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Abstract 

This paper explores the interpretation of specifications in the 
context of an object-oriented programming language with 
subclassing and method overrides. In particular, the paper 
considers annotations for describing what variables a method 
may change and the interpretation of these annotations. The 
paper shows that there is a problem to be solved in the spec- 
ification of methods whose overrides may modify additional 
state introduced in subclasses. As a solution to this prob- 
lem, the paper introduces data groups, which enable mod- 
ular checking and rather naturally capture a programmer’s 
design decisions. 

0 Introduction 

Specifications help in the documentation of computer pro- 
grams. Ideally, specifications can be used by a mechanical 
program analyzer to check the body of a method against its 
specification, attempting to find errors. The Extended Static 
Checkers for Modula-3 [DLNS98, L.N98b, Det961 and for 
Java [ESC], which work on object-oriented programs, are 
examples of such program checkers. 

This paper concerns the spectication of methods. A 
method specification is a contract between the implemen- 
tation of a method and its callers. As such, it includes a 
precondition, which documents what a caller must establish 
before invoking the method. Consequently, the implemen- 
tation can assume the precondition on entry to the method 
body. A method specification also includes a postcondition, 
which documents what the implementation must establish 
on exit. Consequently, the caller can assume the postcondi- 
tion upon return from the method invocation. When reason- 
ing about method implementations and calls, only the con- 
tract given by the specification is used. That is, one does 
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not use the code in a method’s callers when reasoning about 
the method implementation, and one does not use the imple- 
mentation when reasoning about the calls. 

To be useful to the caller, it is important that the postcon- 
dition of a method detail what variables the method does not 
change. But since the scope of the caller can include vari- 
ables that are not visible in the scope where the method is 
declared and specified, it is not possible to explicitly list all 
unchanged variables in the method’s postcondition. Instead, 
the annotation language must include some form of syntactic 
shorthand (“sugar”) whose interpretation as part of the post- 
condition is a function of the scope in which it is interpreted. 
A nice construct for this is the modifies clause, which lists 
those variables that the method is allowed to modify, thereby 
specifying that the method does not modify any other vari- 
ables [GH93]. For example, suppose that the specification of 
a method m occurs in a scope where two variables, x and y , 
are visible, and that the specification includes the modifies 
CIaUse 

modifies x 

If m is called from a scope where, additionally, a variable z 
is visible, then the caller’s interpretation (“desugaring”) of 
the specification says that the call may possibly modify x , 
but leaves both y and z unchanged. 

The fact that a modifies clause is interpreted differently 
in different scopes raises a concern about modular sound- 
nem &ei95]. For the purpose of this paper, modular sound- 
ness means that the implementation, which is checked to 
meet the specification as interpreted in the scope contain- 
ing the method body, actually lives up to a caller’s expecta- 
tions, which are based on the specification as interpreted in 
the scope of the call. A consequence of modular soundness 
is that one can check a class even in the absence of its future 
clients and subclasses. 

This paper explores the interpretation of specifications 
in the context of an object-oriented programming language 
with subclassing and method overrides, for example like Java. 
In particular, I consider annotations for describing what a 
method may change and the interpretation of these annota- 
tions. I show that there is a problem to be solved in the 
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specification of methods whose overrides may modify addi- 
tional state introduced in subclasses. As a solution to this 
problem, I introduce data groups, which adhere to modular 
soundness and rather naturally capture a programmer’s de- 
sign decisions. 

For simplicity, I restrict my attention to the operations 
on only one object, the implicit self parameter. Neverthe- 
less, because of inheritance and method overriding, the im- 
plementations of the methods of this object may be found in 
superclasses and subclasses of the class being checked. 

1 Extending the state of a superclass 

To illustrate the problem, I introduce a simplified example of 
a computer arcade game--an excellent application of object- 
oriented programming indeed. 

