The Evaluation of Daikon; utilization of Daikonin the
POI Data I nspection System

Kuyul Noh, Changki Kim, Jonggul Park and Jaeha Song
4WD Team
M aster of Software Engineering Program
School of Computer Science
Carnegie Mélon University
{knoh, ckkim, jgpark, jaehas} @andrew.cmu.edu

1. Introduction

Program invariant is a property that is true at a pasicptogram point or points in a
program. It explicates data structures and algorithms saeklpful for programming tasks
from design to maintenanc®aikon is an implementation of dynamic detection of likely
invariants; that isDaikon invariant detector reports likely program invariants.

In this paper, we first describe the basic architeat@ii2aikon and the POI Data inspection
system that is the target application for taikon tool. Then, we mention the scope and
approach of this project. Next, we focus our experimehes; results, and the comments on
the results we obtained or we didn't obtain. Then, weppse the possible future works.
Finally we conclude with the summary of this report.

2. Background
2.1 Daikon

There are two ways to obtain invariants, static amalg®d dynamic analysis. Static
analysis is generally used to generate and verify atimosaand analyze the code for type and
memory safety. The most common static analysis taflda analysis. On the other hand,
Dynamic analysis is primarily used to detect possibleriamts. It does not require additional
initial input from a human such as annotations or spetifics. However, it must execute the
program being analyzed with a large test suite to infenlpesavariants.

Daikon is one of most successful tools for detecting invariantsng the dynamic analysis
techniques. It can detect properties in Java, C++, arldIP&s a technique for postulating
likely invariants from program runs: it runs target prograxamines the values that it
computes, and looks for patterns and relationships owsettalues, reporting the ones that
are always true over an entire test suite and thafsaertain other conditions. Figure 1
shows the high-level architecture@&ikon invariant detector.

Original Instrumented

program program S

5 - s arans]
il 0] Detect

— |nstrument - Run - -

=

Figure 1: Architecture of thBaikon tool

The outputs oDaikon are likely invariants: they are not guaranteed to be walgrtrue,
because the test suite might not characterize aBilesexecutions of the program. The
inference step tests a set of possible invariants ag#iestvalues captured from the
instrumented variables: those invariants that are desbe a sufficient degree without
falsification are reported to the programmer. All tbe steps in Figure 1 are progressed
automatically by tool except selecting a test suite.

2.2 POI Data I nspection System

The car navigation system is no longer optional inat®mobiles today. One of the most
important parts of the car navigation system is the tyuadithe data representing the Point of
Interest (POI), locations of buildings, restauranpsiblic offices, etc. that drivers are
interested. It is closely related to the good servioesHe customer. Figure 2 shows where
our system is in within the whole car navigation busir@scess.

In Figure 2, the raw POI data files come from the thirdypaontent providers in MS
Access file format. It has 2 million records and esstord has several meaningful columns
such as name, address, and zip code.

The quality of raw POI data is relatively poor becausse are logical and duplication
errors that are injected during the initial creation efridmv POI data file by the third parties.
A typical error is duplication of the same contenheTerror that is more complicated is
logical error. For example, it is a logical erroremha record mentions fifth floor of a three-

-2-

story building.

Hyundai Motor Company

‘A POI Data Provider ——
Inspection Officer {Jther Department
Inspection Packaging
SRV Data Cleansing 4 =
=
‘) \1"..'_-- \ v
L L, *
P | L e \
Police/Government T e
Datahase =, | =
—= -y P MS Access data file
—= _j : Our Inspection System
=% .
.ﬂ.f:&,f—ﬁ

Figure 2: Business flow of POI data inspection system

No one knew how many POI raw data had defects such &sallagconsistency or
duplication error. Our customer have guessed the errotimaiagh the manual inspection
through data sampling and asked the content provider to Wwhén the defect rates are
unacceptably high. In this way, it took a long time to makieal product of good quality. It
might prevent the customer from leading in the cargaion market. Therefore, they wanted
to have a tool that could automate POI data inspectioneaiute the time for product.

Our POI inspection system can resolve this problematiat®n. It would be specialized
tool to help our customer, HMC (Hyundai Motor Companyyedhe previous, tedious works
automatically. After inspection, our system generatesréfined POI data as output that has
good quality for the next packaging step.

2.3 Scope and Approach

Our primary goal through this project is to applgikon to our POI Data inspection system
and to find howDaikon can be applied to database centric application. Asidtyeve wanted
to improve the correctness of the POI data and therpsaiftce of our inspection system. To
achieve this goal, we considered the following two strategies

* Reduce inspection time by applying Daikon as preprocessor in runtime

In our inspection system, it takes a long time to insp#dhe raw POI data with the entire
rules. This approach was motivated by the long inspedtion if only the optimal rules, not

-3-

the entire rules, can be applied to the inspection pspage can reduce the inspection time
dramatically in runtime. Therefore we intended to Dsgkon as a preprocessor to find the
optimal rules prior to the main inspection operatioguFeé 3 shows the overall diagram of
this approach.

