encryption

Security Management

Security Policies; Service Level Agreements

This is not a security course, thus we will not
address these issues in detail.

31

Authentication
Authorization
Confidentiality
Integrity
Non-Repudiation
Denial of Service

Check Your Understanding (1)

Provide examples of each concept for Amazon.com:

32

16

Security is not something you “add” to
a system. Security is something that
must be considered from the beginning,
during requirement gathering and
analysis!

33

Fundamentals
|
Any security analysis starts by considering that an
intelligent hostile entity, which appropriate resources,

will analyze and try to attack the system

A security analysis is always a cost analysis:

m A number of intelligent motivated attackers, with time and a
potential infinite set of resources will be able to attack my system.
Thus:

into my system?
= How much time it take to break into the system?
= What do I lose if the attacker is able to break in?

{ = How much does it cost for the attacker to break }

34

17

Fundamentals (2)
|
Every time a security system is deployed, it has to
consider an attack/risk model

A security analysis must always make these models
explicit!

m Ensuring that you are considering the right problem

m Ensuring that the correct resources are projected

m Ensuring that the system is not “over-designed”

35

Human-Computer Interaction is Critical

36

18

Another Example

“A nationwide PC retailer protects its PCs using a
password system. Passwords change every month,
having to be unique over time. Employees choose
their own passwords.

What happened?:

Employees are not able to remember their passwords

After 5 minutes of inactivity the screensaver kicks in.
It's necessary to introduce the password to unblock it.

Employees run around the store to find the colleague that is logged in.

Employees work in shifts. When one goes home, the PC is locked for the
day!

One smart employee thinks about creating a password corresponding to
the current month and year (e.g. Feb2007).

He tells his colleagues so that the screensaver problem is solved.
After 3 months all stores (nationwide) are using the same password!

37

Mar 2008

Software
Analysis

Security
4. Design Principles

Jonathan Aldrich
Carnegie Mellon University

Slides by Paulo Marques, University of Coimbra, Portugal

19

Security Principles to Live By
_ |

Establish a security process

Define the product security goals

Consider security as a product feature
Learn from mistakes

Use the “principle of least privilege”

Use “defense in depth”

Assume external systems are insecure

Plan on Failure

Fail to a secure mode

Employ secure defaults

Remember (security features = secure features)
Never depend on security through obscurity

39

1. Establish a Security Process
_ |

Your software development process should contemplate
how to:
m Design, Code, Test, Deploy and Fix systems in a secure way

If not...
m The system will never be acceptably secure

m Enormous amounts of time and money will be spent in trying
to fix the system each time a security problem occurs

40

20

2. Define the Product Security Goals

- |
Requirements Gathering

Who is the application audience?
m Anonymous internet users? Bank managers? Sys-admins?

What does security means for the target audience?
m Do different users have different requirements?

In what environment will the application run?
m Internet? Cell-phone? Bank? Thousands of uncontrolled PCs?

What are you attempting to protect?
m Confidentiality? Integrity? Non-repudiation?

41

2. Define the Product Security Goals (2)

- |
Requirements Gathering

What are the implications for the users if the objects you
are trying to secure are compromised?
m Lost of privacy? Loss of money? Annoyance?

Who will manage the application?
m The user? The system administrator?

What are the communication needs of the application?
m Talk to other applications of the company? The internet? Both?

What security infrastructure services does the system and
environment provides?
m Hardware cryptograph? OS-based user management? Steel doors?

42

21

3. Consider security as a product feature
|

What do you think of this plan?

m Milestone 0: Design Complete

m Milestone 1: Add core features

m Milestone 2: Add secondary features
m Milestone 3: Add security

m Milestone 4: Fix bugs

m Milestone 5: Ship Product

Key issues:
m It's almost impossible to retrofit a system to make it secure
m Properly including security is extremely expensive
m Security bug fixing will be expensive and time consuming

Make sure that security is a design consideration in your
product.

m Specifications and Designs must outline the security requirements and threats to the system

43

4. Learn from Mistakes
- |

« What doesn’t kill you makes you stronger. »

Build up the knowledge in the organization and team.

Put procedures in place that make sure that identified
security problems don’t happen again (hopefully)

What to ask

How did the security error occur?

Is the same error replicated in other parts of the code?
How could we have prevented this error from occurring?
How can we make sure this will never happen again?

