
 - 1 - 

The Evaluation of Daikon: utilization of Daikon in the 
POI Data Inspection System 

Kuyul Noh, Changki Kim, Jonggul Park and Jaeha Song 

4WD Team 

Master of Software Engineering Program 

School of Computer Science 

Carnegie Mellon University 

{knoh, ckkim, jgpark, jaehas}@andrew.cmu.edu 

1. Introduction   

Program invariant is a property that is true at a particular program point or points in a 

program. It explicates data structures and algorithms and is helpful for programming tasks 

from design to maintenance. Daikon is an implementation of dynamic detection of likely 

invariants; that is, Daikon invariant detector reports likely program invariants. 

In this paper, we first describe the basic architecture of Daikon and the POI Data inspection 

system that is the target application for the Daikon tool. Then, we mention the scope and 

approach of this project. Next, we focus our experiments, their results, and the comments on 

the results we obtained or we didn’t obtain. Then, we propose the possible future works. 

Finally we conclude with the summary of this report.    

 

2. Background 

2.1 Daikon 

There are two ways to obtain invariants, static analysis and dynamic analysis. Static 

analysis is generally used to generate and verify annotations and analyze the code for type and 

memory safety. The most common static analysis is dataflow analysis. On the other hand, 

Dynamic analysis is primarily used to detect possible invariants. It does not require additional 

initial input from a human such as annotations or specifications. However, it must execute the 

program being analyzed with a large test suite to infer possible invariants. 



 - 2 - 

Daikon is one of most successful tools for detecting invariants among the dynamic analysis 

techniques. It can detect properties in Java, C++, and Perl. It is a technique for postulating 

likely invariants from program runs: it runs target program, examines the values that it 

computes, and looks for patterns and relationships over those values, reporting the ones that 

are always true over an entire test suite and that satisfy certain other conditions. Figure 1 

shows the high-level architecture of Daikon invariant detector. 

 Figure 1: Architecture of the Daikon tool 

The outputs of Daikon are likely invariants: they are not guaranteed to be universally true, 

because the test suite might not characterize all possible executions of the program. The 

inference step tests a set of possible invariants against the values captured from the 

instrumented variables: those invariants that are tested to a sufficient degree without 

falsification are reported to the programmer. All of the steps in Figure 1 are progressed 

automatically by tool except selecting a test suite. 

2.2 POI Data Inspection System 

The car navigation system is no longer optional in the automobiles today. One of the most 

important parts of the car navigation system is the quality of the data representing the Point of 

Interest (POI), locations of buildings, restaurants, public offices, etc. that drivers are 

interested. It is closely related to the good services for the customer. Figure 2 shows where 

our system is in within the whole car navigation business process. 

In Figure 2, the raw POI data files come from the third party content providers in MS 

Access file format. It has 2 million records and each record has several meaningful columns 

such as name, address, and zip code.  

The quality of raw POI data is relatively poor because there are logical and duplication 

errors that are injected during the initial creation of the raw POI data file by the third parties. 

A typical error is duplication of the same content. The error that is more complicated is 

logical error. For example, it is a logical error when a record mentions fifth floor of a three-



 - 3 - 

story building. 

 

 

Figure 2: Business flow of POI data inspection system 

No one knew how many POI raw data had defects such as logical inconsistency or 

duplication error. Our customer have guessed the error rate through the manual inspection 

through data sampling and asked the content provider to fix it when the defect rates are 

unacceptably high. In this way, it took a long time to make a final product of good quality. It 

might prevent the customer from leading in the car navigation market. Therefore, they wanted 

to have a tool that could automate POI data inspection and reduce the time for product. 

Our POI inspection system can resolve this problematic situation. It would be specialized 

tool to help our customer, HMC (Hyundai Motor Company) solve the previous, tedious works 

automatically. After inspection, our system generates the refined POI data as output that has 

good quality for the next packaging step. 

2.3 Scope and Approach 

Our primary goal through this project is to apply Daikon to our POI Data inspection system 

and to find how Daikon can be applied to database centric application. As a result, we wanted 

to improve the correctness of the POI data and the performance of our inspection system. To 

achieve this goal, we considered the following two strategies. 

• Reduce inspection time by applying Daikon as preprocessor in runtime  

In our inspection system, it takes a long time to inspect all the raw POI data with the entire 

rules. This approach was motivated by the long inspection time. If only the optimal rules, not 



 - 4 - 

the entire rules, can be applied to the inspection process, we can reduce the inspection time 

dramatically in runtime. Therefore we intended to use Daikon as a preprocessor to find the 

optimal rules prior to the main inspection operation. Figure 3 shows the overall diagram of 

this approach. 

 

 

Figure 3: Daikon as preprocessor in run time  

• Find new rules by applying Daikon in design time 

To detect the logical and duplication errors, our customer and we already came up with the 

200 inspection rules. However, the rules we found were not perfect; there is still room for 

improvement. This approach was motivated by imperfectness of the inspection rules. 

Therefore, we intended to use Daikon to find new rules or refine existing rule set in design 

time. It may enable us to make our existing rule set robust. Figure 4 shows the overall 

diagram of this approach. 

 



 - 5 - 

Figure 4: Daikon as preprocessor in design time  

 

 

 

3. Experiments 

3.1 Environments    

Similar to the traditional UNIX client server styled applications, the tool also consists of 

two parts. One part is front end that provides users with interface to the Daikon engine and 

converts input data from some other format into its expected input format. Another part is 

Daikon engine itself for the back end processing. For the Java language, the tool has two 

kinds of front end: dfej and Chicory. 

dfej is the old one of the two front ends, and it has an Eclipse plug-in integration. Since 

Eclipse is the official Integrated Development Environment for our project, it is reasonable to 

try with this option for our front end. Therefore, as our first trial, we installed the Daikon 

Eclipse plug-in on our system. Then, it was easy to derive Daikon instrumented source files in 

a dedicated project by clicking existing java source file, java source package, or even java 

project. 