Run Time Run Time

Raw

4l
%
W’

! I
! I
I]
! i
I -y '
i

y Raw . - - 0I data " _Anspection EIEtEIm |
! POI data * Invarjants sesesssnanal PROgGram POI data :
] - : : i
: erieeromenneer o RS Apply optimal rules, not entire X
I Ap imple rules Find optimul rule! I === rules "
e e e e s L

Daikon as preprocessor Inspection system

Figure 3:Daikon as preprocessor in run time
» Find new rules by applying Daikon in design time

To detect the logical and duplication errors, our custcanerwe already came up with the
200 inspection rules. However, the rules we found werepedect; there is still room for
improvement. This approach was motivated by imperfectridésshe inspection rules.
Therefore, we intended to uBmikon to find new rules or refine existing rule set in design
time. It may enable us to make our existing rule set rolitigure 4 shows the overall
diagram of this approach.

r

Run Time

I -;
-, :
I
I ';‘\C Raw :
! Raw O datd Inspection Clean
1 POI data : program POI data :
i : |
! . !
! : Add and refine the existing -
: : inspection rule by human! "

. J
1 i ot L S s DS o

Daikon as preprocessor Inspection system

Figure 4:Daikon as preprocessor in design time

3. Experiments
3.1 Environments

Similar to the traditional UNIX client server stylegpications, the tool also consists of
two parts. One part is front end that provides users widgrface to théaikon engine and
converts input data from some other format into its ebgue@put format. Another part is
Daikon engine itself for the back end processing. For the vguage, the tool has two
kinds of front enddfej andChicory.

dfg is the old one of the two front ends, and it has dip& plug-in integration. Since
Eclipse is the official Integrated Development Environtrfenour project, it is reasonable to
try with this option for our front end. Therefore, @sr first trial, we installed th®aikon
Eclipse plug-in on our system. Then, it was easy to &aikon instrumented source files in
a dedicated project by clicking existing java source fd@ajsource package, or even java
project.

In addition to the first option, we also tried to téds¢ second option: usinghicory, the
newly provided pure Java front end that is more recomnaebyéhe developers because of
the following reasons:

- It supports Java 5.
- It is much easier to use.
- It is pure Java implementation, so it has bettergiatfindependence.

Although the first option has Eclipse plug-Chicory became easier to use after we wrote a
simple Ant script for the tool integration. The follmg figure shows the steps of invariants
detection inDaikon front ends.

dfej: Source-based Java front end dfej. only support Jawa 1.4

Javar —g DataStroctunesy/+ java
1. Instrumentation dfej DataStructures/Stackar java,
Javas daikon-instrumented’ DataSiuc uresS tackar java

2. Trace file generation

¥

3. Invariant detection

Java —classpath "daik on-instrumen ted: § CLASSPATH" %
Data=tnuc tures Stacksr,jaea

cd daikon-output
Java daikon, Daikon DataStuc ures/S tackar, decls Stackar,dirace

Chicory: Platforri-independent java front end, support Java &0

1. Instrumentation

¥

2. Trace file generation Jawa daikon, Chicony —daikon mypackage Myclass argl arg2 arg3

¥

3. Invariant detection

Figure 5:Daikon front ends and their steps

Daikon tool binaries and its documentations can be found and downlaates following
web site:

http://pag.csail.mit.ed@ai kon/download/

For the test data, we prepared a 700 MB, 2 million POl itlates for input. By connecting
this file through JDBC-ODBC bridge driver for MS Acces® mad the data records into a
predefined data object by invoking its constructor. By using dbisfiguration, we could
experiment the tool.

3.2 Approach 1: Daikon as preprocessor in run time
3.2.1 Experiment

What we tried to do witlbaikon is to find whether our POI data conform to the hundreds
of rules(hereafter “predefined rules”) that our team aund austomer came up with after
analyzing the database schema and real data. For tketlatematch the invarian3aikon
found, we can regard our data as conforming to thoss witbout inspection. With the rules
that Daikon found, we can decrease the number of rules with whiciwiénspect our POI

-6-

data. Because the time taken for inspection per ruleoisnd 10 minutes for 2 million POI
data, if the time reduced Iaikon is much more than the time it takes aikon to find the
invariants among 2 million data, we can xkon at run time to reduce the execution time
for inspection.

To find the invariants among the POI data, the first tegdid was to make a code with
which we can find the invariants of the POI data. Forghspose of experimentation, we
made the POI_I_COMMOM class whose instantiated objegresents one row of
POI_I_COMMON table which is the most important table wewd inspect. In the
POI_I_COMMON class, main function exists as a drivat thstantiates as many objects as
the number of POI data.

Instantiating objects without any additional manipulatiio®Ol_I_COMMON class ended
up finding a small number of rules that matches our predefined. In order to extract as
many rule-related invariant as possible, we need to ad@ swae that is related to the
predefined rules. So, we made Rules class that has theaboateay which has the
information about the violation of the rules. Wherretee POI_|I_ COMMON object is
instantiated, the rules array will be filled with truefalse value for each rule. For the rule
that POI data conforms to, invariant will be “the le@ol value of the rule will always true”
whereas the invariant will be “the boolean value efrile will be true or false” for the rules
that POI data doesn't follow.

For the rules that span one row, that is, rules thatbe determined whether they are false
or true with only one object, it is easy. For examplée 1 is “column CP_ID is one of integer
{1,2,3,4,6,13,15,17,21,22,23,25}". In this case, when instantiating POOMMON object,
we can check whether the object conforms to the raledlset the rule 1 to false or true.

For the rules that span one table, that is, rulescdmatbe determined after comparing all
the rows in the table, we need another manipulationekample, rule 2 is “column POI_ID
is unique”. In this case, using “HashSet contains” metliathere is duplicated object, set
rule 2 to false and if not, put that integer in the Fzeth

With this approach, we got the invariants we wanted. Tipubd from theDaikon is as
follows.