44

22

5. Use Least Privilege

« An application should always execute with
the minimum privileges possible. »

Running with the minimum

privileges possible makes it

much harder for a security

attach to occur

m ONE bug in a Windows

application that runs in an
administrator account is all
that’s needed for the machine
to be compromised.

Why do this?

pmarques ’roperties. |E|E|

| General | Member OF | Profie |

Member of

95 Admiristrators l

45

6. Use “defense in depth”

Defense in Depth principle:

Imagine that your application is the last one
still standing. Every other defense
mechanism has been destroyed.

Induction problem:

of security for him.

Defense in depth:

m A programmer assumes that the rest of the system takes care

m If all programmers assume that, who takes cares of security?

m Reduces the possibility of a Single Point of Failure problem.

46

23

7. Assume that external systems are insecure

It's a form of defense in depth

In particular, assume that data being received or passed
to a system where you haven’t complete control may be
compromised.

m It may well be!

Example:

| st :="SELECT * FROM users WHERE name =" + userName + " |

In the web form, username is introduced as:
a'or't'="t

| st :="SELECT * FROM users WHERE name = 'a' or 't'="t";" |

47

8. Plan on Failure

«The only safe computer is a dead computer. Or, at
least, a disconnected one. And even so... »

What happens when a system fails?

Systems do fail...
m What happens if the web site is defaced?
m What happens if someone is able to enter the server room?
m What happens if the application is compromised?

An integral part of designing secure systems is planning
on how to address failure

m Plan on how to address the failure

m Plan on how to correct the problem

48

24

9. Fail to a Secure Mode
- |

What happens when the application detects a problem?

It's possible to fail securely or insecurely

m Failing securely means not disclosing any data that it would not
normally do; that data still cannot be tempered with; etc.

The systems should be designed so that they fail securely

Examples:
= In Unix, passwords are now encrypted using one-way hash
functions (e.g. MD5)

= In Windows, the password file is further encrypted using a
symmetrical encryption algorithm

49

10. Employ Secure Defaults
|
An application should install with defaults that are
“reasonably” secure for the majority of its use cases

m E.g. Administrator password defined during installation; Guest
account disabled; Firewall enabled; etc.

An applications should execute with the least possible
functionality enabled
m Something that isn’t running cannot be broken in

Very hard to accomplish in practice!

50

25

11. Security features != Secure features

« My site uses SSL with 1024-bit RSA encryption! »

But the user’s credit-card number is stored in a plain-text file...

One of the most common causes of problems is that
developers don’t understand security

m Security is being added as “features”/"technology”, not as a way
of addressing a particular threat model

m Developers try to re-implement security mechanisms without
proper understanding security

Companies add “security technology stuff” just because it
looks good on the product datasheet

51

12. Never depend on security through obscurity

|
Always assume that an attacker knows everything you do

Assume that an attacker has access to all the source code
and design

Assume that an attacker knows the infrastructure where
the application is going to be deployed in

Why?
m In most cases is relatively trivial to reverse engineer the needed
information from the application and network
m Time and patience is on the attacker’s side

m There are a lot more potential attackers than people designing
and coding the application

52

26

Check Your Understanding (2)

Provide examples of each concept for Amazon.com:

Define the product security goals
Learn from mistakes

Use the “principle of least privilege”
Use “defense in depth”

Assume external systems are insecure
Plan on Failure

Fail to a secure mode

Employ secure defaults

53

Software
Analysis

Security
5. Threat Based Security Design

Jonathan Aldrich
Carnegie Mellon University

Mar 2008

Slides by Paulo Marques, University of Coimbra, Portugal

27

1.

2
3
4.
5

Requirement Analysis
_ |

Security Design by Threat Modeling

Threat Modeling and Analysis in a nutshell:

Brainstorm the known threats to the system

Rank the threats by decreasing risk

Choose how to respond to these threats

Chose techniques to mitigate the threats

Chose appropriate technologies from the identified techniques

More info:

» Horward and LeBand’s “Writing Secure Code”, Chapter 2.
» SEI/CERT OCTAVE: Operationally Critical Threat, Asset,
and Vulnerability Evaluation: http://www.cert.org/octave

55

SEI/CERT OCTAVE

Mtave Process

Preparation : :
= Security Requirements . Phase 3
---------------------- Strategy and Plan
Development
‘ = Risks :
> Phase 2 . |= Protection Strategy

C. Alberts et. al., "An Introduction to the OCTAVE Approach",
CERT/SEI, Carnegie Mellon University, August 2003

Phase 1
"““b Organizational View "

= Assets
= Threats
= Current Practices]
» Organization Vulnerabilities

IIIIIIIIIIIIII‘.