In addition to the first option, we also tried to test the second option: using Chicory, the 

newly provided pure Java front end that is more recommended by the developers because of 

the following reasons: 

- It supports Java 5. 

- It is much easier to use. 

- It is pure Java implementation, so it has better platform independence. 

Although the first option has Eclipse plug-in, Chicory became easier to use after we wrote a 

simple Ant script for the tool integration. The following figure shows the steps of invariants 

detection in Daikon front ends. 



 - 6 - 

 

Figure 5: Daikon front ends and their steps 

Daikon tool binaries and its documentations can be found and downloaded in the following 

web site: 

http://pag.csail.mit.edu/Daikon/download/ 

For the test data, we prepared a 700 MB, 2 million POI data items for input. By connecting 

this file through JDBC-ODBC bridge driver for MS Access, we read the data records into a 

predefined data object by invoking its constructor. By using this configuration, we could 

experiment the tool. 

3.2 Approach 1: Daikon as preprocessor in run time 

3.2.1 Experiment 

What we tried to do with Daikon is to find whether our POI data conform to the hundreds 

of rules(hereafter “predefined rules”) that our team and our customer came up with after 

analyzing the database schema and real data. For the rules that match the invariants Daikon 

found, we can regard our data as conforming to those rules without inspection. With the rules 

that Daikon found, we can decrease the number of rules with which we will inspect our POI 



 - 7 - 

data. Because the time taken for inspection per rule is around 10 minutes for 2 million POI 

data, if the time reduced by Daikon is much more than the time it takes for Daikon to find the 

invariants among 2 million data, we can use Daikon at run time to reduce the execution time 

for inspection.  

To find the invariants among the POI data, the first thing we did was to make a code with 

which we can find the invariants of the POI data. For the purpose of experimentation, we 

made the POI_I_COMMOM class whose instantiated object represents one row of 

POI_I_COMMON table which is the most important table we should inspect. In the 

POI_I_COMMON class, main function exists as a driver that instantiates as many objects as 

the number of POI data.  

Instantiating objects without any additional manipulation in POI_I_COMMON class ended 

up finding a small number of rules that matches our predefined rules. In order to extract as 

many rule-related invariant as possible, we need to add some code that is related to the 

predefined rules. So, we made Rules class that has the boolean array which has the 

information about the violation of the rules. Whenever the POI_I_COMMON object is 

instantiated, the rules array will be filled with true or false value for each rule. For the rule 

that POI data conforms to, invariant will be “the boolean value of the rule will always true” 

whereas the invariant will be “the boolean value of the rule will be true or false” for the rules 

that POI data doesn’t follow. 

For the rules that span one row, that is, rules that can be determined whether they are false 

or true with only one object, it is easy. For example, rule 1 is “column CP_ID is one of integer 

{1,2,3,4,6,13,15,17,21,22,23,25}”. In this case, when instantiating POI_I_COMMON object, 

we can check whether the object conforms to the rule 1 and set the rule 1 to false or true. 

For the rules that span one table, that is, rules that can be determined after comparing all 

the rows in the table, we need another manipulation. For example, rule 2 is “column POI_ID 

is unique”. In this case, using “HashSet contains” method, if there is duplicated object, set 

rule 2 to false and if not, put that integer in the HashSet. 

With this approach, we got the invariants we wanted. The output from the Daikon is as 

follows. 



 - 8 - 

Case 
(record num) Expected Invariants 

Found Invariants 
(Daikon output) 

Time 
Spent(min) 

10,000 
Rule 0 is true 
Rule 1 is true 
Rule 2 is true 

Rules.rules[] == [1, 1, 1] 1:50 

100,000 
Rule 0 is true or false 
Rule 1 is true 
Rule 2 is true 

Rules.rules[] one of  
{[0, 1, 1], [1, 1, 1]} 

6:47 

110,000 
Rule 0 is true or false 
Rule 1 is true 
Rule 2 is true 

Rules.rules[] one of  
{[0, 1, 1], [1, 1, 1]} 

8:00 

200,000 
Rule 0 is true or false 
Rule 1 is true 
Rule 2 is true 

Rules.rules[] one of  
{[0, 1, 1], [1, 1, 1]} 

15:30 

 

* Rule 0 is “CP_ID is one of {1, 2, 3, 4, 6, 13, 15, 17, 21, 22, 23, 25} 

* Rule 1 is “POI_DI is unique” 

* Rule 2 is “FNAME, ADDR, ADDR2 is unique” 

Figure 6: Invariants of the approach 1 

3.2.2 Analysis of the results 

We found the rules that we want to find. With 10,000 POI data that conform to the rule, 

Daikon proved that it is. With 100,000 POI data that have data that don’t conform to the rule 0, 

Daikon proved that rule 0 can be 0(false) or 1(true) whereas all the data conform to rule 1 and 

rule 2. At this time, we can inspect 100,000 POI data with only rule 1. We can reduce around 

20 minutes that it takes to inspect POI data with rule 1 and rule 2 if the time taken for Daikon 

execution is less than 20 minutes. 

Unfortunately, we reached the conclusion that the execution time for Daikon is longer than 

the reduction time stemming from decreased rules based on the results of Daikon. Just with 

200,000 POI data, the time taken for Daikon execution was already 15 minutes. And it 

increases linearly with data. This approach is infeasible. 

3.3 Approach 2: Daikon as preprocessor in design time  

3.3.1 Experiment 



 - 9 - 

The invariant produced by Daikon in Approach 1 suggests another impressive intuition. 

