A Polymorphic Type System for Extensible Records and Variants

Benedict R. Gaster and Mark P. Jones
Technical report NOTTCS-TR-96-3, November 1996
Department of Computer Science, University of Nottingham,
University Park, Nottingham NG7 2RD, England.
{brg,mpj}@cs.nott.ac.uk

Abstract

Records and variants provide flexible ways to construct
datatypes, but the restrictions imposed by practical
type systems can prevent them from being used in flex-
ible ways. These limitations are often the result of con-
cerns about efficiency or type inference, or of the diffi-
culty in providing accurate types for key operations.

This paper describes a new type system that reme-
dies these problems: it supports extensible records and
variants, with a full complement of polymorphic opera-
tions on each; and it offers an effective type inference al-
gorithm and a simple compilation method. It is a prac-
tical system that can be understood and implemented
as a natural extension of languages like Standard ML
and Haskell. In an area that has already received a
great deal of attention from the research community,
the type system described here is the first to combine
all of these features in a practical framework.

One important aspect of this work is the emphasis
that it places on the use of rows in the construction of
record and variant types. As a result, with only small
extensions of the core type system, we are able to intro-
duce new, powerful operations on records using features
such as row polymorphism and first-class labels.

1 Introduction

Products and sums play fundamental roles in the con-
struction of datatypes: products describe grouping of
data items, while sums express choices between alter-
natives. For example, we might represent a date as a
product, with three integer components specifying the
day, month, and year:

Date = Int x Int x Int.

For a simple example of a sum, consider the type of
input events to a window system, with one alternative
indicating that a character has been entered on the key-

board, and another indicating a mouse click at a par-
ticular point on the screen:

FEvent = Char + Point.

These definitions are adequate, but they are not par-
ticularly easy to work with in practice. For example, it
1s easy to confuse datatype components when they are
accessed by their position within a product or sum, and
programs written in this way can be hard to maintain.

To avoid these problems; many programming lan-
guages allow the components of products, and the al-
ternatives of sums, to be identified using names drawn
from some given set of labels. Labelled products are
more commonly known as records or structs, while la-
belled sums are perhaps better known as wariants or
untons. For example, the Date and Fvent datatypes
described above might be defined more attractively as:

Date = Rec {day:Int, month:Int, year:Int]}
Fvent = Var {key:Char, mouse: Pointl]}.

This notation captures a common feature in the con-
struction of record and variant types, using rows of the
form {&4:7,..., Li:m]} to describe mappings that as-
sociate a type 7; with each of the (distinct) labels ;.
Record types are obtained by preceding rows with the
symbol Rec. Variant types are constructed using Var.

For example, if » = {li:m, ..., Li:7]} and eq,. . . e, have
types 71,...,7n, respectively, then we can form a record
(b = e1,...,l, = €,) of type Rec r, or distinct vari-

ants, (4 = e1),...,{ly = e,), each of type Var r. Thus,
(day = 25, month = 12, year = 1996) and (key ='a’)
represent values of type Date and Fvent, respectively.

1.1 Polymorphism and extensibility

Unfortunately, practical languages are often less flexi-
ble in the operations that they provide to manipulate
records and variants. For example, many languages—
from C to Standard ML (SML)—will only allow the pro-
grammer to select the [component, r.{, from a record r

if the type of r is uniquely determined at compile-time®.
These languages do not support pelymorphic operations
on records—such as a general selector function (_.0) that
will extract a value from any record that has an [field.
A further weakness in many of these languages is that
they provide no real support for extensibility; there are
no general operators for adding a field, removing a field,
renaming a field, or replacing a field (possibly with a
value of a different type) in a record value.

There have been many previous attempts to design
type systems for records and variants that support poly-
morphism and extensibility. Such work is important,
not just in its own right, but also in its application to
the study of object-oriented or database programming
languages where these facilities seem particularly use-
ful. We will summarize the key features of some of these
earlier systems here before describing our own proposal.

