
Protocol Analysis

17-654/17-754

Analysis of Software Artifacts

Kevin Bierhoff

2

Take-Aways

� Protocols define temporal ordering of events
� Can often be captured with state machines

� Protocol analysis needs to pay attention to
� Interprocedural control flow

� Aliasing of objects

� Disjoint sets and capabilities can handle
aliasing correctly
� Fractional permissions for heap sharing

� State changes correspond to field changes

3

Agenda

� Example protocols

� Modeling protocols as state machines

� Protocol analysis approaches

� Annotations vs. interprocedural analyses

� Aliasing challenges

� Tracking aliases in methods and fields

� Protocol implementation checking

4

Streams can be read until

they’re closed

public interface InputStream {

public int read();

public void close();

}

Stream sample client
InputStream f = new FileInputStream(…);

int c = f.read(); // read first character

while(c >= 0) {

// do something with c

c = f.read(); // read next character

}

f.close();

Stream protocol state machine

open

closed

close()

read()

5

Sockets go through a well-

defined sequence of states

@States({“created”, “connected”, “closed”})

public class Socket {

@Creates(“created”)

public Socket()

@ChangesState(“created”, “connected”)

public void connect(…)

@InState(“connected”)

public InputStream getInputStream()

@InState(“connected”)

public OutputStream getOutputStream()

@ChangesState(“connected”, “closed”)

public void close();

}

Java Socket protocol

created

connected

close()

closed

connect(…) getInputStream()

6

Java Applets have a funny

back edge

Java Applet protocol

created

initialized
start()

running

init()

destroyed

stopped
stop()

destroy()

start()

Example based on: G. Fairbanks, D. Garlan & W. Scherlis. Design fragments make
using frameworks easier. In Proceedings of OOPSLA’06, pp. 75-88. ACM Press, 2006.

7

Crystal3 analyses have the

same back edge

Crystal3 method analysis protocol

created

beforeAllMethods()

running

done

afterAllMethods()

beforeAllMethods()

analyzeMethod(…)

Unawareness of this back edge can lead to outdated error reports

8

Protocols constrain temporal

ordering of events

� Protocols define restrictions on which
methods can be called when

� Clients have to follow protocols in
order to avoid runtime errors

� Protocols can often be modeled as
state machines

9

Protocol documentation…

� Protocols are informally documented

� Example: java.io.InputStream

� Detailed Javadoc for every method

� Example: java.net.Socket

� Exceptions describe when methods cannot

be called

� Not always complete and precise

10

…formalized in various ways

…

created : connect(…) -> connected

connected :

getInputStream() -> connected

| close() -> closed

State machine defined in

one place (similar to Metal)

connect (getInputStream | getOutputStream)* closeRegular expressions

@States({“created”, “connected”, “closed”})

public class Socket {

@Creates(“created”) public Socket()

@ChangesState(“created”, “connected”)

public void connect(…) …

Annotations on classes and

methods

Socket exampleFormalization

We will use annotations on classes and methods

11

Agenda

� Example protocols

� Modeling protocols as state machines

� Protocol analysis approaches

� Annotations vs. interprocedural analyses

� Aliasing challenges

� Tracking aliases in methods and fields

� Protocol implementation checking

12

Protocol analysis tracks states

of variables

� What if sock is assigned to another variable?

� What if sock is assigned to a field?

� What if sock is passed to another method?

Socket sock = new Socket();
sock.connect(new InetSocketAddress(

"www.cs.cmu.edu",80));
InputStream in = sock.getInputStream();
sock.close();

Post-state
Created

Connected
Connected
Closed

13

Calling other methods

public class SocketClient {

private String readSocket(Socket s) {

InputStream in = s.getInputStream();

… // read and return string

}

public String readRemoteData() {

Socket sock = new Socket();

sock.connect(new InetSocketAddress(

"www.cs.cmu.edu",80));

String result = readSocket(sock);

sock.close();

return result;

} }

Need to handle inter-procedural control flow

Is this call ok?

Is this call ok?

