
1

Software

Analysis

Jonathan Aldrich
Carnegie Mellon University

Slides by Paulo Marques, University of Coimbra, PortugalM
a
r
2
0
0
8

Security
1. Motivation

2

Why?

Security

Reliability

Security

Software Quality

2

3

in Dr. Dobb’s Journal, CMP Publishers, October 2005

4

So, what exactly is a buffer
overflow?

3

5

A very simple program

6

Extra code

� Our objective is to have hack() executed!

� For now, don’t worry about where hack() comes from…

It could be
a lot worse!

4

7

Examining some internal aspects of our program…

8

Result of executing it

The ASCII code of ‘A’ is 0x41!

5

9

Execution Stack on x86

Call Arguments

Return Address

Stack Bottom

%EBP (saved)

Saved Registers

Local Variables

Stack Frame of
who calls the
routine

Current
Stack Frame

%ESP
(stack pointer)

10

The Attack!

Call Arguments

Return Address

Stack Bottom

%EBP (saved)

Saved Registers

Local Variables

Stack Frame of
who calls the
routine

Current
Stack Frame

The “s” buffer
is here

Write until the
return address

is modified!

6

11

The execution revisited

Put the address of
hack() into the return
address of the function!

12

Quite Simple…

7

13

What’s happening?

O endereço de retorno foi
alterado para o de hack!

String is longer than
the buffer size. Return
address is
overwritten.

Malicious code
executing

It crashes at the end.
But… the harm is

already done!

14

But where does the hack() function comes from???

Normally, buffers are not long enough to store the code directly
(e.g. s[] is only 8 bytes long – not enough for hack()). But, if
your program reads data from some other source, storing it in
memory, it’s normally easy to find out the address of that
buffer. In that case, the return address of the exploitable
function is to be filled in with the address of the relevant buffer.
E.g. an image!

8

15

But...

� Hackers do not have access to the source code to find out
the size of buffers. How do they do it?

Just increase the size of the
data you feed to the application
until it crashes. Then, the
buffer size becomes known!

16

Corrected Code

Do not use “unsecure” functions!!!
Be very careful!

gets()/fgets()
scanf()/fscanf()
strcat()/strcpy()
...

9

17

Some compilers are getting “smarter”...

Check if the stack has
been corrupted!

Microsoft Visual Studio 2005

18

Some compilers are getting “smarter”...

10

19

So…

These engineers were quite sure they were writing
correct code. The devil is in the details.

Software engineering processes are essential for
writing secure code. And, even then…

20

So, why Security?

� Applications nowadays run on the “Wild-West” of the
Internet, they will be attacked

� Security problems are expensive to fix!

� Cost of code patching
(developing, documenting, testing, re-designing)

� Cost of redistributing

� Loss of credibility

� Loss of revenue

� Loss of productivity

� Possible lawsuits

«The Microsoft Security Response Center believes a
security bug that requires a security bulletin costs in
the neighborhood of $100.000.»

[Howard2002]

11

Software

Analysis

Jonathan Aldrich
Carnegie Mellon University

Slides by Paulo Marques, University of Coimbra, PortugalM
a
r
2
0
0
8

Security
2. Real security attacks

22

Why Cryptosystems Fail

Ross Anderson, "Why Cryptosystems Fail", in Proc. of the
1st ACM conference on Computer and Communications Security,

Fairfax, Virginia, United States, 1993

12

23

Some Examples (Inside Jobs)

24

Some Examples (Outside Jobs)

13

25

Some Examples (Technical)

26

Some Examples (Technical) (2)

14

27

Quite Serious!

Security by Obscurity

Wrong Risk Model

Misunderstanding Technology

Human Factor

Software

Analysis

Jonathan Aldrich
Carnegie Mellon University

Slides by Paulo Marques, University of Coimbra, PortugalM
a
r
2
0
0
8

Security
3. Basic Concepts

15

29

Security – Basic Aspects

� Authentication: Mechanisms that allow to identify a user
in the system

� Authorization: Guaranteeing that only certain
authenticated users can perform certain operations

� Protection: Guaranteeing that certain resources are not
used by non-authorized users

� Security Management: What policies are in place for
managing security concerns; how are security breaches
handled?