Subtyping: Subtypingisone of the most widely used
techniques for building type systems for records and
variants [3, 5, 4, 21]. We can define a subtyping relation
by specifying that a row r is a subrow of ry, written
ry < 19, if r; contains all the fields of r5, and possibly
more. The intuition here is that, for example, a record
of type Rec r could be used in any context where a
value of type Rec 1y is expected, and conversely, that a
variant of type Var rs can be substituted in any context
where a value of type Var r; 1s required. In particular,
the selection operator (_.{) can be treated as a function
of type:
VaVr < {laf.Rec r — a.

This operation is implemented, at least conceptually,
by coercing from Rec r to a known type—the singleton
Rec {l:aft—and then extracting the required field. One
weakness of this approach is that information about the
other fields in the record is lost, so it is harder to de-
scribe operations like record extension. For example,
observing that bounded quantification is not by itself
sufficient, Cardelli and Mitchell [5] used an overriding
operator on types to overcome this problem.

Row extension: Motivated by studies of object-
oriented programming, Wand [26] introduced the con-
cept of row variables to allow incremental construction
of record and variant types. For example, a record of
type Rec {l : 7| r|} has all of the fields of a record of
type Rec r, together with a field ! of type 7. Wand
did not discuss compilation, but his approach supports
both polymorphism and extensibility. For example, the

In implementations using boxed representations for values, only
the set of labels in r is needed; the actual component types are not
required.

selection operator (_.[) has type:
VaVr.Rec{l: a|r} — a.

However, the operations and types in Wand’s system
are unchecked; for example, extending a row with an [
field may either add a completely new field, or replace
an existing field labelled with [. As a result, some pro-
grams do not have principal types [27].

Flags: Rémy has developed a flexible treatment for
extensible records and variants in a natural extension of
ML [23]. A key feature of his system is the use of flags
to encode both positive and negative information—that
18, to indicate which fields must be present, and which
must be absent. Again, a concept of row variables is
used to deal with other fields whose presence or absence
is not significant in a particular situation. For example,
the selection operator has type:

VaVr.Rec{l : pre(a)|r} — «,

where pre(«) is a flag indicating the presence of a field
of type «, and r is a row variable representing the rest
of the record. Intuitively, records in Rémy’s system
are represented by tuples with a slot for each possible
label. The type system prevents access to undefined
components, but does not lead directly to a simple and
efficient implementation.

Predicates: Harper and Pierce [8, 7] studied type
systems for extensible records using predicates on types
to capture information about presence or absence of
fields, and to restrict attention to checked operations.
For example, writing r#rs for the assertion that the
rows r; and o have disjoint sets of labels, the selection
operator operator (_.0) has type:

VaVr.(r#{l: af) = Rec (v || {l: a}) — «,

where ry || ro is the row obtained by merging r; and rs,
and is only defined if ry#ry. Harper and Pierce’s work
does not deal with variants, type inference, or compila-
tion, and does not provide an operational interpretation
of predicates. However, their approach to record typing
was one of the motivating examples in Jones’ work on
qualified types [11] where a general framework for type
inference and compilation was developed, including a
type system for records as a special case. One of the
achievements of the present paper is to refine and ex-
tend that work to a practical system, avoiding problems
such as the lack of most general unifiers in Jones’ full
system—the result of including record restriction in the
type language.

Kinds: Ohori [18] described a type system that ex-
tends SML with polymorphic operations on both records
and variants. Significantly, Ohori also presented a sim-
ple and effective compilation method: input programs
are translated into a target language that adds extra pa-
rameters to specify field offsets. In fact, the end result
is much the same as that suggested by Jones’ work on
qualified types, even though the two approaches were
developed independently. But Ohori’s work differs sub-
stantially from other systems in its use of a kind system:;
this allows variables ranging over record types to be an-
notated with a specification of the fields that they are
expected to contain. For example, the selection opera-
tor operator (_.0) has type:

Va.Vrﬂl:a]}.Rec r— .