14

Interprocedural analysis

techniques

� Need to handle inter-procedural control flow

� Every method call could potentially affect

analysis results

� Need to figure out what happens in called

methods

� Some possible approaches

� Default assumptions

� Interprocedural CFG

� More annotations

15

Defaults too inflexible for

protocol analysis

� Simple approach: default assumptions
� Assumption about method parameters and result

� Check that call and return sites respect the default

� Example: Maybe-null assumption in null analysis

� Assume that method parameters may be null

� Check methods with that assumption

� All call and return sites automatically maybe-null

� No reasonable default for protocol analysis
� “Any” state too imprecise (lots of false positives)

� Optimistic assumption (a particular state) might be wrong
a lot of the times

16

Interprocedural CFG “inlines”

method calls

Interprocedural CFG

� Pretend that called
methods are part of
current method

� Every method
appears once

Problem: scalability

� One big CFG for the
entire program

BEGIN

sock = new Socket();

sock.connect(…);

readSocket(sock);

sock.close();

END

BEGIN

s.getInputStream();

END

…

Interprocedural CFG hard to use at scale

17

Assume and Check

Annotations

� Annotations
� Starting dataflow value for all parameters

� Dataflow value for result

� Verification
� Initial info: starting value for parameters

� Verify result ⊑ annotationresult

� Ending value for result obeys annotation

� Verify arg ⊑ annotationarg

� Actual arguments obey annotations on formal
parameter

String readSocket(
@InState(“connected”) Socket s) {

InputStream in = s.getInputStream();

… }

18

Agenda

� Example protocols

� Modeling protocols as state machines

� Protocol analysis approaches

� Annotations vs. interprocedural analyses

� Aliasing challenges

� Tracking aliases in methods and fields

� Protocol implementation checking

19

Looks familiar? Aliasing is a

problem that you can easily have

Aliasing = multiple names for the same thing

--

t2.inB();

// t1 alias t2 in b, t3 in c

t3.bToC();

t1.aToB();

t1 = t2;

// t3 in b, t1 alias t2 in a

t1.aToB();

// t1 alias t3 in b, t2 in a

SimpleProtocolTest t3 = t1;

--SimpleProtocolTest t2 = new SimpleProtocolTest();

--SimpleProtocolTest t1 = new SimpleProtocolTest();

t1 t2 t3

Spurious warnings

a

aa

aaa

b aa

aaa

b aa

ERRb a

ERRb

20

Track local aliases as disjoint

sets (aka equivalence classes)

� Track aliased variables as disjoint sets
� Lattice information

� A = { S1, …, Sn }

� S1, …, Sn disjoint sets of variables

� Copy instructions x = y
� Get y’s aliases S ∈ A where y ∈ S

� Add x to S (and remove it from any other set)

� Object allocations x = new C(…)
� Remove x from existing sets
� A = A ∪ { x } (i.e., add new set with just x)

� (Need to also set initial state for x)

� Track state for each disjoint set
� Method calls x = y.m(…)

� Get y’s aliases S = { y1, …, yn } where y ∈ S

� Update S’s state according to m’s spec

21

Disjoint sets correctly handle

local aliases in example

States of aliased variables are updated correctly

--

t2.inB();

// t1 alias t2 in b, t3 in c

t3.bToC();

t1.aToB();

t1 = t2;

// t3 in b, t1 alias t2 in a

t1.aToB();

// t1 alias t3 in b, t2 in a

SimpleProtocolTest t3 = t1;

--SimpleProtocolTest t2 = new SimpleProtocolTest();

--SimpleProtocolTest t1 = new SimpleProtocolTest();

t1 t2 t3aliasing

a

aa

aaa

b ba

baa

b bb

b b

b

c

b c

{t1}

{t1}, {t2}

{t1,t3}, {t2}

{t1,t3}, {t2}

{t1,t2}, {t3}

{t1,t2}, {t3}

{t1,t2}, {t3}

{t1,t2}, {t3}

22

Calling other methods can

affect fields

public class AliasingFun() {

@InState(“b”) private SimpleProtocolTest t2;

private void callField() {

t2.inB();

}

public void aliasingFun() {

SimpleProtocolTest t1 = new SimpleProtocolTest();

t1.aToB();

internal(t1);

t1.bToC();

callField();

…

}

Fields hold on to objects beyond duration of methods

private void internal(@InState(“b”) SimpleProtocolTest t) {

Field annotation makes this call go through

t2 = t;

}

This call violates t2’s annotation

t2 is actually in “c” when called

t2 aliases t and t1

Our approach so far

does not issue

any warnings

23

Aliasing through fields different

from local variables

� Aliasing in local variables affects current

method only

� We can handle that with disjoint sets

� Fields hold on to objects

� Assignment to field in one method can affect

other methods

� Changing state of local variable can

inadvertently change state of field

� Other situations with similar problems?