The impressive result is that we found more meaningful rules that we didn’t give much 

attention to. Our project is mainly inspection of the wrong or illogical data. This depends on 

the rules we define. The more precisely defined the rule is, the cleaner the POI data after 

inspection are. In the course of Approach 1, we got to know that the rules can be made robust 

with the addition of the rules we found with Daikon. The following rules are those we found 

as additional invariants. 

 

POI_CODE !=null 

 LARGE_CD !=null 

FNAME !=null 

PNAME !=null 

ADDR !=null 

BDG_FLOOR>=0 

GUIDE_X1>=0 

GUIDE_Y1>=0 

POI_ID !=CP_ID 

FNAME.toString !=PNAME.toString 

CNAME.toString !=PNAME.toString 

ADDR.toString != ADDR2.toString 

PRIMARY_BUN==0 �SECONDARY_BUN==0 

CENTER_X1 > CENTER_Y1 

CENTER_X1 > GUIDE_Y1 

CENTER_Y1 != GUIDE_X1 

GUIDE_X1==0 � GUIDE_Y1==0 

GUIDE_Y1==0 � GUIDE_X1==0 

 

Figure 7: Interesting invariants (rules) of the approach 2 

3.3.2 Analysis of the results 

This brings us to approach 2. We can use Daikon in our project as a way of making our 

rules robust at design time. For example, PRIMARY_BUN�SECONDAY_BUN means that 

if the first street number is 0, then the second street number is 0. The street number is 



 - 10 - 

composed of two fields in South Korea. If we do not know the street number with the current 

information, we are supposed to set the first street number and the second street number to 0. 

This is the rule that we did not consider as rule before we discovered this with Daikon. 

 

4. Lessons Learned 

Through this project, we got lessons about the characteristics of dynamic analysis engine as 

well as its value. In addition, we got to know the way we can get benefits by applying the tool 

in our project. Finally, we learned the dynamic analysis tool could be used not only for the 

application code invariant capturing, but also for data rule capturing. 

4.1 General characteristics of Daikon 

We found several characteristics of Daikon during this tool evaluation project. 

First, we learned the characteristics of Daikon. This tool is a runtime learning machine that 

can discover more precise invariants as we use more test cases. However, there is still 

limitation: when we put test cases at some limit of time, it does not result better anymore. In 

our case, when we put 10 thousands records as test cases, we got some amount of invariants 

including spurious ones. After testing with 100 thousands records, we got a little more 

invariants with less spurious ones. However, when we tried with 200 thousands, there were no 

more invariants. Therefore, we can see the learning engine has some limitation. 

Here is another characteristic of the tool. Basically, the tool can detect the invariants of 

application codes by running the codes with provided test cases. Therefore, the quality of the 

resulting invariants is dependant on the quality of the input test cases. 

Another characteristic of the tool is the that the tool is very sensitive to the value of 

variables in the code. Especially the point of initialization is important to detect the invariants 

related to the variables. For example, if we set instance variable ‘foo’ of a class in its 

constructor, the variable’s invariant can be ‘not null’. Otherwise, we cannot get the invariant 

even if the variable is always not null except for the time it was initialized. Therefore, if the 

invariant is important, we should initialize the variables inside constructor. 

4.2 Benefits to our project 



 - 11 - 

Generally, the tool is to be used to gather invariants in application code. Different from the 

general way of using the tool, we tried to apply it for gathering the rules inside the database. 

As a result, we found some beneficial way of using the tool in our Studio project. We can use 

the tool to find the rules of inspection we might have missed. 

Actually, we tried to use the tool at runtime to filter the rules. However, this trial showed 

less valuable results. The time spent in running the tool engine was significantly larger to get 

data than the time just using hand-made checking code running. Therefore, our first trial to 

apply this tool to our project was not fruitful. 

Our second approach was to use the tool at design time rather than at runtime. By using the 

tool at design time we could exploit the tool’s ability to improve the quality of our rule set. 

We found new valuable rules. In addition, we will use the invariants to validate the 

correctness of the existing rules. For this purpose, the tool was significantly beneficial to our 

actual Studio project. 

4.3 Drawbacks 

Most of all, there were too many spurious invariants found, so it is required to put extra 

effort to filtering the meaningless invariants out from the entire results. 

Next, it is required to put more efforts to create proper test cases. This is overhead. This 

overhead becomes heavier when the tool is applied to application code invariant checking 

rather than data checking like our application. Moreover, the tool also needs test data to be 

prepared by users to drive the invariant capturing. These overhead is not trivial, so maybe 

sometimes the efforts input are less than the benefits of its output. 

Last, in case of data centric application such as our POI data inspection system, the 

comparison is required between Daikon based approach and traditional SQL (Sequential 

Query Language) query based approach in terms of the performance, implementation 

difficulty, and reusability for other application. In general cases, traditional SQL query based 

approach has better performance and easy buildability. 

 



 - 12 - 

5. Conclusion  

In our approach, Daikon has not helpful to verify the inspection program and extract clear 

variants from POI database. There are several problems.  

First, Daikon does not extract sufficient variants from POI database directly. We tried to 

detect the invariants several times by changing the instrumentation and input options, but it 

did not work in our cases. In addition, it is too expensive approach for just verification of the 

inspection application.  

Second, Daikon has poor performance to extract invariants from the data items in database. 

Mostly, it comes from the data output processing in the database. Because our target POI 

database has huge data items, the throughput of the processing is quite low.  

However, there are several beneficial things in Daikon when applied to our project. Most of 

all, Daikon can be used to refine the inspection rule from POI data. During the review of the 

generated invariants, we found meaningful inspection rules from the invariants that we did not 

catch before. Even though, we were struggle against the many insignificant invariants, we 

could found meaningful inspection rule from the invariants.  