The main limitation of Ohori’s type system is its lack
of support for extensibility.

1.2 This paper

The type system described in this paper combines many
of the ideas that have been used in previous work into a
practical type system for implicitly typed languages like
SML [16] and Haskell [20]. In particular, it supports
polymorphism and extensibility, records and variants,
type inference, and compilation. The type system 1is
an application of qualified types, extended to deal with
a general concept of rows. Positive information about
the fields in a given row is captured in the type lan-
guage using row extension, while negative information
is reflected by the use of predicates.

The most obvious benefit of this approach is that
we can adapt results and properties from the general
framework of qualified types—such as the type infer-
ence algorithm and the compilation method—without
having to go back to first principles. The result is a con-
siderable simplification of both the overall presentation
and of specific proofs. Another important advantage of
this approach is that it guarantees compatibility with
other applications of qualified types. For example, our
type system can be used—and indeed, has already been
used in our prototype implementation—in conjunction
with the type class mechanisms of Haskell.

The remaining sections of this paper are as follows.
Section 2 provides a general overview of our new type
system, with a more detailed formal presentation in Sec-
tion 3. This is followed by discussions of type inference
in Section 4 and compilation in Section 5. With some
small extensions to the core system, Section 6 shows
how our framework can be used to support some new,
powerful operations on records and variants using row
polymorphism and labels as first-class values. Finally,
Section 7 concludes with pointers to further work.

2 Overview

Both record and variant types are defined in terms of
rows, and these are constructed by extension, starting
from the empty row, {}. It is convenient to introduce
abbreviations for rows obtained in this way:

Sl e =] Al)]
o e} = {l:m, .o e | {E-

Note, however, that we treat rows, and hence record or
variant types, as equals if they include the same fields,
regardless of the order in which those fields are listed.

{”1:7-1; .
{”1:7-1; .

2.1 Basic operations

Intuitively, a record of type Rec {l: a|r]} is like a pair
whose first component is a value of type «, and whose
second component is a record of type Rec r. This mo-
tivates our choice of basic operations on records, which
correspond directly to the two projections and the pair-
ing constructor for products in category theory or logic.
There is, however, one complication; we do not allow re-
peated uses of any label within a particular row, so the
expression {l : « | r} is only valid if [does not appear
in 7. This is reflected by prefixing each of the types be-
low with a predicate (r\/), pronounced “r lacks {7, that
restricts instantiation of r to rows without an { field:

e Selection: to extract the value of a field [:2
(=) 2 (r\l) = Rec {l: a|r} — a.
o Restriction: to remove a field labelled {:
(=0 (r\l) = Rec {l : «|r}} — Rec r.
e Extension: to add a field ! to an existing record:
({=_):=(r\l) = a— Rec r — Rec {l:a|r].

We can use these basic operations to implement a num-
ber of additional operators, including:

e Update/replace: to update the value in a particu-
lar field, possibly with a value of a different type:
(L:=_]0) = ("\)=a— Rec{l:3]|r]}
— Rec {l: a|r}
(li=z2|r) = (I=z|r=1)

’To simplify the notation, we assume implicit universal quantifi-
cation over free type variables. For example, the full type of the
selection operator is Vr.Va.(r\{) = Rec {{: o|r} — a.

e Renaming: to change the label attached to a par-
ticular field:

[l — m] (r\l, P\ m) = Rec {l: a|r}
— Rec {m : a|r]}
ril—m] = (m=rllr=1)

The empty record, (), plays an important role as the
only proper value of type Rec {}. Again, it is convenient
to introduce abbreviations for the construction of record
values by repeated extension:

yh=en|7) = (h=er]...(lh=en|7)..)
) ln:en) = (11:61, cey lnzen |())

We can specify the basic operations on variants in a sim-
ilar way. Again, they correspond closely to the standard
operations on sums in category theory or logic:

(11:61, N
(11:61, N

e Injection: to tag a value with the label I:
(=)= (r\)=a— Var {l:a|r]}.

e Embedding: to embed a value in a variant type
that also allows for a new label, [:

(2 = (r\) = Var r = Var {l: | r].

e Decomposition: to act on the value in a variant,
according to whether or not it is labelled with I

(le?:)u(r\)= Var {l: |7}
— (o —f)
— (Var r — f)

The empty variant, {}, is the only value of type Var {}.