Case . Found Invariants Time
(record num) SHPEEIEE [MvEES (Daikon output) Spent(min)
Rule O is true
10,000 Rule 1 is true Rules.rules[] ==[1, 1, 1] 1:5
Rule 2 is true
Rule 0O is true or false
100,000| Rule 1 is true Rules.rules]] one of 6:47
Rule 2 is true {0, 1.1}, [1, 1, 1]}
Rule 0O is true or false
110,000| Rule 1 is true Rules.rules]] one of 8:00
Rule 2 is true {0, 1.1}, [1, 1, 1]}
Rule 0O is true or false
200,000| Rule 1 is true Rules.rules]] one of 15:30
Rule 2 is true {0, 1,11, 11, 1, 1)}

*Rule 0is “CP_ID is one of {1, 2, 3, 4, 6, 13, 15, 17, 22, 23, 25}
* Rule 1 is “POI_DI is unique”

* Rule 2 is “FNAME, ADDR, ADDR? is unique”

Figure 6: Invariants of the approach 1

3.2.2 Analysis of theresults

We found the rules that we want to find. With 10,000 &tk that conform to the rule,

Daikon proved that it is. With 100,000 POI data that have datadth@t conform to the rule O,

Daikon proved that rule O can be O(false) or 1(true) wheredbeallata conform to rule 1 and
rule 2. At this time, we can inspect 100,000 POI data ol rule 1. We can reduce around

20 minutes that it takes to inspect POI data with rule 1 aled2rif the time taken fobaikon
execution is less than 20 minutes.

Unfortunately, we reached the conclusion that the ekmctitne forDaikon is longer than
the reduction time stemming from decreased rules baseldearesults oDaikon. Just with

200,000 POI data, the time taken fOaikon execution was already 15 minutes. And it

increases linearly with data. This approach is infeasible.

3.3 Approach 2: Daikon as preprocessor in design time

3.3.1 Experiment

The invariant produced bRaikon in Approach 1 suggests another impressive intuition.
The impressive result is that we found more meaningfl@srihat we didn’t give much
attention to. Our project is mainly inspection of tik®ng or illogical data. This depends on
the rules we define. The more precisely defined the ruléhéscleaner the POI data after
inspection are. In the course of Approach 1, we got tovkhat the rules can be made robust
with the addition of the rules we found witraikon. The following rules are those we found
as additional invariants.

POI_CODE !=null

LARGE_CD !=null

FNAME !=null

PNAME !=null

ADDR !=null

BDG_FLOOR>=0

GUIDE_X1>=0

GUIDE_Y1>=0

POL_ID '=CP_ID

FNAME.toString !=PNAME.toString
CNAME .toString I=PNAME.toString
ADDR.toString = ADDR2.toString
PRIMARY_BUN==0=>SECONDARY_BUN==0
CENTER_X1 > CENTER_Y1
CENTER_X1 > GUIDE_Y1
CENTER_Y1 != GUIDE_X1
GUIDE_X1==0=» GUIDE_Y1==0
GUIDE_Y1==0=» GUIDE_X1==0

Figure 7: Interesting invariants (rules) of the approach 2
3.3.2 Analysisof theresults

This brings us to approach 2. We can Dsgkon in our project as a way of making our
rules robust at design time. For example, PRIMARY_BRBECONDAY_BUN means that
if the first street number is 0, then the secondestreimber is 0. The street number is

-9-

composed of two fields in South Korea. If we do not knbevdtreet number with the current
information, we are supposed to set the first streetoen and the second street number to 0.
This is the rule that we did not consider as rule bef@eliscovered this witBaikon.

4. Lessons L ear ned

Through this project, we got lessons about the charaatsred dynamic analysis engine as
well as its value. In addition, we got to know the wag/aan get benefits by applying the tool
in our project. Finally, we learned the dynamic analysol could be used not only for the
application code invariant capturing, but also for datacaeuring.

4.1 General characteristics of Daikon
We found several characteristicsizdikon during this tool evaluation project.

First, we learned the characteristicdDa@ikon. This tool is a runtime learning machine that
can discover more precise invariants as we use motecasss. However, there is still
limitation: when we put test cases at some limitimie, it does not result better anymore. In
our case, when we put 10 thousands records as test wasgst some amount of invariants
including spurious ones. After testing with 100 thousands recovdsgot a little more
invariants with less spurious ones. However, when we witgh 200 thousands, there were no
more invariants. Therefore, we can see the learnigmernas some limitation.

Here is another characteristic of the tool. Basycdlie tool can detect the invariants of
application codes by running the codes with provided test.cibesefore, the quality of the
resulting invariants is dependant on the quality of the itgmitcases.

Another characteristic of the tool is the that tbeltis very sensitive to the value of
variables in the code. Especially the point of initidi@a is important to detect the invariants
related to the variables. For example, if we setamst variable foo’ of a class in its
constructor, the variable’s invariant can be ‘not n@itherwise, we cannot get the invariant
even if the variable is always not null except far thme it was initialized. Therefore, if the
invariant is important, we should initialize the variabileside constructor.

4.2 Benefitsto our project

-10 -

Generally, the tool is to be used to gather invarianépplication code. Different from the
general way of using the tool, we tried to apply it for gatig the rules inside the database.
As a result, we found some beneficial way of usingtoloéin our Studio project. We can use
the tool to find the rules of inspection we might haveseis

Actually, we tried to use the tool at runtime to filthetrules. However, this trial showed
less valuable results. The time spent in running the tgpherwas significantly larger to get
data than the time just using hand-made checking code rurrhiegefore, our first trial to
apply this tool to our project was not fruitful.

Our second approach was to use the tool at design tine thtm at runtime. By using the
tool at design time we could exploit the tool's abilibyimprove the quality of our rule set.
We found new valuable rules. In addition, we will use theariants to validate the
correctness of the existing rules. For this purposetalewas significantly beneficial to our
actual Studio project.

4.3 Drawbacks

Most of all, there were too many spurious invariants fowadit is required to put extra
effort to filtering the meaningless invariants out frdra entire results.