Another possible area to adopt Daikon in our studio program is the verification of the 

inspection and cleansing program. Especially, by dynamically discovering invariants, we 

believe Daikon will be a good tool to verify the application. Because our problem domain has 

huge data to handle, the dynamic approach is required for the performance.  

 

6. Reference  

[1] Michael D.Ernst, “Dynamically Detecting Likely Program Invariants,” PhD Disertation, 

University of Washington, August 2000. 

[2] Michael D.Ernst, http://pag.csail.mit.edu/Daikon 

[3] Daikon Invariant Detect User Manual 

[4] Michael D.Ernst, Jake Cockrell, “Dynamically Discovering Likely Program Invariants 

to Support Program Evolution,” IEEE Transaction on Software Eng., vol. 27, no.2 Feb. 

2001. 



 - 13 - 

Appendix 1. POI_I_COMMON Table Specification of POI database 

Column ID Description 
Primar

y Key 

NUL

L 

Data 

Type 
Length 

POI_ID POI Sequential Code PK N Number  Long 

CP_ID Data Provider     Number Long 

POI_CODE POI Category     Text 6 

LARGE_CD Top level Administration code     Text 2 

MIDDLE_CD Middle level Administration code     Text 3 

SMALL_CD Bottom level Administration code     Text 5 

MMS_CODE MMS Administration code     Text 10 

FNAME Formal Name     Text 100 

ENAME English Name     Text 100 

ANAME Alternative Name     Text 100 

CNAME Branch Name     Text 100 

PNAME Search Name     Text 100 

mZIP_CODE Zip code     Text 7 

ADDR Address 1     Text 100 

ADDR2 Address 2     Text 50 

PRIMARY_BUN House Number 1     Number Long 

SECONDARY_BUN House Number 2     Number Long 

SAN_BUN Mountain Number     Text 1 

IFLOOR Floor     Text 9 

TELE_A Telephone Number     Text 4 

TELE_B Telephone Number     Text 4 

TELE_C Telephone Number     Text 4 

TELE_D Telephone Number     Text 1 

BUSINESS_NO License Number     Text 12 

ROAD Road Name     Memo   

NBDG_NAME Building Name     Text 50 

BDG_FLOOR Building Story     Number Long 

TILE_ID Map ID     Number Long 

CENTER_X1 X coordinate   N Number Long 



 - 14 - 

CENTER_Y1 Y coordinate   N Number Long 

GUIDE_X1 Guide X coordinate     Number Long 

GUIDE_Y1 Guide Y coordinate     Number Long 

IS_DGUIDE Driver Guide     Text 1 

TARGET_POI_ID Target POI_ID     Number  Long 

POI_KIND POI Category     Text 1 

INSERT_DATE Creation date     Text 50 

UPDATE_DATE Change date     Text 50 

KIND_CODE Document Category      Text 5 

BIGO Remark     Text 1 

 



 - 15 - 

Appendix 2. Inspection Rule related to POI_I_COMMON Table 

Rule Rule Rule Rule 

IDIDIDID    

Rule DescriptioRule DescriptioRule DescriptioRule Descriptionnnn    Related TableRelated TableRelated TableRelated Table    Error Type DescriptionError Type DescriptionError Type DescriptionError Type Description    

R01 POI_ID is unique   Uniqueness Violation 

R02 CP_ID has a restricted code set Self Contained Code Reference Violation 

R03 POI_CODE has a reference column POI_C _CLASS Reference Violation 

R04 LARGE_CD has a hierarchy structure Government Code Hierarchy data reference Error 

R05 MIDDLE_CD has a parent and children Government Code Hierarchy data reference Error 

R06 SMALL_CD has a parent Government Code Hierarchy data reference Error 

R07 MMS_CODE has a reference column   Reference Violation 

R08 FNAME + ADDR + ADDR2 is unique   FNAME + ADDR + ADDR2 Duplication 

R09 FNAME should not contain any special 

character set 
  

Special Character Error 

R10 ENAME + ADDR + ADDR2 is unique   ENAME + ADDR + ADDR2 Duplication 

R11 ENAME should not contain any special 

character set 
  

Special Character Error 

R12 ANAME + ADDR + ADDR2 is unique   ANAME + ADDR + ADDR2 Duplication 

R13 ANAME should not contain any special 

character set 
  

Special Character Error 

R14 CNAME + ADDR + ADDR2 is unique   CNAME + ADDR + ADDR2 Duplication 

R15 CNAME should not contain any special 

character set 
  

Special Character Error 

R16 PNAME + ADDR + ADDR2 is unique   PNAME + ADDR + ADDR2 Duplication 

R17 PNAME should not contain any special 

character set 
  

Special Character Error 

R18 mZIP_CODE has own code structure 

including "-" character 
  

Internal data logic inconsistency 

R19 mZIP_CODE should not contain any special 

character set 
  

Special Character Error 

R20 ADDR should not equl ADDR2    Internal data logic inconsistency 

R21 Special character set are not allowed in 

ADDR2 
  

Special Character Error 

R22 Length of PRIMARY_BUN is greater than 

four.(Exception: length of cheju <= 4) 
  

Internal data logic inconsistency 



 - 16 - 

R23 SECONDARY_BUN cannot exists without 

PRIMARY_BUN 
  

Internal data logic inconsistency 

R24 SAN_BUN has a restricted code set 1,0 Reference Violation 

R25 IFLOOR has own code naming rule(eg:B001-

F005) 

  Internal data logic inconsistency 

R26 TELE_A has a restricted code set. Only 

Number is allowed 
Area Code 

Reference Violation 

R27 TELE_B should consist of only number   Character Type Violation 

R28 TELE_C should consist of only number   Character Type Violation 

R29 TELE_D should consist of only number   Character Type Violation 

R30 BUSINESS_NO+FNAME is 

unique(Candidate Key) 
  