More sophisticated language constructs, for exam-
ple, pattern matching facilities, or record update, are
easily described using the operations listed here. In ad-
dition, we expect that practical implementations will
use, but not display predicates implied by the context
in which they appear. For example, all of the types
above include a row {l : | r]} that is only valid if r\/;
so displaying this predicate is, in some sense, redun-
dant. However, as we will see in the next section, this
predicate plays a central role in the implementation of
the basic operations.

2.2 Implementation details

Our next task is to explain how the data structures and
operations described above can be implemented. We
will focus on the treatment of records and, in particular,
the implementation of selection, (_.1), which is probably

the most frequently used basic operation. A naive ap-
proach would be to represent a record by an association
list, pairing labels with values. This would allow simple
implementations for each of the basic operations, with
the type system providing a guarantee that the search
for any given labelled field would not fail. A major dis-
advantage is that it does not allow constant time access
to record components.

To avoid these problems, we will assume instead that
a record value is represented by a contiguous block of
memory that contains a value for each individual field.
To select a particular component r.l from a record r,
we need to know the offset of the [field in the block of
memory representing r. Languages without polymor-
phic selection will usually only allow an expression of
the form r.l if the offset value, and hence the structure
or even the full type of r, 1s known at compile-time.

However, it is not actually necessary to know the
position of every field at compile-time; instead, we can
treat unknown offsets as implicit parameters whose val-
ues will be supplied at run-time when the full types of
the records concerned are known. This is essentially
the compilation method that was used by Ohori [18],
and also suggested, independently, by Jones [11]. If
we forget about typing issues for a moment and as-
sume that records are implemented as arrays or tu-
ples, then the (_.l) operator can be implemented by a
function Az.Ar.7[{], using the extra parameter 7 to sup-
ply the offset of [in r. For example, the expression:
(day = 25, month = 12, year = 1996).day can be imple-
mented by compiling it to:

(Ai.Ar.r[i]) 0 (25,12, 1996)

which evaluates to 25, as expected. Of course, there are
run-time overheads in calculating and passing offset val-
ues as extra parameters. However, an attractive feature
of our system is that these costs are only incurred when
the extra flexibility of polymorphic selection is required.

Fach predicate (r\/) in the type of a function signals
the need for an extra run-time parameter to specify the
offset at which a field labelled [would be inserted into
a record of type Rec r. Obviously, the same offset can
also be used to locate or remove the [field from a record
of type Rec {l: a|r}, or treated as ordinal numbers to
access and tag values in a variant. So, this one extra
piece of information is all that we need to implement
the basic operations.

Operations like record extension and restriction will,
in general, be implemented by copying. Optimizations
can be used to combine multiple extensions or restric-
tions of records, avoiding unnecessary allocation and
initialization of intermediate values. For example, a
compiler can generate code that will allocate and ini-
tialize the storage for a record (z = 1,y = 2,2 =3) in

a single step, rather than a sequence of three individ-
ual allocations and extensions as a naive interpretation
might suggest.

The typechecker gathers and simplifies the predi-
cates generated by each use of an operator on records or
variants. For example, if foday 1s a value of type Date,
then an expression like today.month will generate a sin-
gle constraint, {day : Int, year : Int}}\month. Predi-
cates like this, involving rows whose structure is known
at compile-time, are easily discharged by calculating the
appropriate offset value. Obviously, a compiler can use
this information to produce efficient code by inlining
and specializing the selector function, (_.month).

Predicates that are not discharged within a section
of code will, instead, be reflected in the type assigned
to 1t. For example, there is nothing in the following
definition to indicate the full type of d:

newYear d = d.day = 1A d.month =1,
so the inferred type will be:

(r\day, r\month) =
Rec {day : Int, month : Int|r}} — Bool.