30

Protection – Main Concerns

� Confidentiality:

� Protection against revealing secrets

� Integrity:

� Protection against tampering with data

� Non-Repudiation:

� Protection against denying actions previously performed

� Denial of Service:

� Protection against a service being unavailable for legitimate users

� Software Faults:

� Protection against undue access because of coding errors

� Physical Protection:

� Protection against systems being physically compromised

16

31

Some Typical Examples

Security Policies; Service Level AgreementsSecurity Management

Locked doors; EncryptionPhysical Protection

Software Engineering; ProofsSoftware Faults

Dynamic Firewalls; “intelligent” routersDenial of Service Attacks

Digital SignaturesNon Repudiation

Digital SignaturesIntegrity

Data EncryptionConfidentiality

Protection

Access Control Lists (ACL); Permission TokensAuthorization

Username/Password; KerberosAuthentication

Ways to Address it (Examples)Concern

This is not a security course, thus we will not

address these issues in detail.

32

Check Your Understanding (1)

Provide examples of each concept for Amazon.com:

� Authentication

� Authorization

� Confidentiality

� Integrity

� Non-Repudiation

� Denial of Service

17

33

Security is not something you “add” to
a system. Security is something that
must be considered from the beginning,
during requirement gathering and
analysis!

34

Fundamentals

� Any security analysis starts by considering that an
intelligent hostile entity, which appropriate resources,
will analyze and try to attack the system

� A security analysis is always a cost analysis:

� A number of intelligent motivated attackers, with time and a
potential infinite set of resources will be able to attack my system.
Thus:

� How much does it cost for the attacker to break
into my system?

� How much time it take to break into the system?

� What do I lose if the attacker is able to break in?

18

35

Fundamentals (2)

� Every time a security system is deployed, it has to
consider an attack/risk model

� A security analysis must always make these models
explicit!

� Ensuring that you are considering the right problem

� Ensuring that the correct resources are projected

� Ensuring that the system is not “over-designed”

36

Human-Computer Interaction is Critical

19

37

Another Example

� What happened?:

� Employees are not able to remember their passwords

� After 5 minutes of inactivity the screensaver kicks in.
It’s necessary to introduce the password to unblock it.

� Employees run around the store to find the colleague that is logged in.

� Employees work in shifts. When one goes home, the PC is locked for the
day!

� One smart employee thinks about creating a password corresponding to
the current month and year (e.g. Feb2007).

� He tells his colleagues so that the screensaver problem is solved.

� After 3 months all stores (nationwide) are using the same password!

“A nationwide PC retailer protects its PCs using a

password system. Passwords change every month,

having to be unique over time. Employees choose

their own passwords.

Software

Analysis

Jonathan Aldrich
Carnegie Mellon University

Slides by Paulo Marques, University of Coimbra, PortugalM
a
r
2
0
0
8

Security
4. Design Principles

20

39

Security Principles to Live By

1. Establish a security process

2. Define the product security goals

3. Consider security as a product feature

4. Learn from mistakes

5. Use the “principle of least privilege”

6. Use “defense in depth”

7. Assume external systems are insecure

8. Plan on Failure

9. Fail to a secure mode

10. Employ secure defaults

11. Remember (security features != secure features)

12. Never depend on security through obscurity

40

1. Establish a Security Process

� Your software development process should contemplate
how to:

� Design, Code, Test, Deploy and Fix systems in a secure way

� If not…

� The system will never be acceptably secure

� Enormous amounts of time and money will be spent in trying
to fix the system each time a security problem occurs

21

41

2. Define the Product Security Goals

Requirements Gathering

� Who is the application audience?

� Anonymous internet users? Bank managers? Sys-admins?

� What does security means for the target audience?

� Do different users have different requirements?

� In what environment will the application run?

� Internet? Cell-phone? Bank? Thousands of uncontrolled PCs?

� What are you attempting to protect?

� Confidentiality? Integrity? Non-repudiation?

42

2. Define the Product Security Goals (2)

Requirements Gathering

� What are the implications for the users if the objects you
are trying to secure are compromised?
� Lost of privacy? Loss of money? Annoyance?

� Who will manage the application?
� The user? The system administrator?

� What are the communication needs of the application?
� Talk to other applications of the company? The internet? Both?

� What security infrastructure services does the system and
environment provides?
� Hardware cryptograph? OS-based user management? Steel doors?

22

43

3. Consider security as a product feature

� What do you think of this plan?