The design centers around sprites. A sprite is a game ob- 
ject that appears somewhere on the screen. In this simple 
example, every sprite has a position, a color, and methods 
to update these. The main program, which I will not show, 
essentially consists of a loop that performs one iteration per 
video frame. Each iteration works in two phases. The fist 
phase invokes the update method on each sprite, which up- 
dates the sprite’s position, color, and other attributes. The 
second phase invokes the draw method on each sprite, which 
renders the sprite on the screen. 

Here is the declaration of class Sprite, in which the 
methods have been annotated with modifies clauses: 

class Sprite { 
int x, y; 
void updatePosition /* modifies x, y */ 

( 1 
int col; 
void updateColor() I* modifies co1 *I 

I 1 
void update ( ) I* modifies x, y, co1 *I 

{ updatePosition(); updateColor( ); } 
void draw0 /* modifies (nothing) */ 

( 1 
1 

The default update method invokes the updatePosition 
and updatecolor methods, whose default implementations 
do nothing. Any of these methods can be overridden in 
Sprite subclasses. For example, a moving sprite that 
never changes colors would override the updateposition 
method, a stationary sprite whose color changes over time 
would override the updatecolor method, and a sprite that 
adds further attributes that need to be updated overrides the 
update method and possibly also the updatePos it ion and 
updateColor methods. 

Since the specitications I have given in the example show 
only modifies clauses, checking that an implementation 

meets its specification comes down to checking that it mod- 
ifies only those variables that it is permitted to modify. The 
implementations of the updatePosition, updatecolor, 
and draw methods are no-ops, so they trivially satisfy their 
specifications. The update method invokes the other two 
update methods, whose modifies clauses say they may mod- 
ify x, y, and co1 . So update in effect modifies x, y, and 
col, and this is exactly what its specification allows. We 
conclude that the methods in class Sprite meet their spec- 
ifications. 

Let us now consider a subclass Hero of Sprite, rep- 
resenting the hero of the game. The hero can move about, 
and hence the Hero class provides its own implementation 
of the updateposition method by overriding this method. 
The next position of the hero is calculated from the hero’s 
velocity and acceleration, which are represented as instance 
variables. The Hero class is declared as follows: 

class Hero extends Sprite { 
int dx, dy; 
int ddx, ddy; 
void updatePosition() 

{ x += dx + ddx/2; y += dy + ddy/2; 
dx += ddx; dy += ddy; 

1 
. . . 

1 

The Hero implementation of updatePosition increases 
x and y by appropriate amounts (Ad = vo . t + l/z . a - t2 
where r = 1). In addition, it updates the velocity according 
to the current acceleration. (Omitted from this example is 
the update of acceleration, which is computed according to 
the game player’s joystick movements.) It seems natural to 
update the velocity in the method that calculates the new 
position, but the specilication of updatePosition (given 
in class Sprite) allows only x and y to be modified, not dx 
and dy which are not even defined in class Sprite. (If the 
update of dx and dy instead took place in method update, 
there would still be a problem, since the modifies clause of 
update also does not include these variables.) 

As evidenced in this example, the reason for overriding a 
method is not just to change what the method does algorith- 
micly, but also to change what data the method updates. In 
fact, the main reason for designing a subclass is to introduce 
subclass-specific variables, and it is the uses and updates of 
such variables that necessitate being able to override meth- 
ods. For example, class Sprite was designed with the in- 
tention that subclasses be able to add sprite attributes and 
update these in appropriate methods. So how does one in a 
superclass write the specification of a method such that sub- 
classes can extend the superclass’s state (that is, introduce 
additional variables) and override the method to modify this 
extended state? 
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2 Three straw man proposals 

In this section, I discuss three proposals that I often hear 
suggested for solving the problem of specifying the modifi- 
cation of extended state. I show that these proposals don’t 
work. This is what it means for a proposal to work: 

l the proposal must provide a way to annotate classes 
like Sprite and Hero such that the desired method 
implementations in these classes will meet their speci- 
fications, 

0 the interpretation of specifications must be useful to 
callers (for example, specifications should not all be 
treated as “can do anything whatsoever”), 

l the annotations should not be unnecessarily tedious to 
write down, and 

0 the proposal must adhere to modular soundness. 