BUSINESS_NO+FNAME Duplication 

R31 "Enter" key is not permitted in ROAD which is 

"memo type"  
  

Special Character Error 

R32 BDG_FLOOR is greater or equal than 

IFLOOR  
  

Internal data logic inconsistency 

R33 TILE_ID+CENTER_x1+CENTER_Y1+mZIP_

CODE is unique 
  

TILE_ID+CENTER_x1+CENTER_Y1+m

ZIP_CODE Duplication 

R34 CENTER_X1+CENTER_Y1+GUIDE_X1+GU

IDE_Y1 is unique 
  

CENTER_X1+CENTER_Y1+GUIDE_X

1+GUIDE_Y1 Duplication 

R35 CENTER_X1 range is restricted(within 

Korean Penninsula) 
  

Internal data logic inconsistency 

R36 CENTER_Y1 range is restricted(within 

Korean Penninsula) 
  

Internal data logic inconsistency 

R37 GUIDE_X1 range is restricted(within Korean 

Penninsula) 
  

Internal data logic inconsistency 

R38 GUIDE_Y4 range is restricted(within Korean 

Penninsula) 
  

Internal data logic inconsistency 

R39 IS_DGUIDE has a restricted code set 1,0 Reference Violation 

R40 TARGET_POI_ID has a self-reference 

column 
Recursive reference 

Reference Violation 

R41 POI_KIND has a restricted code set Self Contained Code Reference Violation 

R42 INSERT_DATE shoulbe date type   Attribute Type Violation 

R43 UPDATE_DATE shoulbe date type   Attribute Type Violation 



 - 17 - 

R44 KIND_CODE has a restricted code set Self Contained Code Reference Violation 

R45 BIGO has a restricted code set Self Contained Code Reference Violation 



 - 18 - 

Appendix 3.  Detected Invariants 

Bold red line is the meaningful invariant that was not in the predefined rules. 

Buildfile: C:\eclipse\workspace\DaikonPrototype\build.xml 
printinv: 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2:::OBJECT 
     [java] this.FNAME != null 
     [java] this.ADDR != null 
     [java] this.FNAME.toString != this.ADDR.toString 
     [java] this.FNAME.toString != this.ADDR2.toString 
     [java] this.ADDR.toString != this.ADDR2.toString 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.ClassForRule2(java.lang.String, java.lang.String, 
java.lang.String):::ENTER 
     [java] name != null 
     [java] addr != null 
     [java] name.toString != addr.toString 
     [java] name.toString != addr2.toString 
     [java] addr.toString != addr2.toString 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.ClassForRule2(java.lang.String, java.lang.String, 
java.lang.String):::EXIT 
     [java] this.FNAME == orig(name) 
     [java] this.ADDR == orig(addr) 
     [java] this.ADDR2 == orig(addr2) 
     [java] name.toString != addr.toString 
     [java] name.toString != addr2.toString 
     [java] name.toString == this.FNAME.toString 
     [java] name.toString == orig(name.toString) 
     [java] addr.toString != addr2.toString 
     [java] addr.toString == this.ADDR.toString 
     [java] addr.toString == orig(addr.toString) 
     [java] addr2.toString == this.ADDR2.toString 
     [java] addr2.toString == orig(addr2.toString) 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::ENTER 
     [java] object != null 
     [java] object.class == "prototype.ClassForRule2" 
     [java] this.ADDR2.toString == "" 
     [java] this.FNAME.toString > this.ADDR2.toString 
     [java] this.ADDR.toString > this.ADDR2.toString 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT37 
     [java] return == false 
     [java] this.ADDR2 == null 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT37;condition="not(return == 
true)" 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT39 
     [java] return == false 
     [java] this.ADDR2 != null 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT39;condition="not(return == 
true)" 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT40 
     [java] return == true 
     [java] this.ADDR2 == null 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT40;condition="return == 
true" 
     [java] =========================================================================== 