We would not expect this definition to have been ac-
cepted at all by a compiler for SML which requires the
set of labels in a record to be uniquely determined by
‘program context’. But the meaning of this phrase is
defined only loosely by an informal note in the defi-
nition of SML [16]. Now, with the ideas used in this
paper, there is a way to make this precise: a defini-
tion is only acceptable in SML if the inferred type does
not contain any predicates. For programs written with
these restrictions, a language based on our type system
should offer the same levels of performance as SML.

It is possible that our more general treatment of
record operations could result in compiled programs
that are littered with unwanted offset parameters; ex-
perience with our prototype implementations will help
to substantiate or dismiss these concerns. In any case,
there are simple steps that can be taken to avoid such
problems. For example, a compiler might reject any
definition with an inferred type containing predicates,
unless an explicit type signature has been given to sig-
nal the programmer’s acceptance. This is closely related
to the monomorphism restriction in Haskell [20] and to
proposals for a value restriction in SML [29, 13].

3 Formal presentation
This section provides a formal presentation of our type
system, based on two particular ingredients:

e The theory of qualified types [11], which provides
a general framework for describing restricted poly-

morphism and overloading. In the current appli-
cation, we use constraints to capture assumptions
about the occurrences of labels within rows.

e A higher-order version of the Hindley-Milner type
system [9, 15, 6], originally introduced in the study
of constructor classes [12]. Amongst other things,
this provides a simple way to introduce the new
constructs for rows, records, and variants without
the need for special, ad-hoc syntax.

We split the presentation into sections: kinds (Sec-
tion 3.1), types and constructors (Section 3.2), predi-
cates (Section 3.3), and typing rules (Section 3.4).

3.1 Kinds

One of the most important aspects of the work de-
scribed here is the use of a kind system to distinguish
between different kinds of type constructor. Formally,
the set of kinds is specified by the following grammar:

the kind of all types
row the kind of all rows

K = %
| k1 — ks funclion kinds

Intuitively, the kind x; — ks represents constructors
that take something of kind #; and return something of
kind k2. The row kind is new to the system presented
here and was not part of the type system used in the
development of constructor classes.

3.2 Types and constructors

For each kind x, we have a collection of constructors
C* (including variables a®) of kind «:

cr o= X" constants

| o vartables

| C~'=x " applications
T = C* types

The usual collection of types, represented here by the
symbol 7, is just the constructors of kind *. For the pur-
poses of this paper, we assume that the set of constant
constructors includes at least the following, writing x::x
to indicate the kind x associated with each constant y:

— ok — ok — % function space

A o Tow empty row

i} * — row — row extension, for each [
Rec Lorow — % record construction
Var Lorow — % variant construction

For example:

e The result of applying the function space construc-
tor — to two types 7 and 7’ is the type of functions

from 7 to 7/, and is written as 7 — 7' in more con-
ventional notation.

e The result of applying the Rec constant to the
empty row {[} of kind row is the type Rec {} of
kind *.

e The result of applying an extension constructor
{l:2] } to a type 7 and a row r is a row, usually
written as {l:7| 7]}, obtained by extending r with a
field labelled [of type 7. Note that we include an
extension constructor for each different label I. To
avoid problems later, we will also need to prohibit
partial application of extension constructors.

The kind system is used to ensure that type expressions
are well-formed. While it is sometimes convenient to an-
notate individual constructors with their kinds, there 1s
no need in practice for a programmer to supply these
annotations. Instead, they can be calculated automati-
cally using a simple kind inference process [12].

We consider two rows to be equivalent if they include
the same fields, regardless of the order in which they are
listed. This is described formally by the equation:

er, Vi | e = U7, Lr|r],

and extends in the obvious way to an equality on arbi-
trary constructors.