= Mitigation Plans

= Key Components
= Technical Vulnerabilities

56

28

Analysis — What do you want to look at?
|
Typically:

Core Processes, Services and Servers

Persistent Data

Non-Persistent (Ephemeral) Data

Communication Channels

Physical Infrastructure

Key Criteria:
m Identify as many security threats as possible

Approach:
m Structured Brainstorming Technique
(Document everything! Make sure to have a scribe!)

57

1. Analysis

Start by drawing the overall architecture of the system

HTTP

—

<:::> I’|

browser

web
server

local IIOII ﬁlocal 110

database
server

IISAN

]

authentication
data

]

web pages

]

Store BD

58

Now the “real” work...

Analyze the Security Threats

It's useful to ask questions like:
m How can an attacker change the authentication data?

m What's the impact of an attacker accessing this part of the
system?
m What happens if it's possible to temper which this information?

How to do it in a structured way?
m Several approaches possible...
m The STRIDE Threat Model is common and simple

More info:
STRIDE is an approached used by Microsoft for building secure products.
For more information: http://msdn2.microsoft.com/en-us/library/aa302419.aspx

59

STRIDE

|
Spoofing Identity

m How can an attacker gain access to the system using another user’s
authentication information?

Tampering with Data
m Can attacks lead to critical data being tampered with?
Repudiation

m Can users deny having performed a certain action without the system
having the means to prove otherwise?

Information Disclosure
m Can critical information be exposed?
Denial of Service
m Can the system be attacked in a way that legitimate users cannot use
it?
Elevation of Privilege
m Can unprivileged users gain privileges, compromising the system?

60

30

Examples of Threats
_ |
Threat #1

m A malicious user views or tempers with information on route
between the web server and the client browser

Threat #2

m A malicious user views or defaces the web site by changing the
web page files on the web server

Threat #3

m A malicious employee steals credit card numbers by intercepting
information flowing on the Storage Area Network

Threat #4

m An attacker denies access to the system by flooding the web
server with TCP/IP packets (DoS)

Threat #5

m An attacker gains access to a large number of passwords by
accessing the authentication data files

| [Howard05] About 20-40 threats per 2-hour meeting. |

61

2. Rank Threats by Decreasing Risk

|
Simple approach:

Risk = Impact x Probability

Use levels, not “fine grain numbers”
m e.g. 5 levels for impact, 5 levels for probability
It's hard to judge Impact and Probability

m What do I lose if this risk materializes?
(Time, Money, Reputation, etc.)

m Probability — Rule of thumb:
It's not encryption: it's bugs and human nature!

Check the material on the “Risk Management Course”

62

31

Rank Threats by Decreasing Risk (2)

Risk |Probability| Impact| 1D Descrition

#1 A malicious user views or tempers with information on
route between the web server and the client browser
A malicious user views or defaces the web site by

#2 -)
changing the web page files on the web server
A malicious employee steals credit card numbers by

#3 |intercepting information flowing on the Storage Area
Network

24 An attacker denies access to the system by flooding
the web server with TCP/IP packets (DoS)

#5 An attacker gains access to a large number of

passwords by accessing the authentication data files

63

Rank Threats by Decreasing Risk (2)

Risk |Probability| Impact| 1D Descrition

10 5 5 #1 A malicious user views or tempers with ipformation on
route between the web server and the client browser
A malicious user views or defaces the web site by

9 3 3 #2 - .
changing the web page files on the web server
A malicious employee steals credit card numbers by

5 1 5 #3 |intercepting information flowing on the Storage Area
Network

3 ’ 3 #4 An attacker denies access to the system by flooding
the web server with TCP/IP packets (DoS)

18 4 4 #5 An attacker gains access to a large number of

passwords by accessing the authentication data files

64

32

Rank Threats by Decreasing Risk (3)

Risk |Probability| Impact| 1D Descrition

18 4 4 #5 An attacker gains access to a large number of
passwords by accessing the authentication data files

10 5 5 #1 A malicious user views or tempers with information on
route between the web server and the client browser
A malicious user views or defaces the web site by

9 3 3 #2 . .
changing the web page files on the web server
A malicious employee steals credit card numbers by

5 1 5 #3 |intercepting information flowing on the Storage Area
Network

3 y 3 #4 An attacker denies access to the system by flooding
the web server with TCP/IP packets (DoS)

65

3. Choose how to respond to these threats
|

Four basic approaches on how to respond to threats
1. Do Nothing (i.e. assume the risk)
2. Inform the user of the threat
3. Remove the problem
4. Fix the problem

The decision is mostly managerial. It implies careful
considering what are the consequences if a given threat
materializes.

