Tool Evaluation : DAIKON

Amol Prakash, Mausam

12th March 2002

1 Introduction

Daikon is a tool for dynamically detecting likely invariants in Java and C/C++
programs. It is built at UW by Michael Ernst. The Daikon system examines the
values computed during the target program’s execution, looking for patterns and
relationships among those values.Properties that hold over the traces and also
satisfy other tests, such as being statistically justified, not being over unrelated
variables, and not being implied by other reported invariants, are reported as
likely invariants. Like other dynamic techniques such as testing, the quality of
the output depends in part on the comprehensiveness of the test suite. If the test
suite is inadequate, then the output indicates how, permitting its improvement.
Dynamic analysis complements static techniques, which can be made sound but
for which certain program constructs remain beyond the state of the art. We
have evaluated it for a C/C++ frontend on linux platform.

2 Experiments

We did experiments in the following three domains:

1. We implemented different data structures and algorithms associated with
them. In particular we implemented sorting, binary search, stack, queue,
list, linked list, heap, array addition, matrix addition, factorial etc.

2. We took the stack implementation of 30 students in CSE143 and at-
tempted to evaluate the correlation between the quality of the code with
the quality of the invariants produced by Daikon.

3.

3

We also evaluated the extent of Daikon by using it to various C++ fea-
tures like structs, pointers, passing by references, simple arrays, 2D arrays,
recursion.

Problems encountered in Instrumentation

The front-end for C++ programs (dfec) is extremely buggy. Instrumented code
usually has compilation errors. We are enlisting the various areas where instru-
mentation needs improvement:

4

4.1

If we use main(int argc, char *argv[]), a small type mismatch is produced
which can be quickly rectified in the instrumented code.

Instrumented code does not dump the contents of the arrays if the array is
global. To make it dump we passed them as parameters in the functions.

Instrumented code does not dump the contents of the arrays if the array
is declared within a class. The only thing we could find to make it work
was to remove all the classes.

Instrumented code does not dump the value of the pointers, hence no
invariants could be found that used them.

Instrumented code does not traverse the pointers for other memory loca-
tions. Hence linked lists didn’t work.

Instrumented code crashes if we compare two pointers. We had to manu-
ally change “x<=y” to “(&(*x))<=(&(*y))” to make it work!

Instrumented code is incapable of handling the passing by reference and
we couldn’t rectify that.

If we delete a pointer, there are compilation errors in the code produced.
In this case, we removed all deletes and ran it again.

Instrumented code crashes on a mew for a pointer to pointer like int**.
We could not rectify this.

Observations on invariants produced

Stack (implemented as array)

We implemented the stack ADT with all its usual functions in the array. This
was the case which generated the best results for Daikon.

All the expected invariants for push and pop were found accurately in-
cluding the conditions for the failure of these functions (like stack full, or
empty), relationship in the contents of the stacks before and after the func-
tions, the return value of the pop function (which is the element popped),
the change in value of top variable etc.

e We had used dynamic memory for array. But invariants like “::Stack[::maxSize..]
elements ==0" showed that Daikon made an attempt to access the mem-
ory which is not a legitimate part of this program (as Stack is an array
0..maxSize-1).

e Similarly two confusing invariants were outputted, which also seems to be
a result of the same memory violations:

— “rrmazSize <= size(::Stackf[])’
— “::mazSize >= size(::Stack[])-17

e Consider the following function for determining whether Stack is empty
or not:

bool isEmpty()
{ return top<0 ; }

Following are the relevant invariants outputted on its exit:
::Stack == orig(::Stack)
::Stackf] == orig(::Stack[])
:itop == orig(::top)

:rmaxSize == orig(::maxSize)
::Stack = null
ztop >= -1

return one of { 0, 1 }

top < :rmazSize

:top <= size(::Stack[])-1

:rmaxSize <= size(::Stackf])

::mazSize >= size(::Stackf])-1

Hence one can see that the actual reasons as to why the function returns 1
or 0 is not at all captured. We could find no reasons as to why this happens.
Similar things happen in the isFull function as well.