Here is the first proposal: 

Straw man 0. A subclass can refine the specification of a 
method when it overrides it. That is, a subclass can 
weaken the precondition of the method in the super- 
class (that is, say that the overridden method imple- 
mentation will work in more situations) and sfrengfhen 
the postcondition (that is, be more specific about the 
effect of the method). 

It is well known that this proposal is sound. However, it 
doesn’t solve the problem at hand. To strengthen the post- 
condition means to be more precise about the final values 
of variables. This is just the opposite of what we’d like- 
we’d like the new postcondition to allow more variables to 
be modified, that is, to put no restrictions at all on the final 
values of these variables. Stated differently, while shrinking 
the list in the modifies clause is sound, enlarging it is what 
we want when specifying a subclass’s method overrides. 

Another straw man proposal is the following: 

Straw man 1. Let m be a method declared and specified in a 
class T . An implementation of m is allowed to modify 
those variables listed in the modifies clause of m , plus 
any variable declared in any proper subtype of T . 

Although sound, this straw man is too liberal about the mod- 
ification of variables in subclasses. In fact, a subclass loses 
the advantage of modifies clauses with this proposal. To il- 
lustrate, I will show an example that builds on class Sprite. 

Consider a class of monsters with a strength attribute. 
Rather than storing this attribute as an instance variable in 
every monster object, suppose a class Monster has a method 
that returns the value of the strength attribute. Thus, differ- 
ent Monster subclasses can decide on their own represen- 
tation of the strength attribute. For example, if the strength 
of a class of monsters is constant, the method can return that 

constant, without taking up any per-object storage. This de- 
sign trades quick access of an attribute for flexibility in how 
the attribute is represented. 

The following declaration shows class Monster, which 
uses the strength attribute in updating the sprite position. 

class Monster extends Sprite { 
int getStrength /* modifies (nothing) */ 

( return 100; } 
void updatePosition 

{ if (getStrength < 10) ( 
x+=2; 

} else { 
x+=4; 

11 
1 

A particular Monster subclass is AgingMonster, which 
adds an age attribute and overrides the draw method so as 
to render the monster dilferently according to its strength-to- 
age ratio. 

class AgingMonster extends Monster { 
int age; 
. . . 
void draw( ) 

{ int bitmapID; 
if (age == 0) [ 

bitmapID = MONSTERINFANT; 
1 eh I 

int s = getStrength( ); 
int relativestrength = s/age; 
if (relat ivestrength -z 5) ( 

bitmapID = MONSTER-WIMPY; 
} elsif (relativestrength -C IO) ( 

bitmapID = MONSTERNORMAL; 
1 eke I 

bitmapID = MONSTERSTRONG; 
1 I 
Bitmap.Draw(x, y, bitmapID); 

1 
1 

The name Bitmap.Draw denotes some procedure that can 
draw a bitmap given a screen coordinate and an ID. 

The correctness of the AgingMonster implementation 
of draw relies on the fact that the call to getstrength does 
not modify age. In particulsr, if getstrength were to 
set age to 0, then the computation of relativestrength 
would result in a division-by-zero error. The getstrength 
method is specified with an empty modifies clause, but Straw 
Man 1 gives implementations of getstrength permission 
to modify age, since age is declared in a proper subclass 
of Monster. Thus, the interpreted specification for method 
getstrength is not strong enough for one to conclude that 
method draw will execute correctly. 
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There is a workaround. If a class is allowed to refine 
the specifications of methods declared in superclasses, class 
AgingMonster can strengthen the postcondition of method 
getstrength with agepre == age,,,t. But this would 
quickly get annoying, because programmers would then some- 
times rely on the absence of age in the modifies clause to 
conclude that age is not changed, and sometimes rely on an . . explicit postcondmon age,, == agepost to conclude the 
same thing. Even worse, strengthening the specification of 
all methods declared in a superclass whenever a class intro- 
duces new variables would quickly grow to be an unaccept- 
ably tedious chore. 