If the risk is high enough, only options 3 and 4 should be
used.

m Many times, it's hard for project managers to opt for 3 (removing
an implemented feature from the project) in order to cope with a
serious threat

66

33

4. Chose techniques to mitigate the threats

How to mitigate the threats identified?

Threat Type Examples of Mitigation Techniques

Spoofing Identity Authentication, Protect Secrets, Don't store
passwords

Tampering with Data Authorization, Hashes, Message Authentication
Codes, Digital Signatures

Repudiation Digital Signatures, Audit Trails

Information Disclosure Authorization, Encryption, Privacy Enhanced
Protocols, Don't store secrets

Denial of Service Back-off protocol, Filtering, Quality of Service

Elevation of Privilege Run with least privilege, Sandboxes

67

5. Chose appropriate technologies

Technique Ways to Address it (Examples)
Authentication Username/Password; Kerberos; IPSec; X.509
Certificate Authentication; etc.
Authorization Access Control Lists (ACL); Permission

Tokens; Location-Based Authorization; IP-
based authorization; etc.

Tampering/Repudiation/Disclosure

Confidentiality

Data Encryption (RSA, AES, etc.)

Integrity

Digital Signatures (DSA, SHA-RSA.), Hashes
(MD5, SHA1, etc.)

Non Repudiation

Digital Signatures

Privacy Enhanced Protocols

SSL, TLS, SSH, IPSec, etc.

Denial of Service Attacks

Progressive Back-off, IP-based filtering,
DiffServ, etc.

Elevation of Privilege

chroot, OS-containers, virtual machines

68

34

Back to the Example

TCP/IP packets (DoS)

Risk ID Descrition Mitigation
. Only store SHA1 hashes of the
An attacker gains access tc a large) .
- passwords; Password file symetrically
16 #1 [number of passwords by accessing the .
. encrypted (AES) with a key stored on a
authentication data files
smart card.

A malicious user views or tempers with o

10 #2 |information on route between the web Use SSL 9ncrypted conne.c,tlons‘ Use
. external signed server certificate.

server and the client browser

A malicious user views or defaces the |Web-site directory is read-only to general
9 #3 |web site by changing the web page files |users and writable only by the webmaster.

on the web server Use a trip-wire system for early warning.

A malicious employee steals credit card
5 #4 [numbers by intercepting information Neo storage of credit-card numbers.

flowing cn the Storage Area Network

An attacker denies access to the
3 #5 |[system by flooding the web server with |Assume Risk

69

Mar 2008

Software
Analysis

Security
6. Security Testing

Jonathan Aldrich
Carnegie Mellon University

Slides by Paulo Marques, University of Coimbra, Portugal

35

Security Testing

Why is Security Testing Different from
Functional Testing?

Functional testing is about showing to a certain degree of
confidence that a feature works as expected.

Security testing is about demonstrating:

That a user cannot spoof another user’s identity

That a user cannot tamper with data

That a user cannot repudiate an action that was performed
That a user cannot see data the user shouldn't have access to
That a user cannot cause denial of service

That a user cannot gain more privileges through malicious use

7

How to test for security problems
_ |

1. Decompose the application into its major functional
components

Identify all component interfaces

Rank interfaces by potential vulnerability
Ascertain the data used by each interface
Find security problems by injecting faulty data

iAW

In most cases tests are designed and performed as black-
box testing

Even so, the tester should have access to the application’s
source code
m Why?

72

36

1. Decompose the application
|

TCP/IP
) Socket R Update
App. " Server
Executable
§time() fcom
Time IE DLL
Service

Identify all components that make part, directly or
indirectly, of the application

m Executable Files, including DLLs and EXEs

Services

Files

Scripts

etc.