4.2 Selection Sort

e The sort function has all the necessary invariants including the fact that
the array is sorted at the end.

e The checksort function which checks whether the array is sorted works fine
when return value is 1. Of course “not sorted” cannot be made a primitive
and so it only captures a single conditional:

— “return == 1) ==> (A[] sorted by <=)”

e The main function does not include the invariant of the array being sorted
which shows that the instrumentation does not dump the global array at
the exit of the main.

e We implemented a step by step selection sort. Consider the following
selection phase which selects the ith smallest element.

void selsort(int *A, int i, int size)
{
int smallest=Inf;
int base=0;
for (int j=i; j<size; j++)
{ if (smallest>A[j]) { smallest =A[j]; base=j;} }
Albasel=A[i];
Ali]l=smallest;
}

One can make the following observations regarding the invariants generated for
this function:

e The invariant does not say that A[0..i+1] is sorted. It only mentions that
A[0..i] is sorted which was the precondition as well.

o The invariants nowhere reflect the fact that A[ij=min(orig(Ali..size-1])).

e The fact that A[0..i] remain unchanged in mentioned as : “A[0..i-1] is a
subsequence of A[0..i]” which is a weaker statement.

e There was no mention of the local variables (base and smallest) in the
invariants which is why the invariants could not express the fact that the
original Ali] is swapped with A[base].

e There were some instances of redundancy for example

— “A[0..i] sorted by <="
— “AJ0..i-1] sorted by <="

4.3 List (implemented as array)

We implemented a list with regular insert, delete, search functions. This list
was implemented as a list with no-duplicates allowed. Insert always appended
to the list. Delete always transferred the last element to the element which was
getting deleted. The following observations could be made:

e Daikon got the idea of insert quite i.e. it realised that list has no duplicates,
that insert returns 0 if data is already present in the list, or if the list if full
and when it returns 1, the data is appended at the last available position.
It, of course didn’t get the idea that it returns 1, when data is not present
in the list. Sadly, it couldn’t combine to output the general invariant:
“(return==0)==> (size=Max)OR(data in Array[0..size-1])".

e Similarly for search, it realised when the search returns 1 but could not
get when it returns 0.

e It couldnot understand the new state of the array after the successful
delete.

4.4 Array Addition

We tested Daikon for array addition. Small arrays were taken as test suit cases.
Array contents were not dumped if the whole array was passed as a parameter.
We then instead passed the pointer, which worked. We observed the following
good invariants :

e The array size is same for all the three arrays.

e At the entry point of the funtion for adding elements at index i :
"a[0..i — 1] < ¢]0..i — 1]"
"p[0..i — 1] < ¢[0..i — 1]"
where c is the array which stores the sum.

e At the exit point of the funtion for adding elements at index , the invariant
that says the the contents of array ¢ remain unchanged except for index 4.

o At the exit point of the funtion for adding elements at index 4 :
"a[0..7] < ¢[0..4]"
"[0..4] < ¢[0..9]"
where c is the array which stores the sum.

The following expected invariants were missed :

e At the exit point of the main function :
"]+ 8] =]

o At the entry point of the funtion for adding elements at index 3 :
" < size(A) — 1"

e At the entry point of the funtion for adding elements at index i :
"a[0..i — 1] + b[0..i — 1] = ¢[0..i — 1]"

4.5 Matrix Addition

We tested Daikon for matrix addition. Small matrices were taken as test suit
cases. We used a two-dimensional array implementation for matrices. The
array contents were not dumped if the array was passed as a parameter. We
then instead passed the pointer, which worked. We could not use a pointer to
pointer to make dynamic 2-d arrays. Daikon crashed if we tried doing so. In
this case, Daikon gave all the results treating it as a 1-d array.

We observed the following unexpected results :

e There was no mention at any point of the invariant (or something similar
to it) :
") + 5] = <]’

e We expected the following invariant at the entry point of the funtion for
adding elements at index [i, j] :
" < size(A) -1"
" < size(B) -1"
" < size(C) -1"
"j < size(A) -1"
"j < size(B) -1"
"j < size(C) -1"
whereas the above were inferred at the exit point.

e At the exit point of the funtion for adding elements at index [i,j], one
invariant inferred all elements of a and b to be less than ¢. We expected
this to be true only till index i * columns + j and not for whole array.

4.6 Passing by reference

We tried writing a code to swap two numbers by passing by reference. The in-
strumented code did not compile. This seems to be a bug with the instrumenter
dfec.