The next straw man proposal seeks to alleviate this chore 
by making the mentioned postcondition strengthening the 
default interpretation, and providing a new specification con- 
struct also-modifies that can override the default interpreta- 
tion: 

Straw man 2. Let m be a method declared and specified in 
a class T. An implementation of m in a subclass U 
of T is allowed to modify those variables listed in the 
modifies clause of m as given in class T, plus any 
variable declared in any also-modifies clause for m as 
given in some superclass of U . 

This straw man seems to solve the problem for the Hero 
example: One would simply annotate the updatePosition 
override with 

also-modifies dx, dy 

This would give the updatePosition implementation in 
Hero permission to modify not just x and y (as granted by 
the original specification of updatePosition in Sprite), 
but also the variables dx and dy . (One could also add ddx 
and ddy to the also-modifies clause, if desired.) 

Let us consider how Straw Man 2 stands up to modu- 
lar soundness. Suppose that the game uses one hero object 
throughout many game levels. As a new level starts, the pro- 
gram will call a method sta.rtNewLevel on the hero object. 
This method resets certain attributes of the hero object while 
leaving other attributes unchanged, preparing it to begin the 
new level. To this end, suppose class Hero contains the fol- 
lowing method declaration and specification, where the key- 
word ensures is used to express a given postcondition: 

void startNewLevel() 
P modifies x, y, col, dx, dy, ddx, ddy 

ensures dxpost == 0 A dypost == 0 */ 
(dx = 0; dy= 0; 

update( ); 
1 

of updatePosition in turn results in a call to the imple- 
mentation of updatePosition given in class Hero (be- 
cause of dynamic method dispatch). This implementation of 
updatePosition modifies the dx and dy variables. Thus, 
executions of startNewLeve1 may well end with non-zero 
values for dx and dy , so the implementation of method 
startNewLeve1 does not meet its specification. 

Unfortunately, the methodology proposed by Straw Man 
2 does not allow one to catch the error in sta.rtNewLevel . 
The problem is that even though the interpretation of the 
specification of updatePosition in class Hero reveals that 
dx and dy may be modified (since the also-modifies anno- 
tation of updatePosition in class Hero lists these vari- 
ables), the update method is not overridden in Hero and 
thus gets its specification solely from the one given in class 
Sprite. Hence, the interpretation of the specification of 
update shows dx and dy as being unchanged, so a pro- 
gram checker will not find anything wrong with the imple- 
mentation of startNewLeve1. 

Note that the implementations in class Sprite do meet 
their specifications under Straw Man 2. For example, the 
interpretation of the specification of updatePosition in 
class Sprite includes only x and y, both of which are al- 
lowed to be modifled also by the implementation of update. 
Hence, there is no error for the checker to report in class 
Sprite either. 

In conclusion, Straw Man 2 seems pretty good at first, but 
since it allows the specifications of different methods (in the 
example, updatePosition and update) to be extended in 
different ways (by having different also-modifies clauses, or 
none at all), the proposal does not adhere to modular sound- 
ness. The proposal in the next section provides annotations 
for data rather than for methods, the effect of which is to 
make specification extensions apply in a uniform manner. 

3 Data groups 

In this section, I explain my proposal and demonstrate how 
it solves the problems with the examples shown previously. 
In Section 4, I show how a program checker can enforce the 
proposal, and in Section 5, I argue that my proposal is sound. 

The idea is to introduce data groups, which represent sets 
of variables. A data group is declared in a class, just like an 
instance variable is. The declaration of an instance variable 
is annotated with the names of the data groups to which the 
variable belongs. Data groups can be nested, that is, a group 
can be declared as a member of another group. A data group 
can be listed in a modifies clause, where it represents the set 
of all members of the group. 