Next, it is required to put more efforts to create prdpst cases. This is overhead. This
overhead becomes heavier when the tool is applied to applicadde invariant checking
rather than data checking like our application. Moreowes,tool also needs test data to be
prepared by users to drive the invariant capturing. Thesehead is not trivial, so maybe
sometimes the efforts input are less than the bergfits output.

Last, in case of data centric application such as @l data inspection system, the
comparison is required betwedaikon based approach and traditional SQL (Sequential
Query Language) query based approach in terms of the parfoemn implementation
difficulty, and reusability for other application. In gealecases, traditional SQL query based
approach has better performance and easy buildability.

-11 -

5. Conclusion

In our approachDaikon has not helpful to verify the inspection program andaextclear
variants from POI database. There are several problems

First, Daikon does not extract sufficient variants from POI databdisectly. We tried to
detect the invariants several times by changing the instritation and input options, but it
did not work in our cases. In addition, it is too expensive agmbrdor just verification of the
inspection application.

SecondDaikon has poor performance to extract invariants from tha ilains in database.
Mostly, it comes from the data output processing in dhtabase. Because our target POI
database has huge data items, the throughput of the pngcissguite low.

However, there are several beneficial thingBankon when applied to our project. Most of
all, Daikon can be used to refine the inspection rule from POI @atang the review of the
generated invariants, we found meaningful inspection frdes the invariants that we did not
catch before. Even though, we were struggle against timy maignificant invariants, we
could found meaningful inspection rule from the invariants.

Another possible area to adopaikon in our studio program is the verification of the
inspection and cleansing program. Especially, by dynamich#igovering invariants, we
believeDaikon will be a good tool to verify the application. Becaose problem domain has
huge data to handle, the dynamic approach is requiredeqrerformance.

6. Reference

[1] Michael D.Ernst, “Dynamically Detecting Likely &gram Invariants,” PhD Disertation,
University of Washington, August 2000.

[2] Michael D.Ernsthttp:/pag.csail.mit.ed@aikon

[3] Daikon Invariant Detect User Manual

[4] Michael D.Ernst, Jake Cockrell, “Dynamically Dis@ying Likely Program Invariants
to Support Program Evolution,” IEEE Transaction on Saftwiéng., vol. 27, no.2 Feb.
2001.

-12 -

Appendix 1. POI_I _COMM ON Table Specification of POI database

Primar NUL Data
Column ID Description Length
y Key L Type
POI_ID POI Sequential Code PK N Number Long
CP_ID Data Provider Number Long
POI_CODE POI Category Text 6
LARGE_CD Top level Administration code Text 2
MIDDLE_CD Middle level Administration code Text 3
SMALL_CD Bottom level Administration code Text 5
MMS_CODE MMS Administration code Text 10
FNAME Formal Name Text 100
ENAME English Name Text 100
ANAME Alternative Name Text 100
CNAME Branch Name Text 100
PNAME Search Name Text 100
mZIP_CODE Zip code Text 7
ADDR Address 1 Text 100
ADDR2 Address 2 Text 50
PRIMARY_BUN House Number 1 Number Long
SECONDARY_BUN House Number 2 Number Long
SAN_BUN Mountain Number Text 1
IFLOOR Floor Text 9
TELE_A Telephone Number Text 4
TELE_B Telephone Number Text 4
TELE_C Telephone Number Text 4
TELE_D Telephone Number Text 1
BUSINESS_NO License Number Text 12
ROAD Road Name Memo
NBDG_NAME Building Name Text 50
BDG_FLOOR Building Story Number Long
TILE_ID Map ID Number Long
CENTER_X1 X coordinate Number Long

-13 -

CENTER_Y1 Y coordinate Number Long
GUIDE_X1 Guide X coordinate Number Long
GUIDE_Y1 Guide Y coordinate Number Long
IS_DGUIDE Driver Guide Text 1
TARGET_POIL_ID Target POI_ID Number Long
POI_KIND POI Category Text 1
INSERT_DATE Creation date Text 50
UPDATE_DATE Change date Text 50
KIND_CODE Document Category Text 5
BIGO Remark Text 1

-14 -

Appendix 2. Inspection Rulerelated to POI_I _ COMMON Table

Rule | Rule Description Related Table Error Type Description
ID
RO1 POI_ID is unique Unigueness Violation
R02 CP_ID has a restricted code set Self Contained Code Reference Violation
R0O3 POI_CODE has a reference column POI_C _CLASS Reference Violation
R04 | LARGE_CD has a hierarchy structure Government Code Hierarchy data reference Error
R05 MIDDLE_CD has a parent and children Government Code Hierarchy data reference Error
RO6 SMALL_CD has a parent Government Code Hierarchy data reference Error
R0O7 | MMS_CODE has a reference column Reference Violation
RO8 FNAME + ADDR + ADDR?2 is unique FNAME + ADDR + ADDR2 Duplication
R0O9 FNAME should not contain any special Special Character Error
character set
R10 ENAME + ADDR + ADDR?2 is unique ENAME + ADDR + ADDR2 Duplication
R11 | ENAME should not contain any special Special Character Error
character set
R12 ANAME + ADDR + ADDR2 is unique ANAME + ADDR + ADDR2 Duplication
R13 | ANAME should not contain any special Special Character Error
character set
R14 CNAME + ADDR + ADDRZ2 is unique CNAME + ADDR + ADDR2 Duplication
R15 | CNAME should not contain any special Special Character Error
character set
R16 PNAME + ADDR + ADDR?2 is unique PNAME + ADDR + ADDR2 Duplication
R17 | PNAME should not contain any special Special Character Error
character set
R18 mZIP_CODE has own code structure Internal data logic inconsistency
including "-" character
R19 | mZIP_CODE should not contain any special Special Character Error
character set
R20 ADDR should not equl ADDR2 Internal data logic inconsistency
R21 | Special character set are not allowed in Special Character Error
ADDR2
R22 Length of PRIMARY_BUN is greater than Internal data logic inconsistency

four.(Exception: length of cheju <= 4)