� Milestone 0: Design Complete

� Milestone 1: Add core features

� Milestone 2: Add secondary features

� Milestone 3: Add security

� Milestone 4: Fix bugs

� Milestone 5: Ship Product

� Key issues:

� It’s almost impossible to retrofit a system to make it secure

� Properly including security is extremely expensive

� Security bug fixing will be expensive and time consuming

� Make sure that security is a design consideration in your
product.
� Specifications and Designs must outline the security requirements and threats to the system

44

4. Learn from Mistakes

� Build up the knowledge in the organization and team.

� Put procedures in place that make sure that identified
security problems don’t happen again (hopefully)

� What to ask

� How did the security error occur?

� Is the same error replicated in other parts of the code?

� How could we have prevented this error from occurring?

� How can we make sure this will never happen again?

« What doesn’t kill you makes you stronger. »

23

45

5. Use Least Privilege

� Running with the minimum
privileges possible makes it
much harder for a security
attach to occur

� ONE bug in a Windows
application that runs in an
administrator account is all

that’s needed for the machine
to be compromised.

« An application should always execute with
the minimum privileges possible. »

Why do this?

46

6. Use “defense in depth”

Defense in Depth principle:

Imagine that your application is the last one
still standing. Every other defense
mechanism has been destroyed.

� Induction problem:

� A programmer assumes that the rest of the system takes care
of security for him.

� If all programmers assume that, who takes cares of security?

� Defense in depth:

� Reduces the possibility of a Single Point of Failure problem.

24

47

7. Assume that external systems are insecure

� It’s a form of defense in depth

� In particular, assume that data being received or passed
to a system where you haven’t complete control may be
compromised.

� It may well be!

st := "SELECT * FROM users WHERE name = '" + userName + "';"

� Example:

In the web form, username is introduced as:

a' or 't'='t

st := "SELECT * FROM users WHERE name = 'a' or 't'='t';"

48

8. Plan on Failure

� What happens when a system fails?

� Systems do fail…

� What happens if the web site is defaced?

� What happens if someone is able to enter the server room?

� What happens if the application is compromised?

� An integral part of designing secure systems is planning
on how to address failure

� Plan on how to address the failure

� Plan on how to correct the problem

«The only safe computer is a dead computer. Or, at
least, a disconnected one. And even so… »

25

49

9. Fail to a Secure Mode

� What happens when the application detects a problem?

� It’s possible to fail securely or insecurely

� Failing securely means not disclosing any data that it would not
normally do; that data still cannot be tempered with; etc.

� The systems should be designed so that they fail securely

� Examples:

� In Unix, passwords are now encrypted using one-way hash
functions (e.g. MD5)

� In Windows, the password file is further encrypted using a
symmetrical encryption algorithm

50

10. Employ Secure Defaults

� An application should install with defaults that are
“reasonably” secure for the majority of its use cases

� E.g. Administrator password defined during installation; Guest
account disabled; Firewall enabled; etc.

� An applications should execute with the least possible
functionality enabled

� Something that isn’t running cannot be broken in

Very hard to accomplish in practice!

26

51

11. Security features != Secure features

� One of the most common causes of problems is that
developers don’t understand security

� Security is being added as “features”/”technology”, not as a way
of addressing a particular threat model

� Developers try to re-implement security mechanisms without
proper understanding security

� Companies add “security technology stuff” just because it
looks good on the product datasheet

« My site uses SSL with 1024-bit RSA encryption! »

But the user’s credit-card number is stored in a plain-text file…

52

12. Never depend on security through obscurity

� Always assume that an attacker knows everything you do

� Assume that an attacker has access to all the source code
and design

� Assume that an attacker knows the infrastructure where
the application is going to be deployed in

� Why?

� In most cases is relatively trivial to reverse engineer the needed
information from the application and network

� Time and patience is on the attacker’s side

� There are a lot more potential attackers than people designing
and coding the application

27

53

Check Your Understanding (2)

Provide examples of each concept for Amazon.com:

1. Define the product security goals

2. Learn from mistakes

3. Use the “principle of least privilege”

4. Use “defense in depth”

5. Assume external systems are insecure

6. Plan on Failure

7. Fail to a secure mode

8. Employ secure defaults

Software

Analysis

Jonathan Aldrich
Carnegie Mellon University

Slides by Paulo Marques, University of Coimbra, PortugalM
a
r
2
0
0
8

Security
5. Threat Based Security Design

28

55

Requirement Analysis

Security Design by Threat Modeling

� Threat Modeling and Analysis in a nutshell:

1. Brainstorm the known threats to the system

2. Rank the threats by decreasing risk

3. Choose how to respond to these threats

4. Chose techniques to mitigate the threats

5. Chose appropriate technologies from the identified techniques

More info:

• Horward and LeBand’s “Writing Secure Code”, Chapter 2.