 - 19 - 

     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT 
     [java] this.FNAME == orig(this.FNAME) 
     [java] this.ADDR == orig(this.ADDR) 
     [java] this.ADDR2 == orig(this.ADDR2) 
     [java] (return == false)  ==>  (this.ADDR.toString > this.ADDR2.toString) 
     [java] (return == false)  ==>  (this.ADDR2.toString == "") 
     [java] (return == false)  ==>  (this.FNAME.toString > this.ADDR2.toString) 
     [java] (return == true)  ==>  (this.ADDR2 == null) 
     [java] this.ADDR2.toString == "" 
     [java] this.FNAME.toString > this.ADDR2.toString 
     [java] this.FNAME.toString == orig(this.FNAME.toString) 
     [java] this.ADDR.toString > this.ADDR2.toString 
     [java] this.ADDR.toString == orig(this.ADDR.toString) 
     [java] this.ADDR2.toString == orig(this.ADDR2.toString) 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT;condition="return == true" 
     [java] return == true 
     [java] this.ADDR2 == null 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.equals(java.lang.Object):::EXIT;condition="not(return == 
true)" 
     [java] return == false 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.hashCode():::ENTER 
     [java] =========================================================================== 
     [java] prototype.ClassForRule2.hashCode():::EXIT 
     [java] this.FNAME == orig(this.FNAME) 
     [java] this.ADDR == orig(this.ADDR) 
     [java] this.ADDR2 == orig(this.ADDR2) 
     [java] return != 0 
     [java] this.FNAME.toString == orig(this.FNAME.toString) 
     [java] this.ADDR.toString == orig(this.ADDR.toString) 
     [java] this.ADDR2.toString == orig(this.ADDR2.toString) 
     [java] =========================================================================== 
     [java] prototype.POI_I_COMMON:::OBJECT 
     [java] this.CP_ID >= 2 
     [java] this.POI_CODE != null 
     [java] this.LARGE_CD != null 
     [java] this.FNAME != null 
     [java] this.PNAME != null 
     [java] this.ADDR != null 
     [java] this.PRIMARY_BUN >= 0 
     [java] this.SECONDARY_BUN >= 0 
     [java] this.BDG_FLOOR >= 0 
     [java] this.GUIDE_X1 >= 0 
     [java] this.GUIDE_Y1 >= 0 
     [java] this.POI_ID != this.CP_ID 
     [java] this.POI_ID != this.SECONDARY_BUN 
     [java] this.POI_ID < this.CENTER_X1 
     [java] this.POI_ID < this.CENTER_Y1 
     [java] this.POI_ID != this.GUIDE_X1 
     [java] this.POI_ID != this.GUIDE_Y1 
     [java] this.CP_ID < this.CENTER_X1 
     [java] this.CP_ID < this.CENTER_Y1 
     [java] this.CP_ID != this.GUIDE_X1 
     [java] this.CP_ID != this.GUIDE_Y1 
     [java] this.POI_CODE.toString < this.LARGE_CD.toString 
     [java] this.POI_CODE.toString != this.FNAME.toString 
     [java] this.POI_CODE.toString != this.CNAME.toString 
     [java] this.POI_CODE.toString != this.PNAME.toString 
     [java] this.POI_CODE.toString < this.ZIP_CODE.toString 
     [java] this.POI_CODE.toString < this.ADDR.toString 
     [java] this.POI_CODE.toString != this.ADDR2.toString 
     [java] this.POI_CODE.toString < this.iFLOOR.toString 
     [java] this.LARGE_CD.toString != this.FNAME.toString 
     [java] this.LARGE_CD.toString != this.CNAME.toString 
     [java] this.LARGE_CD.toString != this.PNAME.toString 
     [java] this.LARGE_CD.toString != this.ZIP_CODE.toString 
     [java] this.LARGE_CD.toString < this.ADDR.toString 



 - 20 - 

     [java] this.LARGE_CD.toString != this.ADDR2.toString 
     [java] this.LARGE_CD.toString < this.iFLOOR.toString 
     [java] this.FNAME.toString != this.PNAME.toString 
     [java] this.FNAME.toString != this.ZIP_CODE.toString 
     [java] this.FNAME.toString != this.ADDR.toString 
     [java] this.FNAME.toString != this.ADDR2.toString 
     [java] this.FNAME.toString != this.iFLOOR.toString 
     [java] this.CNAME.toString != this.PNAME.toString 
     [java] this.CNAME.toString != this.ZIP_CODE.toString 
     [java] this.CNAME.toString != this.ADDR.toString 
     [java] this.CNAME.toString != this.ADDR2.toString 
     [java] this.CNAME.toString != this.iFLOOR.toString 
     [java] this.PNAME.toString != this.ZIP_CODE.toString 
     [java] this.PNAME.toString != this.ADDR.toString 
     [java] this.PNAME.toString != this.ADDR2.toString 
     [java] this.PNAME.toString != this.iFLOOR.toString 
     [java] this.ZIP_CODE.toString < this.ADDR.toString 
     [java] this.ZIP_CODE.toString != this.ADDR2.toString 
     [java] this.ZIP_CODE.toString < this.iFLOOR.toString 
     [java] this.ADDR.toString != this.ADDR2.toString 
     [java] this.ADDR.toString > this.iFLOOR.toString 
     [java] this.ADDR2.toString != this.iFLOOR.toString 
     [java] (this.PRIMARY_BUN == 0) ==> (this.SECONDARY_BUN == 0) 
     [java] this.PRIMARY_BUN < this.CENTER_X1 
     [java] this.PRIMARY_BUN < this.CENTER_Y1 
     [java] this.SECONDARY_BUN < this.CENTER_X1 
     [java] this.SECONDARY_BUN < this.CENTER_Y1 
     [java] this.BDG_FLOOR < this.CENTER_X1 
     [java] this.BDG_FLOOR < this.CENTER_Y1 
     [java] this.CENTER_X1 > this.CENTER_Y1 
     [java] this.CENTER_X1 > this.GUIDE_Y1 
     [java] this.CENTER_Y1 != this.GUIDE_X1 
     [java] (this.GUIDE_X1 == 0) ==> (this.GUIDE_Y1 == 0) 
     [java] (this.GUIDE_Y1 == 0) ==> (this.GUIDE_X1 == 0) 
     [java] this.GUIDE_X1 >= this.GUIDE_Y1 
     [java] =========================================================================== 
     [java] prototype.POI_I_COMMON.POI_I_COMMON(int, int, java.lang.String, java.lang.String, 
java.lang.String, java.lang.String, java.lang.String, java.lang.String, java.lang.String, 
java.lang.String, int, int, java.lang.String, int, int, int, int, int):::ENTER 
     [java] cp_id >= 2 
     [java] poi_code != null 
     [java] large_cd != null 
     [java] fname != null 
     [java] pname != null 
     [java] addr != null 
     [java] primary_bun >= 0 
     [java] secondary_bun >= 0 
     [java] bdg_floor >= 0 
     [java] guide_x1 >= 0 
     [java] guide_y1 >= 0 
     [java] poi_id != cp_id 
     [java] poi_id != secondary_bun 
     [java] poi_id < center_x1 
     [java] poi_id < center_y1 
     [java] poi_id != guide_x1 
     [java] poi_id != guide_y1 
     [java] cp_id < center_x1 
     [java] cp_id < center_y1 
     [java] cp_id != guide_x1 
     [java] cp_id != guide_y1 
     [java] poi_code.toString < large_cd.toString 
     [java] poi_code.toString != fname.toString 
     [java] poi_code.toString != cname.toString 
     [java] poi_code.toString != pname.toString 
     [java] poi_code.toString < zip_code.toString 
     [java] poi_code.toString < addr.toString 
     [java] poi_code.toString != addr2.toString 
     [java] poi_code.toString < iFloor.toString 
     [java] large_cd.toString != fname.toString 