-15 -

R23 SECONDARY_BUN cannot exists without Internal data logic inconsistency
PRIMARY_BUN

R24 | SAN_BUN has arestricted code set 1,0 Reference Violation

R25 IFLOOR has own code naming rule(eg:B001- Internal data logic inconsistency
F005)

R26 | TELE_A has arestricted code set. Only Reference Violation

Area Code

Number is allowed

R27 | TELE_B should consist of only number Character Type Violation

R28 | TELE_C should consist of only number Character Type Violation

R29 | TELE_D should consist of only number Character Type Violation

R30 BUSINESS_NO+FNAME is BUSINESS_NO+FNAME Duplication
unique(Candidate Key)

R31 | "Enter" key is not permitted in ROAD which is Special Character Error
"memo type"

R32 BDG_FLOOR is greater or equal than Internal data logic inconsistency
IFLOOR

R33 TILE_ID+CENTER_x1+CENTER_Y1+mZIP_ TILE_ID+CENTER_x1+CENTER_Y1+m
CODE is unique ZIP_CODE Duplication

R34 CENTER_X1+CENTER_Y1+GUIDE_X1+GU CENTER_X1+CENTER_Y1+GUIDE_X
IDE_Y1 is unique 1+GUIDE_Y1 Duplication

R35 CENTER_X1 range is restricted(within Internal data logic inconsistency
Korean Penninsula)

R36 CENTER_Y1 range is restricted(within Internal data logic inconsistency
Korean Penninsula)

R37 GUIDE_X1 range is restricted(within Korean Internal data logic inconsistency
Penninsula)

R38 GUIDE_Y4 range is restricted(within Korean Internal data logic inconsistency
Penninsula)

R39 IS_DGUIDE has a restricted code set 1,0 Reference Violation

R40 | TARGET_POIL_ID has a self-reference Reference Violation

Recursive reference

column

R41 | POI_KIND has a restricted code set Self Contained Code Reference Violation

R42 INSERT_DATE shoulbe date type Attribute Type Violation

R43 UPDATE_DATE shoulbe date type Attribute Type Violation

-16 -

R44

KIND_CODE has arestricted code set

Self Contained Code

Reference Violation

R45

BIGO has arestricted code set

Self Contained Code

Reference Violation

-17 -

Appendix 3. Detected | nvariants

Bold red lineisthe meaningful invariant that was not in the predefined rules.

Bui | dfi | e:

printinv:
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal

C:\ecl i pse\ wor kspace\ Dai konPr ot ot ype\ bui | d. xm

prototype. Cl assFor Rul e2: : : OBJECT

this. FNAME ! = nul |

this. ADDR ! = nul |

this. FNAME. toString != this. ADDR toString
this. FNAME. toString != this. ADDR2.toString
this. ADDR. toString != this. ADDR2.toString

prototype. C assFor Rul e2. C assFor Rul e2(j ava. | ang. Stri ng,

java.lang. String)::: ENTER

[javal
[javal
[javal
[javal
[javal
[javal
[javal

nane != null
addr != null
nane.toString != addr.toString

nane.toString !
addr.toString !

addr2.toString
addr2.toString

prototype. C assFor Rul e2. Cl assFor Rul e2(j ava. | ang. Stri ng,

java.lang. String):::EXIT

[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
true)”
[javal
[javal
[javal
[javal
[javal
[javal
true)”
[javal
[javal
[javal
[javal
[javal
[javal
true"
[java]

thi s. FNAME == ori g(nane)

this. ADDR == ori g(addr)

this. ADDR2 == ori g(addr2)
| =

nane.toString != addr.toString
nane.toString != addr2.toString
nane.toString == this. FNAVE.toString
nane.toString == orig(nane.toString)
addr.toString != addr2.toString

addr.toString == this. ADDR. toString
addr.toString == orig(addr.toString)
addr2.toString == this. ADDR2.toString
addr2.toString == orig(addr2.toString)

prototype. C assFor Rul e2. equal s(j ava. | ang. Cbj ect)::: ENTER
object !'= null

obj ect.class == "prototype. d assFor Rul e2"

this. ADDR2. toString == ""

this. FNAME. toString > this. ADDR2.toString

this. ADDR. toString > this. ADDR2.toString

prototype. C assFor Rul e2. equal s(j ava. | ang. Obj ect)::: EXI T37

return == fal se
this. ADDR2 == null

prototype. C assFor Rul e2. equal s(j ava. | ang. Cbj ect): ::

EXI T37; condi ti on="not (return

prototype. C assFor Rul e2. equal s(j ava. | ang. Cbject): ::

return == fal se
this. ADDR2 ! = null

EXI T39

prototype. C assFor Rul e2. equal s(j ava. | ang. Cbject): ::

EXI T39; condi ti on="not (return

prototype. C assFor Rul e2. equal s(j ava. | ang. Cbject): ::

return == true
this. ADDR2 == null

EXI T40

prototype. Cl assFor Rul e2. equal s(j ava. |l ang. Obj ect)::: EXI T40; condi ti on="return

- 18 -

java.lang. String,

java.lang. String,

EXIT

EXIT; condition="return == true"