Using dam groups, the declaration of Sprite can be 
The given implementation of startNewLeve1 contains 

an error: The invocation of update results in a call to the 
update implementation in class Sprite, whose invocation 
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written as: 

class Sprite ( 
r group attributes; *I 
p group position member-of attributes; *I 
int x /* member-of position *!; 
int y /* member-of position *!; 
void updatePosition() I* modifies position */ 

I I 
p group color member-of attributes; *I 
int co1 P member-of color *!; 
void updateColor() I* modifies color *I 

I 1 
void update ( ) /* modties attributes *I 

( updatePosition( ); updateColor( ); } 
P group drawstate; */ 
void draw() /* modifies drawState *I 

t 1 
1 

This version of class Sprite declares four data groups, at- 
tributes, position, color, and drawstate, and de- 
clares position and color tobemembersof attributes, 
x and y tobemembersof position,and co1 tobeamem- 
ber of color. Class Sprite does not declare any members 
of group drawState. 

Since updatePosition is dcclarcd with the spccifica- 
tion modifies position, an implementation of this method 
is allowed to modify x and y. In addition, an implementa- 
tion of this method is allowed to modify any variables de- 
clared in Sprite subclasses to hc members of position. 
An implementation of updatePosition is not allowed to 
call method updatecolor, for example, since color is not 
a member of posit ion. 

By introducing a data group drawState and listing it 
in the modifies clause of method draw, implementations 
of draw in Sprite subclasses are given a way to modify 
instance variables (in particular, to modify variables that are 
introduced as members of drawstate). 

The following illustrates how one can use data groups to 
annotate class Hero : 

class Hero extends Sprite { 
int dx I* member-of position *!; 
int dy I* member-of position */; 
int ddx P member-of position *!; 
int ddy /* member-of position *!; 
void updatePosition() 

{ x += dx + ddx/2; y += dy + ddy/2; 
dx += ddx; dy += ddy; 

I 

void startNewLevel() 
/* modifies attributes 

ensures dxpost == 0 A dypost == 0 *I 
( dx = 0; dy = 0; 

update( ); 
1 

1 
The override of updatePosition gets its permission 

to modify dx and dy from the fact that these variables are 
members of the data group posit ion. This solves the prob- 
lem of how to specify updatePosition inclass Sprite so 
that a subclass like Hero can modify the state it introduces. 

With data groups, the error in startNewLeve1 is de- 
tected. Since dx and dy are members of position, which 
in turn is a member of attributes, a program checker will 
know that dx and dy may be modified as a result of invok- 
ing update. Since the specification of update says noth- 
ing further about the final values of dx and dy , one cannot 
conclude that they remain 0 after the call. 

As for the AgingMonster example, the data groups pro- 
posal does allow one to infer that no division-by-zero er- 
ror is incurred in the evaluation of s/age: The guarding 
if else statement guarantees that age is non-zero before the 
call to getstrength, and since age is not modified by 
getstrength, whose modifies clause is empty, age re- 
mains non-zero on return from getstrength. 

I will give two more examples that illustrate the use of 
data groups. 

First, note that the members of two groups are allowed to 
overlap, that is, that a variable is allowed to be a member of 
several groups. For example, if a Sprite subclass declares 
a variable 

int k I* member-of position, drawState *!; 

then k can be modified by any of the methods update, 
updatePosition, and draw. 

Second, I give another example to illustrate that it is use- 
ful to allow groups to contain other groups. Suppose a sub- 
class of Sprite, Centipede, introduces a legs attribute. 
Class Centipede declares a data group legs and a method 
updateLegs with license to modify legs, which implies 
the license to modify the members of legs. By declaring 
legs as a member of attributes, the update method 
gets permission to call method updateLegs : 

class Centipede extends Sprite ( 
I* group legs member-of attributes; *I 
int legcount P member-of legs *I; 
void updateLegs( ) p modifies legs *I 

{legCount=...; } 
void update() 

( updatePosition( ); updateColor( ); 
updateLegs( ); 

148 



4 Enforcing the data groups proposal 

This section describes more precisely how a program checker 
handles data groups. 