24

Capabilities track whether an

object is accessible

� Capabilities: Access objects only if not
stored in a field

� Exactly one capability for each object
� Can call methods only if capability available

� x.m(…) only valid if caller has capability for x

� Capability created with new
� Field assignments x.f = y

� “Capture” capability for y

� Annotate methods with capabilities
� @Captured if capability needed but not returned
� @Borrowed if capability needed and returned

25

Capabilities correctly handle field

assignments and method calls

public class AliasingFun() {

@InState(“b”) private SimpleProtocolTest t;

private void callField() {

t.inB();

}

public void aliasingFun() {

SimpleProtocolTest t1 = new SimpleProtocolTest();

t1.aToB();

internal(t1);

t1.bToC();

callField();

…

}

private void internal(@Captured SimpleProtocolTest t) {

t2 = t;

}

private void internal(@Borrowed SimpleProtocolTest t) {

}

Error: No

capability for t1

26

Disjoint sets and capabilities

can handle aliasing correctly

� Track disjoint sets of local aliases

� Handle copies between local variables

� One capability for each object

� Handle assignments to fields

� Capability annotations on methods

� Handle aliasing during method calls

F. Smith, D. Walker & G. Morrisett. Alias types. In European Symposium on

Programming, pages 366-381. Springer, 2000.

R. DeLine & M. Fähndrich. Enforcing high-level protocols in low-level

software. In ACM Conference on Programming Language Design and

Implementation, pages 59-69, 2001.

27

Capabilities are not enough to

specify or verify Java pipes

Producer thread

PipedOutputStream

object (“source”)

PipedInputStream

object (“sink”)

Consumer thread

Circular buffer

Character

write() read()receive()

The sink is shared
between source

and consumer

Java pipes transport characters

from producer to consumer thread

28

Fractional permissions: Allow

capabilities to be split and joined

� Permissions generalize capabilities
� Permission required for all object access
� Many permissions to the same object can exist

� But keep track of how many permissions there
are

� 1 · x is the only permission for the
referenced object
� Similar to capability for x

� ½ · x is one of two permissions for x
� ½ · x + ½ · x = 1 · x

29

Fractions for verifying that pipe

is correctly closed

� Source and consumer each hold ½ fraction of sink
� Source uses its ½ to call receive() on sink
� Consumer uses its ½ to call read() on sink
� ReceivedLast() passes source’s half to sink
� Consumer can call close() when sink in eof state
� Close() restores unique permission to sink and closes it

PipedOutputStream

object (“source”)

PipedInputStream

object (“sink”)

Circular buffer

write() receive()

receivedLast()

½ Con-

sumer
½Pro-

ducer
1

read()

close()close()

1

½

30

Statically prevent error

conditions

� Pipe implementation in Java standard
library throws exceptions at runtime
� If sink is closed before source

� If source or sink are accessed after being
closed

� Fractional permissions prevent these
errors at compile time

J. Boyland. Checking interference with fractional permissions. In Static

Analysis Symposium, LNCS vol. 2694, pages 55-72. Springer, 2003.

K. Bierhoff & J. Aldrich. Modular typestate checking of aliased objects. In

OOPSLA’07, pages 301-320, 2007.

31

Agenda

� Example protocols

� Modeling protocols as state machines

� Protocol analysis approaches

� Annotations vs. interprocedural analyses

� Aliasing challenges

� Tracking aliases in methods and fields

� Protocol implementation checking

32

Implementation checking

tracks changes to fields

� So far we looked at clients
� Code calling methods on sockets etc.

� Assumed that declared protocol was right

� Checking protocol implementations
� Does this change state as declared?

� State changes = field manipulations
� Protocols ensure that “something” happened

already (or has not happened yet)

� “Something” can (only) be recorded in fields

33

State invariants define states

in terms of fields

� State invariants
constrain fields…
� Constraints on field

values

� E.g., greater than zero
or non-null

� Expected state of
referenced object

� E.g., underlying
stream should be
“within” or “eof”

� …but only while in a
particular state

public class BufferedInputStream {

private InputStream in;

private byte[] buffer;

private int pos, count;

// open: in instate (within | eof) &&

buffer != null &&
0 � pos � count &&

count � buffer.length

// closed: in == null && buffer == null

Buffered

stream

“Underlying”

stream

client in

close() will change fields

accordingly

34

Don’t forget aliasing…!

public class BufferedInputStream {

private InputStream in;

private byte[] buffer;

private int pos, count;

// open: in instate (within | eof) &&

buffer != null &&
0 � pos � count &&

count � buffer.length

// closed: in == null && buffer == null

Buffered

stream

“Underlying”

stream

client

What happens when the
underlying stream calls
back to the buffer?

As it turns out, such a

re-entrant callback can
violate count’s
invariant, leading to an
access to buffer outside
its bounds.

in

35

Summary

� Protocols define temporal ordering of events
� Can often be captured with state machines

� Protocol analysis needs to pay attention to
� Interprocedural control flow

� Aliasing of objects

� Disjoint sets and capabilities can handle
aliasing correctly
� Fractional permissions for heap sharing

� State changes correspond to field changes