• SEI/CERT OCTAVE: Operationally Critical Threat, Asset,

and Vulnerability Evaluation: http://www.cert.org/octave

56

SEI/CERT OCTAVE

C. Alberts et. al., "An Introduction to the OCTAVE Approach",

CERT/SEI, Carnegie Mellon University, August 2003

29

57

Analysis – What do you want to look at?

� Typically:

� Core Processes, Services and Servers

� Persistent Data

� Non-Persistent (Ephemeral) Data

� Communication Channels

� Physical Infrastructure

� Key Criteria:

� Identify as many security threats as possible

� Approach:

� Structured Brainstorming Technique

(Document everything! Make sure to have a scribe!)

58

1. Analysis

� Start by drawing the overall architecture of the system

web
serverbrowser

database
server

authentication
data

web pages Store BD

HTTP

local I/O local I/O SAN

30

59

Now the “real” work…

� Analyze the Security Threats

� It’s useful to ask questions like:

� How can an attacker change the authentication data?

� What’s the impact of an attacker accessing this part of the
system?

� What happens if it’s possible to temper which this information?

� How to do it in a structured way?

� Several approaches possible…

� The STRIDE Threat Model is common and simple

More info:

STRIDE is an approached used by Microsoft for building secure products.

For more information: http://msdn2.microsoft.com/en-us/library/aa302419.aspx

60

STRIDE

� Spoofing Identity

� How can an attacker gain access to the system using another user’s
authentication information?

� Tampering with Data

� Can attacks lead to critical data being tampered with?

� Repudiation

� Can users deny having performed a certain action without the system
having the means to prove otherwise?

� Information Disclosure

� Can critical information be exposed?

� Denial of Service

� Can the system be attacked in a way that legitimate users cannot use
it?

� Elevation of Privilege

� Can unprivileged users gain privileges, compromising the system?

31

61

Examples of Threats

� Threat #1
� A malicious user views or tempers with information on route

between the web server and the client browser

� Threat #2
� A malicious user views or defaces the web site by changing the

web page files on the web server

� Threat #3
� A malicious employee steals credit card numbers by intercepting

information flowing on the Storage Area Network

� Threat #4
� An attacker denies access to the system by flooding the web

server with TCP/IP packets (DoS)

� Threat #5
� An attacker gains access to a large number of passwords by

accessing the authentication data files

� …
[Howard05] About 20-40 threats per 2-hour meeting.

62

2. Rank Threats by Decreasing Risk

� Simple approach:

� Use levels, not “fine grain numbers”

� e.g. 5 levels for impact, 5 levels for probability

� It’s hard to judge Impact and Probability

� What do I lose if this risk materializes?
(Time, Money, Reputation, etc.)

� Probability – Rule of thumb:
It’s not encryption: it’s bugs and human nature!

� Check the material on the “Risk Management Course”

Risk = Impact ×××× Probability

32

63

Rank Threats by Decreasing Risk (2)

64

Rank Threats by Decreasing Risk (2)

33

65

Rank Threats by Decreasing Risk (3)

66

3. Choose how to respond to these threats

� Four basic approaches on how to respond to threats

1. Do Nothing (i.e. assume the risk)

2. Inform the user of the threat

3. Remove the problem

4. Fix the problem

� The decision is mostly managerial. It implies careful
considering what are the consequences if a given threat
materializes.

� If the risk is high enough, only options 3 and 4 should be
used.

� Many times, it’s hard for project managers to opt for 3 (removing
an implemented feature from the project) in order to cope with a
serious threat

34

67

4. Chose techniques to mitigate the threats

� How to mitigate the threats identified?

Run with least privilege, SandboxesElevation of Privilege

Back-off protocol, Filtering, Quality of ServiceDenial of Service

Authorization, Encryption, Privacy Enhanced
Protocols, Don’t store secrets

Information Disclosure

Digital Signatures, Audit TrailsRepudiation

Authorization, Hashes, Message Authentication
Codes, Digital Signatures

Tampering with Data

Authentication, Protect Secrets, Don’t store
passwords

Spoofing Identity

Examples of Mitigation TechniquesThreat Type

68

5. Chose appropriate technologies

chroot, OS-containers, virtual machinesElevation of Privilege

Progressive Back-off, IP-based filtering,
DiffServ, etc.