For every data group g, the checker introduces a new 
variable gResidue . This so-called residue variable is used 
to represent those of g ‘s members that are not in scope-in 
a modular program, there is always a possibility of a future 
subclass introducing a new variable as a member of a previ- 
ously declared group. 

To interpret a modifies clause 

modifies w 

the checker lirst replaces w with the variables in the down- 
ward closure of w , For any set of variables and data groups 
w , the downward closure of w , written down(w), is defined 
as the smallest superset of w such that for any group g in 
down(w), gResidue and the variables and groups declared 
with 

member-of g 

are also in down(w). 
For example, computing the downward closure of the 

modifies list attributes in class Hero as shown in Sec- 
tion 3 yields 

attributes, attributesResidue, 
position, positionResidue, x, y, dx, dy, ddx, ddy, 
color, colorResidue, co1 

Thus, in that class, 

modifies attributes 

is interpreted as 

modifies attributesResidue, positionResidue, 
x, y, dx, dy, ddx, ddy, 
colorResidue, co1 

By handling data groups in the way described, the Hero 
implementation of method startNewLeve1, for example, 
is allowed to modify dx and dy and is allowed to call method 
update (but the assignments to dx and dy must take place 
@ter the call to update in order to establish the specified 
postcondition of startNewLeve1). The implementation of 
startNewLeve1 would also be allowed to call, for example, 
updateposition directly. But the checker would com- 
plain if startNewLeve1 called draw, because the call to 
draw would be treated as modifying the residue variable 
drawStateResidue, and that variable is not in the down- 
ward closure of attributes. 

5 Soundness 

The key to making the data groups proposal sound is that it is 
always known to which groups a given variable or group be- 
longs, and that residue variables are used to represent mem- 
bers of the group that are not in scope. The data groups 
proposal is, in fact, a variation of the use of abstract vari- 
ables and dependencies in my thesis [L&95]. I will explain 
the relation between the two approaches in this section, and 
relegate the proof of soundness to that for dependencies in 
my thesis. 

A data group is like an abstract variable. An abstract 
variable (also called a specification variable) is a fictitious 
variable introduced for the purpose of writing specifications. 
The value of an abstract variable is represented in terms 
of program variables and other abstract variables. In some 
scopes, it is not possible, nor desirable, to specify the repre- 
sentation of an abstract variable because not all of the vari- 
ables of the representation are visible. This tends to happen 
often in object-oriented programs, where the representation 
is often subclass-specific. However, if the abstract variable 
and some of the variables of the representation are visible 
in a scope, then the fact that there is a dependency between 
these variables must be known to a program checker in or- 
der to achieve modular soundness. Consequently, an anno- 
tation language that admits abstract variables must also in- 
clude some construct by which one can explicitly declare the 
dependency of an abstract variable on a variable that is part 
of its representation. For example, if position were an 
abstract variable, then 

depends position on x 

would declare that variable x is part of the representation 
of position. My thesis introduced such dependency dec- 
larations. The corresponding notion in this paper is the an- 
notation that declares that x is a member of the data group 
position: 

int x P member-of position */; 

Using dependencies, one can give a precise definition of 
what the occurrence of an abstract variable in a modifies 
clause means. For dependencies like the ones shown here, 
this interpretation is the same as that defined for data groups 
above: the downward closure. 

My thesis contains a proof that the use of dependencies 
in this way adheres to modular soundness, provided the pro- 
gram meets two requirements and provided the interpreta- 
tion includes residue variables. The two requirements, called 
the visibility and authenticity requirements, together state es- 
sentially that a dependency declaration 

depends a on c 

should be placed near the declaration of c, that is, so that 
every scope that includes the declaration of c also includes 
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the dependency declaration. Because the member-of anno- 
tation is made part of the declaration of the variable whose 
group membership it declares, the two requirements are au- 
tomatically satisfied. 