4.7 Binary Search

This code basically had two functions : one to sort the array and the other two
do a binary search for the sorted array. We observed the following behaviour :

¢ Daikon could infer that the array was sorted by < operator. But it could
do this only when the array was passed as a pointer to the function. If
the array was global, even though its contents were being dumped, still
this invariant was not being generated.

e Daikon could not infer for the search function as to when the return value
would be true and when would it be false. We tried to give a larger test
suite with a variety of cases, but still this invariant could not be generated.

4.8 Circular Data Structure

We implemented circular queues using arrays to check for a circular data struc-
ture. We were expecting results similar to stack, but some of the results did
amaze us :

e Trivial invariants were inferred for the tail and head in the case of push
and pop respectively. We expected some kind of a circular behaviour to
come out in the invariants, but the invariants just said that the head and
tail changed after the operation.

e The two return branches for functions IsEmpty and IsFull could not be
talked about differently through invariants i.e. the cases when true is
returned and the the cases when false is returned was not talked about.

¢ Rest all invariants including the ones that dealt with the contents of the
queue were found.

4.9 Queue (implemented as Linked List) and Linked List

We implemented the queue as a linked list but it Daikon, it seems, can’t really
handle linked lists, as we could see that the trace file generated doesnot have
any mention of the contents of the list. Hence one did not find any invariants
which would have otherwise found in a queue data structure.

Moreover, the top and end (which are queue*) are also not present in the
invariants which shows that Daikon doesn’t even trace the values of independent
pointers. So the usual invariants like “empty=1 when top=NULL” or “after add,
end always changes” were also not found.

We had run the delete function only when the queue is non-empty. The
Daikon showed this as the precondition of delete: “::size>=1". Hence if a test-
case is insufficient to handle some cases Daikon reports appropriately.

Similarly for linked list, no invariants could be found at all. It was quite
certainly a blank file of invariants.

4.10 Heap (implemented as array)

The heaps were implemented in the array just to observe the extent of the
functionality of the tool. We used the CLR implementation of the heapify and
build heap.

e The heap property at the of the build heap could not be captured as
expected.

e There were 80 invariants generated for heapify. Some of these mentioned
the basic issues like some array not changing etc. Most others were just
too unrelated to the our original expectations and were not really useful.
Only other somewhat meaningful ones are being enlisted below: (Note
that heapify creates a heap rooted at i):

— “Afi+1..] <= orig(Afi+1..]) (elementwise)’

— “Af0..i]>=o0rig(A[0..i]) (elementwise)’. [Basically only Afi] has changed
of these.]

— “A[0..1-1] is a subsequence of orig(A[0..3])” [which is its way of saying
that A[0..i-1] haven’t changed!]

This shows that the partial heapify property is not really understood.

4.11 Recursive functions

We tested on three recursive functions: factorial, power and multiK (multiply a
number n by k by adding n recursively k times). Since factorial and power are
not primitive operators defined in Daikon, those invariants were obviously not
generated. Now consider the multiK function:

int MultiK (int n,int k)
{
if (k==0) return 0;
else return n+ MultiK(n,k-1);

}

Even for this the usual invariant of “return=nk” was not found. This should
have been found because Daikon checks for all possible relationships among
three variables.

Note however that for all the functions the base cases were found separately.
For example, for fact, the final exit looked like this:

std.fact(int;):::EXIT

n == orig(n)

(n == 0) ==> (return == 1)
n>=10

return >= 1

n<=return

5 Testing on CSE143(C++) programs

Daikon was tested on a couple of CSE143 (C++) submissions. The aim was to
see if Daikon can be used as a tool while debugging and grading.

The assignment was to implement a stack using dynamic arrays and then to
build a Craps game over that. The stack would be used to keep track of players.
The concepts of Object Oriented Programming were to be exploited, so the
students were to code five classes : Stack, Player, Crapstable (implementing
rules of the game), Dice and House (the main class)

The test suite was chosen as follows :

10 submissions were taken each for grade less than 80%, grade between 80-
100% and perfect grade. We observed the following things :

e Since classes were used heavily, Daikon could not get the trace of the data
members (non-basic data types) of the classes eg. the contents of the array
used for stack was not dumped. So, many significant invariants could not
be found. Other than these, most of the assignments with perfect grades
had all the invariants that one would have expected. These invariants
basically involved simple relations between data members of the class.