EXI T; condi tion="not(return ==

[java] prototype.C assFor Rul e2. equal s(j ava. | ang. Cbject):::
[java] this.FNAVE == orig(this. FNAVE)
[java] this.ADDR == orig(this. ADDR)
[java] this.ADDR2 == orig(this. ADDR2)
[java] (return == false) ==> (this. ADDR toString > this. ADDR2.toString)
[java] (return == false) ==> (this.ADDR2.toString == "")
[java] (return == false) ==> (this.FNAMVE. toString > this. ADDR2.toString)
[java] (return == true) ==> (this.ADDR2 == null)
[java] this. ADDR2.toString == ""
[java] this. FNAME. toString > this. ADDR2.toString
[java] this.FNAVE.toString == orig(this.FNAVE. toString)
[java] this. ADDR toString > this. ADDR2.toString
[java] this. ADDR toString == orig(this. ADDR toString)
[java] this.ADDR2.toString == orig(this. ADDR2.toString)
[java]
[java] prototype.C assFor Rul e2. equal s(java. |l ang. Cbject):::
[java] return == true
[java] this. ADDR2 == nul |
[java]
[java] prototype. C assFor Rul e2. equal s(j ava. | ang. Cbject): ::
true)"

[java] return == fal se
[java]
[java] prototype.d assFor Rul e2. hashCode(): :: ENTER
[java]
[java] prototype.d assForRul e2. hashCode():::EXIT
[java] this.FNAVE == orig(this. FNAVE)
[java] this.ADDR == orig(this. ADDR)
[java] this.ADDR2 == orig(this. ADDR2)
[java] return !=0
[java] this.FNAVE.toString == orig(this.FNAVE. toString)
[java] this. ADDR toString == orig(this. ADDR toString)
[java] this.ADDR2.toString == orig(this. ADDR2.toString)
[java]

ava] prototype. PO | COVVON: :: OBJECT

ava] this.CP 1D >= 2|

ava] this. PO _CODE != null

ava] this.LARGE CD != null

ava] this.FNAVE = null

ava] this.PNAVE = null

ava] this. ADDR != nul]

ava] this. PRIMARY_BUN >= (|

ava] this. SECONDARY_BUN >= 0|

ava] this.BDG FLOOR >= 0

ava] this. QU DE X1 >= 0

ava] this. QU DE Y1 >= 0

ava] this.PO _ID!=this. CP_IQ
[java] this.PO _ID != this. SECONDARY_BUN
[java] this.PO _ID < this.CENTER X1
[java] this.PO _ID < this.CENTER Y1
[java] this.PO _ID != this.GU DE_X1
[java] this.POl_IDlzthls GUI DE_Y1
[java] this.CP_ID < this.CENTER X1
[java] this.CP_ID < this. CENTER Y1
[java] this.CP_ID != this.GU DE_X1
[java] this.CP_ID != this.GU DE_Y1
[java] this. PO _CODE.toString < this.LARGE CD.toString
[java] this. PO _CODE.toString != this. FNAME. toString
[java] this. PO _CODE.toString != this.CNAME. toString
[java] this. PO _CODE.toString != this. PNAME. toString
[java] this. PO _CODE.toString < this.Zl P_CODE.toString
[java] this. PO _CODE.toString < this. ADDR toString
[java] this. PO _CODE.toString != this. ADDR2.toString
[java] this. PO _CODE.toString < this.i FLOOR toString
[java] this.LARGE CD.toString != this.FNAVE. toString
[java] this.LARGE CD.toString != this.CNAVE. toString
[java] this.LARGE CD.toString != this.PNAVE. toString
[java] this.LARGE_CD.toString != this.Zl P_CODE.toString
[java] this.LARGE CD.toString < this.ADDR toString

-19 -

[java] this.LARGE CD.toString != this. ADDR2.toString
java] this.LARGE CD.toString < this.i FLOOR toString
[java] this.FNAMVE toString !'= this. PNAME. toString|
[java] this.FNAVE.toString != this.ZlI P_CODE.toString
[java] this. FNAME. toString != this. ADDR toString
[java] this. FNAME.toString != this. ADDR2.toString
java] this.FNAMVE.toString != this.i FLOOR toString
[java] this.CNAMVE toString !'= this. PNAME. toString|
[java] this.CNAMVE.toString != this.ZI P_CODE.toString
[java] this.CNAME. toString != this. ADDR toString
[java] this.CNAME.toString != this. ADDR2.toString
[java] this.CNAME. toString != this.i FLOOR toString
[java] this.PNAVE.toString != this.ZI P_CODE. toString
[java] this.PNAME. toString != this. ADDR toString
[java] this.PNAME. toString != this. ADDR2.toString
[java] this.PNAME. toString != this.i FLOOR toString
[java] this.ZIP_CODE.toString < this.ADDR toString
[java] this.ZIP_CODE.toString != this. ADDR2.toString
[java] this.ZIP CODE.toString < this.i FLOOR toString
[java] this. ADDR toString !'= this. ADDR2.toString|
[java] this. ADDR. toString > this.i FLOOR toString
java] this. ADDR2.toString != this.i FLOOR toString
[Java] (this. PRIMARY_BUN == 0) ==> (this. SECONDARY_BUN == 0)]
[java] this.PRIMARY_BUN < this. CENTER X1
[java] this.PRI MARY_BUN < this.CENTER Y1
[java] this. SECONDARY_BUN < this. CENTER X1
[java] this. SECONDARY_BUN < this. CENTER Y1
[java] this.BDG FLOOR < this. CENTER X1

ava] this.BDG FLOOR < this. CENTER Y1

ava] this. CENTER X1 > this. CENTER Y]]