Denial of Service Attacks

SSL, TLS, SSH, IPSec, etc.Privacy Enhanced Protocols

Digital SignaturesNon Repudiation

Digital Signatures (DSA, SHA-RSA.), Hashes
(MD5, SHA1, etc.)

Integrity

Data Encryption (RSA, AES, etc.)Confidentiality

Tampering/Repudiation/Disclosure

Access Control Lists (ACL); Permission
Tokens; Location-Based Authorization; IP-
based authorization; etc.

Authorization

Username/Password; Kerberos; IPSec; X.509
Certificate Authentication; etc.

Authentication

Ways to Address it (Examples)Technique

35

69

Back to the Example

Software

Analysis

Jonathan Aldrich
Carnegie Mellon University

Slides by Paulo Marques, University of Coimbra, PortugalM
a
r
2
0
0
8

Security
6. Security Testing

36

71

Security Testing

� Functional testing is about showing to a certain degree of
confidence that a feature works as expected.

� Security testing is about demonstrating:

� That a user cannot spoof another user’s identity

� That a user cannot tamper with data

� That a user cannot repudiate an action that was performed

� That a user cannot see data the user shouldn’t have access to

� That a user cannot cause denial of service

� That a user cannot gain more privileges through malicious use

Why is Security Testing Different from
Functional Testing?

72

How to test for security problems

1. Decompose the application into its major functional
components

2. Identify all component interfaces

3. Rank interfaces by potential vulnerability

4. Ascertain the data used by each interface

5. Find security problems by injecting faulty data

� In most cases tests are designed and performed as black-
box testing

� Even so, the tester should have access to the application’s
source code

� Why?

37

73

1. Decompose the application

� Identify all components that make part, directly or
indirectly, of the application
� Executable Files, including DLLs and EXEs

� Services

� Files

� Scripts

� etc.

Update
ServerApp.

Executable

Time
Service

IE DLL

time() COM

TCP/IP
Socket

74

2. Identify component Interfaces

� Identify all mechanisms by which the application
exchange data with the outside world

� TCP/IP and UDP Sockets

� Command line arguments

� Console Input

� Graphical Input

� Files

� Named Pipes

� Shared Memory

� Databases

� COM calls

� HTTP Requests

� …

38

75

3. Rank interfaces according to their vulnerability

� For each one of the interfaces, assign it points according
to its vulnerability (table below)

� Highly vulnerable interfaces should be tested first and
more thoroughly

76

4. Ascertain data used by each interface

� Determine the data accessed by each interface, where it’s coming
from, its format, and how it’s used

� This is the data that is modified to exposed security bugs

� Examples

� Sockets:

� Data arriving from the network

� Files:

� File contents

� Registry:

� Registry data

� Environment:

� Environment variables

� HTTP:

� HTTP headers and HTTP data

� Command Line Arguments:

� Parameters

39

77

5. Find security problems by injecting faulty data

� Fault injection involves perturbing the environment such
that the code handling the data that enters the interface
behaves in an insecure manner.

� Once a vulnerability is discovered, the objective is to find
an exploit that exposes the security fault.

� E.g. not all buffer overflows are exploitable

78

Applies to

network data

Finding Security Vulnerabilities

Security
Fault-Injection
Techniques

Contents

Size

Data Container Name

Link

No access

Restricted
access

Exists

Does not Exist

Long Zero

Short

Wrong Type

Random

NULL

Zero Length

Partially Incorrect

Replay

Out-of-Sync

High-Volume

40

79

Remember this?

80

Clearly an exploitable bug!

41

81

Bibliography

� Writing Secure Code, Second Edition
by Michael Howard, David C. LeBlanc

� Microsoft Press, ISBN 0735617228
December 2002

� Chapters 1, 2, 3 and 14

� R. Anderson, “Why Cryptosystems Fail”, in Proc. of the
1st ACM conference on Computer and Communications
Security, Fairfax, Virginia, United States, 1993

� E. Nisley, "Strong Language", in Dr. Dobb's Journal,
CMP Publishers, October 2005

� Microsoft’s STRIDE method:
http://msdn2.microsoft.com/en-us/library/aa302419.aspx

� CERT/SEI OCTAVE:
http://www.cert.org/octave

82

42

83

Am I safe?