e For many assignments with non-perfect grades, there were no traces for
many implemented functions. This was due to programming bugs. Though
very trivial, but this can be used as the first step in debugging the assign-
ment i.e. ensuring that all the functions are being called.

e Again due to programming bugs, many a times the invariant found at the
function exit was unexpected. For some funtions, one branch was never
taken (due to bugs) because of which the invariant that was inferred was
not the correct one. This could be used as an important tool for debugging.
If some unexpected invariant comes up, it shows that the code has bugs.

e To help with grading, it can be checked as to how many of the expected in-
variants were generated for an assignment. Though not perfect, this could
help in evaluating the program. The total number of expected invariants
were 23. As can be seen from the figure, where each bar represents a
program, in general the grading guidelines are good. The program which
generated more invariants got more grades in general, but we do see some
exceptions. There is a program which generated just 17 invariants out of
23, but still it got a perfect score. Another program which generated 21
invariants out of of 23 managed a score less than 80%.

Number of Invariants for 30 CSE143 Assignments

25

B100%
oa0-100%
@mE0%

Number of expected invariants generated

1 2 3 4) 3 7 g g
Programs 1 to 10 tested for each category of grade assigned

6 Overall qualitative assessment of the invariants.

e Redundancy is not completely eliminated.

7

There are times when Daikon does not seem to be consistent. For example,
in the case of array addition, some preconditions like “i<=size” were missed
but the same were present in the case of matrix addition.

Daikon is unable to handle circular data structures (which have a mod
size operation).

Many of the primitive operators are justifiably unidirectional (ex in, sorted
by, etc). So whenever we need not-sorted, or not-in, then Daikon fails.

Daikon is unable to handle any invariants which require the values of the
pointers or requires to traverse different pointers. It is more probably an
instrumentation error as the values are not really dumped in the trace file.

Daikon, in its current version is totally unable to determine meaningful
invariants of the trees, in arrays.

It seems only one “i-1” is allowed in Daikon invariants. So all invariants of
the form “Array[0..i-1]==orig(Array[0..i-1])” are outputted in its weaker
form “Array|0..i-1] is a subsequence of orig(A[0..i])".

Daikon fails to recognise elementwise relationships between three arrays,
like “A[]+B[|=C]]” was missed in case of array addition.

Accessing illegitimate memory is observed when dynamic memory is used.

In many cases, a very large number of invariants were observed out of
which only few were meaningful to the programmer, though it seems a
hard problem to determine what might be meaningful and what not.

Invariants using the local variables were not outputted.

Overall comments on the usage of the tool

Scalability: Daikon invariant generation does not seem to be optimised for
large memory search. So, running it on large test suites involving arrays
does not work. It should rather be used on smaller test suites.

Instrumentation: Though the invariant generation process seems more or
less bug-free, front end for C++ programs has a lot of bugs, and it is crucial
to correct the instrumentation of code, to be able to use it practically.

Debugging: Searching for expected invariants and presence of unexpected
ones can help in the debugging. Also, it can help identify portions of code
which are never executed. This may further help in the knowledge of any
bias in the suits and so one can improve them to generate better invariants
and do better debugging.

10

Extent: In its present form, Daikon seems useful only for quite simple pro-
grams. To actually make it useful for a real-time programming scenario,
it needs to be extended to handle more complicated programs.

Grading: The number of invariants generated can help give a qualitative
analysis of the code functionality. Though not very accurate, but this can
surely help while making grading guidelines, and also to look for specific
portions of code while grading to find the errors.

Ideas for improvement

If an unusual function appears in some portions of the function (like sorted
by, in, etc) then one may check it for always not-holding in other portions
of the function.

Correcting the pointer functionality. In its current version Daikon is in-
capable of handling them appropriately.

Adding the functionality of various usual implementations of trees, in ar-
rays.

Finding relationships between variables in Daikon is quite adhoc. Rather,
one may do the static checking of the program to determine a big possibil-
ity of relationships and then test them in the dynamic fashion. This might
help in saving the overload of the outputted invariants as well as help in
adding some other useful invariants. For example in our matrix addition
case seeing the term Array[columns*i+j] in the code, it may suspect some
possible invariants.

11