 - 21 - 

     [java] large_cd.toString != cname.toString 
     [java] large_cd.toString != pname.toString 
     [java] large_cd.toString != zip_code.toString 
     [java] large_cd.toString < addr.toString 
     [java] large_cd.toString != addr2.toString 
     [java] large_cd.toString < iFloor.toString 
     [java] fname.toString != pname.toString 
     [java] fname.toString != zip_code.toString 
     [java] fname.toString != addr.toString 
     [java] fname.toString != addr2.toString 
     [java] fname.toString != iFloor.toString 
     [java] cname.toString != pname.toString 
     [java] cname.toString != zip_code.toString 
     [java] cname.toString != addr.toString 
     [java] cname.toString != addr2.toString 
     [java] cname.toString != iFloor.toString 
     [java] pname.toString != zip_code.toString 
     [java] pname.toString != addr.toString 
     [java] pname.toString != addr2.toString 
     [java] pname.toString != iFloor.toString 
     [java] zip_code.toString < addr.toString 
     [java] zip_code.toString != addr2.toString 
     [java] zip_code.toString < iFloor.toString 
     [java] addr.toString != addr2.toString 
     [java] addr.toString > iFloor.toString 
     [java] addr2.toString != iFloor.toString 
     [java] (primary_bun == 0) ==> (secondary_bun == 0) 
     [java] primary_bun < center_x1 
     [java] primary_bun < center_y1 
     [java] secondary_bun < center_x1 
     [java] secondary_bun < center_y1 
     [java] bdg_floor < center_x1 
     [java] bdg_floor < center_y1 
     [java] center_x1 > center_y1 
     [java] center_x1 > guide_y1 
     [java] center_y1 != guide_x1 
     [java] (guide_x1 == 0) ==> (guide_y1 == 0) 
     [java] (guide_y1 == 0) ==> (guide_x1 == 0) 
     [java] guide_x1 >= guide_y1 
     [java] =========================================================================== 
     [java] prototype.POI_I_COMMON.POI_I_COMMON(int, int, java.lang.String, java.lang.String, 
java.lang.String, java.lang.String, java.lang.String, java.lang.String, java.lang.String, 
java.lang.String, int, int, java.lang.String, int, int, int, int, int):::EXIT 
     [java] this.POI_ID == orig(poi_id) 
     [java] this.CP_ID == orig(cp_id) 
     [java] this.POI_CODE == orig(poi_code) 
     [java] this.LARGE_CD == orig(large_cd) 
     [java] this.FNAME == orig(fname) 
     [java] this.CNAME == orig(cname) 
     [java] this.PNAME == orig(pname) 
     [java] this.ZIP_CODE == orig(zip_code) 
     [java] this.ADDR == orig(addr) 
     [java] this.ADDR2 == orig(addr2) 
     [java] this.PRIMARY_BUN == orig(primary_bun) 
     [java] this.SECONDARY_BUN == orig(secondary_bun) 
     [java] this.iFLOOR == orig(iFloor) 
     [java] this.BDG_FLOOR == orig(bdg_floor) 
     [java] this.CENTER_X1 == orig(center_x1) 
     [java] this.CENTER_Y1 == orig(center_y1) 
     [java] this.GUIDE_X1 == orig(guide_x1) 
     [java] this.GUIDE_Y1 == orig(guide_y1) 
     [java] poi_code.toString < large_cd.toString 
     [java] poi_code.toString != fname.toString 
     [java] poi_code.toString != cname.toString 
     [java] poi_code.toString != pname.toString 
     [java] poi_code.toString < zip_code.toString 
     [java] poi_code.toString < addr.toString 
     [java] poi_code.toString != addr2.toString 
     [java] poi_code.toString < iFloor.toString 
     [java] poi_code.toString == this.POI_CODE.toString 