73

2. |dentify component Interfaces

_ |
Identify all mechanisms by which the application
exchange data with the outside world

m TCP/IP and UDP Sockets

m Command line arguments

m Console Input
m Graphical Input
m Files

m Named Pipes
m Shared Memory
m Databases

m COM calls

m HTTP Requests
|

74

3. Rank interfaces according to their vulnerability
_ |

For each one of the interfaces, assign it points according
to its vulnerability (table below)

Highly vulnerable interfaces should be tested first and
more thoroughly

Characteristic Points

The process hosting the interface runs on a high privileded account | 2

The interface handling data is written in C or C++

The interface takes arbitrarily sized buffers or strings

The recipient buffer is stack based

a2 N [==

The interface has no access control list (ACL) or a weak one

The interface has good appropriate ACLs -2

The interface does not require authentication

The interface is server-based

The feature is installed by default

The feature is running by default

alalala|la

The feature has already had security vulnerabilities

75

4. Ascertain data used by each interface
_ |
Determine the data accessed by each interface, where it's coming
from, its format, and how it's used

m This is the data that is modified to exposed security bugs

Examples

m Sockets:

= Data arriving from the network
Files:

= File contents
Registry:

= Registry data
Environment:

= Environment variables
m HTTP:

= HTTP headers and HTTP data
Command Line Arguments:

= Parameters

76

38

5. Find security problems by injecting faulty data

|
Fault injection involves perturbing the environment such
that the code handling the data that enters the interface
behaves in an insecure manner.

Once a vulnerability is discovered, the objective is to find
an exploit that exposes the security fault.
m E.g. not all buffer overflows are exploitable

v

Finding Security Vulnerabilities

_ |
Partially Incorrect

Random Zero Length

Wrong Type NULL

Contents
Replay Link
Security
Out-of-Sync Data Fault-Injection Container Name
High-Volume~]) Techniques
] —
Aeialfes o . No access Does not Exist
network data Size
) —)
Restricted Exists
access
Long Zero
Short -

39

Remember this?
- |

#include <stdio.h>

void print_it(void)
char s[8];
scanf("%s", s);
printf("%s\n", s);

int main(void)
print_it();

return 0;

79

% HelloBuffer (Debugging) - Microsoft Visual Studio
e Edit Ven Project Buld Debug Tooks Window Community Help
CIRARA =N " - IR N N R RN A = -\ = i B o [-
o= =
)u\iﬂlﬂ?r_rrrrjex\?i_
D | stdafx.cpp | HelloBuffer.cop | -~ x
| Addiess: 41414141 = ;
~
=
v
Registers ~ B x||call Stack ~ 0 x
EAX = 00000000 EBX = 000000 (s £1C3CE3 | Name | Lang!
ST = 00000001 EDT = oo4033fe EIe Frag D4 Tl
EBP = 0013FFCO EFL = 000002%g
{ELocals |] Watch 1| G Registers | |ucal stack | immediate Window
Ready
80

Bibliography

WRITNG Writing Secure Code, Second Edition
%ESlIJ)RE by Michael Howard, David C. LeBlanc

m Microsoft Press, ISBN 0735617228
December 2002

m Chapters 1, 2, 3 and 14

R. Anderson, "Why Cryptosystems Fail”, in Proc. of the
1st ACM conference on Computer and Communications
Security, Fairfax, Virginia, United States, 1993

E. Nisley, "Strong Language", in Dr. Dobb's Journal,
CMP Publishers, October 2005

Microsoft’s STRIDE method:
http://msdn2.microsoft.com/en-us/library/aa302419.aspx

CERT/SEI OCTAVE:
http://www.cert.org/octave

81

82

Am | safe?

gn In - Mozilla Firef
File Edit MView History Bookmarks Tools Help

[

E - - @ [_h"r\‘ T Jart;shrf 730398 |

mage [DsG B Amazon € cop A MG 4 pNC [MycMU Blackboard [Calendar W/ wikipedia

amazoncom. —w
S SIGN |

[wer [e [G Google [amal Plarques
d q

N

Ordering from Amazon.com is quick and easy

Enter your e-mail address: pmarques@deiue pt

© Tam a new customer.
(You'll create a password later)

@ TIam areturning customer,
and my password is:

Forgot your password? Click here
Has your e-mail address changed since your last order?

The secure server will encrypt your information. If you received an error message when you tried to use our secure server,
sign in using our standard server.
You are buying this item from Amazon.com, Inc

The only way to place an order at Amazon.com is via our Web site. (Sorry--no phone orders. However, if you prefer, you may phone in your credit card
number, after filling out the order farm anline.)
Redeeming = gift certificate? we'll ask for your claim code when it's time to pay.
Having difficulties? Flesse visit our Help pages to learn more about placing an order.

Conditions of Use Brivacy Notics © 1996-2007, A Inc.

Done [@ Now: Mostly Cloudy, 13°C 5 | Thu: 215C <0 | Fric 142C b

83

42