ava] this. CENTER X1 > this. GJI DE_Y1]

ava] this. CENTER Y1 !I'= this. GU DE XI]

ava] (this.GUDE X1 == 0) ==> (this. GUDE Yl == 0)

ava] (this.GUDE Yl == 0) ==> (this. GUDE X1 == 0)
[java] this.GUDE X1 >= this.GUJ DE_Y1
[java]
[java] prototype. PO _| _COMMON. PO _|I _COMMON(int, int, java.lang.String

java.lang. String,
java.lang. String,

[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal

java.lang. String

int, int,
cp_id >= 2
poi _code != nul
large_cd != nul
fname !'= nul
pnane != nul
addr != nul

primary_bun >= 0
secondary_bun >= 0
bdg_floor >= 0
guide_x1 >= 0
guide_yl >= 0

poi _id !=cp_id
poi _id != secondary_bun
poi _id < center_x1
poi _id < center_yl
poi _id != guide_x1
poi _id != guide_yl
cp_id < center_x1
cp_id < center_yl
cp_id !'= guide_x1

java.lang. String

java.lang. String
int, int,

cp_id !'= guide_yl

poi _code.toString < large_cd.toString
poi _code.toString != fnane.toString
poi _code.toString != cnane.toString
poi _code.toString != pnane.toString
poi _code.toString < zip_code.toString
poi _code.toString < addr.toString

poi _code.toString != addr2.toString
poi _code.toString < i Floor.toString
large_cd.toString != fnane.toString

-20 -

java.lang. String
int, int,

java.lang. String
java.lang. String

int):::ENTER

[java]

[java] large_cd.toString != pnane.toString
[java] large_cd.toString != zip_code.toString
[java] large_cd.toString < addr.toString
[java] large_cd.toString != addr2.toString
[java] large_cd.toString < iFloor.toString
[java] fnane.toString != pnane.toString
[java] fnane.toString != zip_code.toString
[java] fnane.toString != addr.toString
[java] fnane.toString != addr2.toString
[java] fnane.toString !=iFloor.toString
[java] cnane.toString != pnane.toString
[java] cnane.toString != zip_code.toString
[java] cnane.toString != addr.toString
[java] cnane.toString != addr2.toString
[java] cnane.toString !=iFloor.toString
[java] pnane.toString != zip_code.toString
[java] pnane.toString != addr.toString
[java] pnane.toString != addr2.toString
[java] pnane.toString !=iFloor.toString
[java] zip_code.toString < addr.toString
[java] zip_code.toString != addr2.toString
[java] zip_code.toString < iFloor.toString
[java] addr.toString != addr2.toString
[java] addr.toString > i Floor.toString
[java] addr2.toString !=iFloor.toString
[java] (primary_bun == 0) ==> (secondary_bun == 0)
[java] primary_bun < center_x1

[java] primary_bun < center_yl

[java] secondary_bun < center_x1

[java] secondary_bun < center_yl

[java] bdg_floor < center_x1

[java] bdg_floor < center_yl

[java] center_x1 > center_yl

[java] center_x1 > guide_yl

[java] center_yl != guide_x1

[java]l (guide_x1 == 0) ==> (guide_yl == 0)

[java]l (guide_yl == 0) ==> (guide_x1 == 0)

[java]l guide_x1 >= guide_yl

[java]

[java] prototype. PO _|I _COMVON. PO _|I _COMMON(int, int, java.lang.String,
java.lang. String, java.lang.String, java.lang.String, java.lang.String,
java.lang. String, int, int, java.lang.String, int, int, int, int, int):::EXIT

[java] this.PO _ID == orig(poi_id)

[java] this.CP_ID == orig(cp_id)

[java] this.PO _CODE == orig(poi_code)

[java] this.LARGE_CD == orig(large_cd)

[java] this.FNAVE == orig(fnane)

[java] this.CNAVE == orig(cnane)

[java] this.PNAVE == orig(pnane)

[java] this.ZlI P_CODE == orig(zip_code)

[java] this. ADDR == orig(addr)

[java] this. ADDR2 == orig(addr?2)

[java] this.PRI MARY_BUN == orig(primary_bun)

[java] this. SECONDARY_BUN == ori g(secondary_bun)

[java] this.i FLOOR == orig(iFloor)

[java] this.BDG FLOOR == orig(bdg_floor)

[java] this.CENTER X1 == orig(center_x1)

[java] this.CENTER Y1 == orig(center_yl)

[java] this.GU DE X1 == orig(guide_x1)

[java] this.GU DE_Y1 == orig(guide_yl)

[java] poi _code.toString < large_cd.toString

[java] poi _code.toString != fnane.toString

[java] poi _code.toString != cnane.toString

[java] poi _code.toString != pnane.toString

[java] poi _code.toString < zip_code.toString

[java] poi_code.toString < addr.toString

[java] poi _code.toString != addr2.toString

[java] poi _code.toString < iFloor.toString

[java]

large_cd.toString cnane. toString

poi _code.toString == this. PO _CODE.toString

-21-

java.lang. String,
java.lang. String,

[java]

poi _code.toString ori g(poi _code.toString)

[java] large_cd.toString != fnane.toString

[java] large_cd.toString != cnane.toString

[java] large_cd.toString != pnane.toString

[java] large_cd.toString != zip_code.toString
[java] large_cd.toString < addr.toString

[java] large_cd.toString != addr2.toString

[java] large_cd.toString < iFloor.toString

[java] large_cd.toString == this. LARGE_CD.toString
[java] large_cd.toString == orig(large_cd.toString)
[java] fnane.toString != pnane.toString