There is one other difference between data groups and 
abstract variables with dependencies. Suppose an abstract 
variable a depends on a variable c , and that the downward 
closure of the modifies clause of a method includes c but 
not a. The interpretation of such a modifies clause says that 
c may be modified, but only in such ways as to not change 
the abstract value of a lLei951. This is called a side effect 
constraint on a. 

But with data groups, it would be meaningless to use side 
effect constraints, since data groups don’t have values. Thus, 
if variable c is a member of a data group a and the down- 
ward closure of a method m includes c but not a, then the 
modifies clause does not constrain the implementation of m 
in how c is changed. Violations of modular soundness re- 
sult from the deficiency that the different interpretations of a 
specification in different scopes are inconsistent. So by re- 
moving side effect constraints in all scopes, modular sound- 
ness is preserved. 

From our experience with writing specifications for ex- 
tended static checking, we have found it useful to introduce 
an abstract variable conventionally called state [LN98a]. 
This variable is declared to depend on variables represent- 
ing the state of a class or module. The state variable is 
used in many modifies clauses, but not in pre- and postcon- 
ditions. Furthermore, state is never given an exact defini- 
tion in terms of its dependencies. Thus, the type of state 
is never important, so we declared its type to be any, where 
any is a new keyword that we added to the annotation lan- 
guage. 

The data groups proposal grew from a feeling that it was 
a mistake to apply the side effect constraint on variables like 
state whose type is any-after all, the exact value of such 
a variable is never defined and thus cannot be relied on by 
any part of the program. By changing the checking metbod- 
ology to not apply side effect constraints on variables of 
type any, one arrives at the interpretation of data groups 
presented in this paper. 

As a final note on modular soundness, I mention without 
going into details that the absence of side effect constraints 
makes the authenticity requirement unnecessary. This means 
that it would be sound to declare the members of a data group 
at the time the group is declared, rather than declaring, at the 
time a variable is declared, of which groups the variable is a 
member. For example, instead of writing 

P group g; */ 
. . . 
int x /* member-of g */; 

one could write 

bit x; 
. . . 
P group g contains x, . . . ; */ 

Using contains in this way adheres to modular soundness 
(but declaring a group with both a contains and a member- 
of phrase does not). However, while introducing a group 
containing previously declared variables is sound and may 
occasionally be convenient, it does not solve the problem 
described in this paper. 

6 Concluding remarks 

In summary, this paper has introduced data groups as a natu- 
ral way to document object-oriented programs. Data groups 
represent sets of variables and can be listed in the modties 
clauses that document what methods are allowed to mod- 
ify. The license to modify a data group implies the license 
to modify the members of the data group as defined by the 
downward closure rule. 

Since data groups are closely related to the use of ab- 
stract variables and dependencies [Lei95], they adhere to the 
useful property of modular soundness, which implies that 
one can check a program one class at a time, without need- 
ing global program information. Although the literature has 
dealt extensively with data abstraction and refinement, in- 
cluding Hoare’s famous 1972 paper [Hoa72], it seems that 
only my thesis and my work with Nelson lLN98a] have ad- 
dressed the problem of having abstract variables in modifies 
clauses in a way that modem object-oriented programs tend 
to use them. 

The use of data groups shown in this paper corresponds to 
static, as opposed to dynamic, dependencies. Dynamic de- 
pendencies arise when one class is implemented in terms of 
another. Achieving soundness with dynamic dependencies is 
more difficult than the case for static dependencies [LN98a, 
DLN981. 

Data groups can be combined with abstract variables and 
dependencies. This is useful if one is interested in the ab- 
stract values of some attributes and in the representation func- 
tions defining these abstract values. 