 - 22 - 

     [java] poi_code.toString == orig(poi_code.toString) 
     [java] large_cd.toString != fname.toString 
     [java] large_cd.toString != cname.toString 
     [java] large_cd.toString != pname.toString 
     [java] large_cd.toString != zip_code.toString 
     [java] large_cd.toString < addr.toString 
     [java] large_cd.toString != addr2.toString 
     [java] large_cd.toString < iFloor.toString 
     [java] large_cd.toString == this.LARGE_CD.toString 
     [java] large_cd.toString == orig(large_cd.toString) 
     [java] fname.toString != pname.toString 
     [java] fname.toString != zip_code.toString 
     [java] fname.toString != addr.toString 
     [java] fname.toString != addr2.toString 
     [java] fname.toString != iFloor.toString 
     [java] fname.toString == this.FNAME.toString 
     [java] fname.toString == orig(fname.toString) 
     [java] cname.toString != pname.toString 
     [java] cname.toString != zip_code.toString 
     [java] cname.toString != addr.toString 
     [java] cname.toString != addr2.toString 
     [java] cname.toString != iFloor.toString 
     [java] cname.toString == this.CNAME.toString 
     [java] cname.toString == orig(cname.toString) 
     [java] pname.toString != zip_code.toString 
     [java] pname.toString != addr.toString 
     [java] pname.toString != addr2.toString 
     [java] pname.toString != iFloor.toString 
     [java] pname.toString == this.PNAME.toString 
     [java] pname.toString == orig(pname.toString) 
     [java] zip_code.toString < addr.toString 
     [java] zip_code.toString != addr2.toString 
     [java] zip_code.toString < iFloor.toString 
     [java] zip_code.toString == this.ZIP_CODE.toString 
     [java] zip_code.toString == orig(zip_code.toString) 
     [java] addr.toString != addr2.toString 
     [java] addr.toString > iFloor.toString 
     [java] addr.toString == this.ADDR.toString 
     [java] addr.toString == orig(addr.toString) 
     [java] addr2.toString != iFloor.toString 
     [java] addr2.toString == this.ADDR2.toString 
     [java] addr2.toString == orig(addr2.toString) 
     [java] iFloor.toString == this.iFLOOR.toString 
     [java] iFloor.toString == orig(iFloor.toString) 
     [java] =========================================================================== 
     [java] prototype.POI_I_COMMON.main(java.lang.String[]):::ENTER 
     [java] args has only one value 
     [java] args.class == "java.lang.String[]" 
     [java] args[] == [] 
     [java] =========================================================================== 
     [java] prototype.POI_I_COMMON.main(java.lang.String[]):::EXIT 
     [java] args[] == [] 
     [java] =========================================================================== 
     [java] prototype.Rules:::CLASS 
     [java] prototype.Rules.rules has only one value 
     [java] prototype.Rules.rules != null 
     [java] prototype.Rules.rules[] one of { [0, 1, 1], [1, 1, 1] } 
     [java] prototype.Rules.poi_id_DuplicationCheck has only one value 
     [java] prototype.Rules.poi_id_DuplicationCheck != null 
     [java] prototype.Rules.rule2 has only one value 
     [java] prototype.Rules.rule2 != null 
     [java] size(prototype.Rules.rules[]) == 3 
     [java] =========================================================================== 
     [java] prototype.Rules.containsCPID(int):::ENTER 
     [java] cp_id >= 2 
     [java] cp_id >= size(prototype.Rules.rules[])-1 
     [java] =========================================================================== 
     [java] prototype.Rules.containsCPID(int):::EXIT37 
     [java] return == true 
     [java] orig(cp_id) one of { 2, 3, 25 } 



 - 23 - 

     [java] return in prototype.Rules.rules[] 
     [java] =========================================================================== 
     [java] prototype.Rules.containsCPID(int):::EXIT37;condition="return == true" 
     [java] =========================================================================== 
     [java] prototype.Rules.containsCPID(int):::EXIT39 
     [java] return == false 
     [java] prototype.Rules.rules[] == [1, 1, 1] 
     [java] prototype.Rules.rules[] elements == true 
     [java] orig(cp_id) == 5 
     [java] =========================================================================== 
     [java] prototype.Rules.containsCPID(int):::EXIT39;condition="not(return == true)" 
     [java] =========================================================================== 
     [java] prototype.Rules.containsCPID(int):::EXIT 
     [java] prototype.Rules.rules == orig(prototype.Rules.rules) 
     [java] prototype.Rules.rules[] == orig(prototype.Rules.rules[]) 
     [java] prototype.Rules.poi_id_DuplicationCheck == 
orig(prototype.Rules.poi_id_DuplicationCheck) 
     [java] prototype.Rules.rule2 == orig(prototype.Rules.rule2) 
     [java] (return == false)  <==>  (orig(cp_id) == 5) 
     [java] (return == false)  ==>  (prototype.Rules.rules[] == [1, 1, 1]) 
     [java] (return == false)  ==>  (prototype.Rules.rules[] elements == true) 
     [java] (return == true)  <==>  (orig(cp_id) one of { 2, 3, 25 }) 
     [java] (return == true)  ==>  (prototype.Rules.rules[] one of { [0, 1, 1], [1, 1, 1] }) 
     [java] (return == true)  ==>  (return in prototype.Rules.rules[]) 
     [java] orig(cp_id) >= size(prototype.Rules.rules[])-1 
     [java] =========================================================================== 
     [java] prototype.Rules.containsCPID(int):::EXIT;condition="return == true" 
     [java] return == true 
     [java] orig(cp_id) one of { 2, 3, 25 } 
     [java] return in prototype.Rules.rules[] 
     [java] =========================================================================== 
     [java] prototype.Rules.containsCPID(int):::EXIT;condition="not(return == true)" 
     [java] return == false 
     [java] prototype.Rules.rules[] == [1, 1, 1] 
     [java] prototype.Rules.rules[] elements == true 
     [java] orig(cp_id) == 5 
     [java] =========================================================================== 
     [java] prototype.Rules.uniqueness(java.lang.Integer):::ENTER 
     [java] a != null 
     [java] =========================================================================== 
     [java] prototype.Rules.uniqueness(java.lang.Integer):::EXIT30 
     [java] =========================================================================== 
     [java] prototype.Rules.uniqueness(java.lang.Integer):::EXIT30;condition="return == true" 
     [java] =========================================================================== 
     [java] prototype.Rules.uniqueness(java.lang.Integer):::EXIT 
     [java] prototype.Rules.rules == orig(prototype.Rules.rules) 
     [java] prototype.Rules.rules[] == orig(prototype.Rules.rules[]) 
     [java] prototype.Rules.poi_id_DuplicationCheck == 
orig(prototype.Rules.poi_id_DuplicationCheck) 
     [java] prototype.Rules.rule2 == orig(prototype.Rules.rule2) 
     [java] return == true 
     [java] return in prototype.Rules.rules[] 
     [java] =========================================================================== 
     [java] prototype.Rules.uniqueness(java.lang.Integer):::EXIT;condition="return == true" 
BUILD SUCCESSFUL 
Total time: 7 seconds 

 