[java] fnane.toString != zip_code.toString

[java] fnane.toString != addr.toString

[java] fnane.toString != addr2.toString

[java] fnane.toString !=iFloor.toString

[java] fnane.toString == this. FNAVE. toString

[java] fnane.toString == orig(fnanme.toString)
[java] cnane.toString != pnane.toString

[java] cnane.toString != zip_code.toString

[java] cnane.toString != addr.toString

[java] cnane.toString != addr2.toString

[java] cnane.toString !=iFloor.toString

[java] cnane.toString == this.CNAVE. toString

[java] cnane.toString == orig(cnanme.toString)
[java] pnane.toString != zip_code.toString

[java] pnane.toString != addr.toString

[java] pnane.toString != addr2.toString

[java] pnane.toString !=iFloor.toString

[java] pnane.toString == this. PNAVE. toString

[java] pnane.toString == orig(pnanme.toString)
[java] zip_code.toString < addr.toString

[java] zip_code.toString != addr2.toString

[java] zip_code.toString < iFloor.toString

[java] zip_code.toString == this.Zl P_CODE.toString
[java] zip_code.toString == orig(zip_code.toString)
[java] addr.toString != addr2.toString

[java] addr.toString > i Floor.toString

[java] addr.toString == this. ADDR toStri ng

[java] addr.toString == orig(addr.toString)

[java] addr2.toString !=iFloor.toString

[java]l addr2.toString == this. ADDR2.toString

[java] addr2.toString == orig(addr2.toString)
[java] iFloor.toString == this.i FLOOR toString
[java] iFloor.toString == orig(iFloor.toString)
[java]

[java] prototype. PO _| _COMVON. nui n(java.lang. String[]):::ENTER
[java] args has only one val ue

[java] args.class == "java.lang. String[]"

[java] args[] == []

[java]

[java] prototype. PO _| _COMWON. nuin(java.lang.String[]):::EXIT
[java] args[] == []

[java]

[java] prototype. Rul es::: CLASS

[java] prototype.Rules.rules has only one val ue
java] prototype.Rules.rules !'= null

[java] prototype.Rules.rules[] one of { [0, 1, 1], [1, 1, 1] }]
[java] prototype. Rul es.poi _id_DuplicationCheck has only one val ue
[java] prototype.Rul es.poi_id_DuplicationCheck != null
[java] prototype.Rules.rule2 has only one val ue
[java] prototype.Rules.rule2 !'= null

[java] size(prototype.Rules.rules[]) ==

[java]

[java] prototype.Rul es.containsCPID(int):::ENTER
[java] cp_id >= 2

[java] cp_id >= size(prototype.Rules.rules[])-1
[java]

[java] prototype.Rul es.containsCPID(int):::EX T37
[java] return == true

[java] orig(cp_id) one of { 2, 3, 25}

-22-

[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal

return in prototype. Rul es. rul es[]

prototype. Rul es. contai nsCPI D(int):::EXH T37; condition="return == true"

prototype. Rul es. contai nsCPI D(int):::EXl T39

return == fal se
prototype. Rules.rules[] == [1, 1, 1]
prototype. Rul es.rul es[] elenents == true

orig(cp_id) == 5

prototype. Rul es. contai nsCPI D(int):::EX T39; condition="not(return == true)"

prototype. Rul es.containsCPID(int):::EXIT
prototype. Rul es.rul es == orig(prototype.Rul es.rul es)
prototype. Rul es.rules[] == orig(prototype.Rules.rules[])
prototype. Rul es. poi _i d_Dupl i cat i onCheck ==

ori g(prototype. Rul es. poi _i d_Dupl i cati onCheck)

[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal
[javal

prototype. Rul es.rul e2 == orig(prototype.Rul es.rul e2)

(return == false) <==> (orig(cp_id) == 5)

(return == false) ==> (prototype.Rules.rules[] ==1[1, 1, 1])
(return == false) ==> (prototype.Rules.rules[] elenents == true)

(return == true) <==> (orig(cp_id) one of { 2, 3, 25 })

(return == true) ==> (prototype.Rules.rules[] one of { [0, 1, 1], [1, 1, 1] })
(return == true) ==> (return in prototype.Rules.rules[])

orig(cp_id) >= size(prototype.Rules.rules[])-1

prototype. Rul es. contai nsCPID(int):::EX T,condition="return == true"
return == true

orig(cp_id) one of { 2, 3, 25}

return in prototype. Rul es. rul es[]

prototype. Rul es. contai nsCPID(int):::EX T, condition="not(return == true)"
return == fal se

prototype. Rules.rules[] == [1, 1, 1]

prototype. Rul es.rul es[] elenents == true

orig(cp_id) ==

prototype. Rul es. uni queness(j ava.l ang. I nteger)::: ENTER
a !'= nul

prototype. Rul es. uni queness(j ava. |l ang. | nteger)::: EXI T30

prototype. Rul es. uni queness(j ava. |l ang. | nteger)::: EXI T30; condition="return == true"

prototype. Rul es. uni queness(java.lang.|nteger):::EXIT
prototype. Rul es.rul es == orig(prototype.Rul es.rul es)
prototype. Rul es.rules[] == orig(prototype.Rules.rules[])
prototype. Rul es. poi _i d_Dupl i cat i onCheck ==

orig(prototype. Rul es. poi _i d_Duplicati onCheck)

[javal
[javal
[javal
[javal
[javal

prototype. Rul es.rul e2 == orig(prototype. Rul es.rul e2)
return == true
return in prototype. Rul es. rul es[]

prototype. Rul es. uni queness(java.lang. | nteger):::EXIT;condition="return == true"

BUI LD SUCCESSFUL
time: 7 seconds

Tot al

-23-