A related methodological approach to structuring the in- 
stance variables and methods of a class is method groups, 
first described by Lamping [Lam931 and developed further 
by Stata [Sta97]. Method groups and data groups both pro- 
vide ways to organize and think about the variables declared 
in classes. Other than that, methods groups and data groups 
have different aims. The aim of method groups is to allow 
the variables declared in a superclass to be used in a different 
way in a subclass, a feature achieved by the following disci- 
pline: The variables and methods of a class are partitioned 
into method groups. A variable x in a method group A is al- 
lowed to be modified directly only by the methods in group 
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A; methods in other groups can modify x only via calls to 
methods in group A. If a designer of a subclass chooses to 
replace a variable or method of a method group, all vari- 
ables and methods of the method group must be replaced. 
The use of method groups can complement the use of data 
groups, whose aim is to address not how variables are used 
but rather the more fundamental question of which variables 
are allowed to be changed by which methods. If one wants 
to write specifications in terms of abstract values and allow 
subclasses to change the representation functions of these 
abstract values, then one can combine data groups, abstract 
variables, and dependencies with method groups. 

A related approach to specifying in a superclass what a 
subclass method override is allowed to modify is using re- 
gion promises [CBS98]. These are used in reasoning about 
software transformations. In contrast to data groups, the sets 
of variables included in different regions are required to be 
disjoint. This restriction facilitates reasoning about when 
two method calls can be commuted, but burdens the pro- 
grammer with having to invent a partition on the class vari- 
ables, which isn’t always as natural. 

The region promises are used in both modifies clauses 
and so-called reads clauses, which specify which variables 
a method is allowed to read. Although not explored in this 
paper, it seems that data groups may be as useful in reads 
clauses as they are in modifies clauses. 

A complementary technique for finding errors in pro- 
grams is explored by Jackson in his Aspect system [Jac95]. 
To give a crude comparison, Aspect features annotations with 
which one specifies what a method must modify, whereas 
the modifies clauses considered in this paper specify what 
a method is allowed to modify. To specify what a method 
must modify, one uses aspects, which are abstract entities 
that can be declared to have dependences, consisting of vari- 
ables and other dependences. Such aspects are analogous to 
data groups. 

There are many specification languages for documenting 
object-oriented software, including Larch/C++ [Lea961 and 
the specification languages surveyed by Lana and Haughton 
lLH941. These specification languages do not, however, es- 
tablish a formal connection between specifications and ac- 
tual code. Without such a connection, one cannot build a 
programming tool for finding errors in implementations, As 
soon as one becomes interested in checking a method im- 
plementation against a specification that is useful to callers, 
one becomes concerned with what the implementation is al- 
lowed to modify. Add subclassing to the stew and one faces 
the problem described in this paper. 

To motivate data groups in this paper, I spoke informally 
about the semantics of the example code. There are sev- 
eral Hoare-like logics and axiomatic semantics of object- 
oriented programs that define the semantics formally [Lea89, 
AdB94, Nau94, AL97, Lei97, PHM98, Lei98a]. Four of 
these lAL97, Lei97, PHM98, Lei98a] deal with programs 

where objects are references to mutable data fields (instance 
variables) and method invocations are dynamically dispatched. 
However, except for Ecstatic lLei971, these logics have fo- 
cused more on the axiomatization of language features and 
object types than on the desugaring of useful specification 
constructs. 

In the grand scheme of annotating object-oriented pro- 
grams in ways that not only help programmers, but that also 
can be used by program analyzers, this paper has touched 
only on the modification of extended state. Though they 
sometimes seem like a nuisance in the specification of pro- 
grams, modifies clauses are what give a checker precision 
across procedure boundaries. Vandevoorde has also found 
modifies clauses to be useful in improving program perfor- 
mance [ Van94]. 

Other important method annotations include pre- and post- 
conditions, of which useful variations have also been stud- 
ied [Jongl, LB97J. As for annotating data, object invari- 
ants lMey88, LW94, LH94, Lea961 is a concept useful to 
programmers and amenable as annotations accepted by a 
program checker. Like the modification of extended state, 
achieving modular soundness with object invariants is an is- 
sue [LS97]. 
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