For the purposes of later sections, we define a mem-
bership relation, ({ : 7)E€r, to describe when a particular
field ({ : 7) appears in a row r:

(I:7m)er

1£7
(l:T)Eﬂl/ZT/|T]}(75

(L:myefl:r)r}
and a restriction operation, r — [, that returns the row

obtained from r by deleting the field labelled I:

Ql:r|r}—1 T
Q:rirp =1 = U :7r|r—1}.

It is easy to prove that these operations are well-defined
with respect to the equality on constructors, and to
confirm intuitions about their interpretation by showing
that, if ({: 7)er, then r={l:7|r—1]}.

3.3 Predicates

The syntax for rows allows examples like {{ : 7, [: 7'}
where a single label appears in more than one field.
While this might be useful in some applications, it 1s not
appropriate for work with records or variants where we
allow at most one field with any given label. Clearly,
some additional mechanisms are needed to enable us
to specify that a type of the form Rec {{ : 7| r}}, for

example, is only valid if the row r does not contain a
field labelled with {.

One way to achieve this 1s to use a more sophisticated
kind system, with sets of labels, L, as kinds instead of
the single row kind. For example, rows with field labels
li,... 1, can be represented by the kind L = {l;,..., 1, };
this is essentially the approach adopted by Ohori [18].
Unfortunately, this becomes much more complicated if
we try to extend it to deal with extensible rows. In
particular, we would need to assign whole families of
kinds, indexed by label sets, L, to some of the construc-
tor constants introduced in the previous section:

T
Rec, Var

b L= (DU{l)) 1¢1L

L — %

The alternative that we adopt in this paper is based
on the theory of qualified types [11], using predicates to
capture any side conditions that are required to ensure
that a given type expression is valid. In fact, only a
single form of predicate is needed for this purpose:

7 = C™\l predicates

Intuitively, the predicate 7\l can be read as an asser-
tion that the row r does not contain an [field. More
precisely, we explain the meaning of predicates using
the entailment relation defined in Figure 1. A deriva-

P\l 1£0

POt e e

P\

Figure 1: Predicate entailment for rows.

tion of P K= 7 from these rules can be understood as
a proof that, if all of the predicates in the set P hold,
then so does 7. It is easy to prove that the relation H-
1s well-defined with respect to equality of constructors.

3.4 Typing rules

Following Damas and Milner [6], we distinguish between
the simple types, 7, described above, and type schemes,
o, described by the grammar below:

o == p | Yap lype schemes
p == 1 | m=71 qualified types

Restrictions on the instantiation of universal quanti-
fiers, and hence on polymorphism, are described by en-
coding the required constraints as a set of predicates,
P, in a qualified type of the form P = 7. The set of
free type variables in a object X is written as TV (X).

The term language is just core-ML, an implicitly
typed A-calculus, extended with constants and a let
construct, and described by the following grammar:

F 2= z | c¢c| EF | XFE|letz=FEinF

We assume that the set of constants ¢ includes the op-
erations and values required for manipulating records
and variants as described in Section 2, and that each
constant ¢ is assigned a closed type scheme, o..

The typing rules are presented in Figure 2. A judge-
ment of the form P| A F F : o represents an assertion
that, if the predicates in P hold, then the term E has
type o, using assumptions in A to provide types for free
variables. These are just the standard rules for qualified

(const) P|AF ¢:0.
(z:0)€ A
(var) -_—
PlAtz:0o
PIAFE:7"—71 P|AFF: 7
(—E)
P|AFEF .1
PlAg,z:T"HE: 1
(—1)
PlAF Xz B .7 — 1
PIAFrE:n=p PHnx
(=£)
Pl|AFE:p
PU{n}|AF E:
- (rHAF 2
PIAFE :7=p
P|AF E:Yao
(VE)
P|AF E:[r/a]o
V1) PIAFE:0c ag TV(A)UTV(P)
P|AF E:Yao
PI|AFE:0 Q|As,z:0FF 71
(let) -
P,QlAF(letz =Fin F): 1

Figure 2: Typing rules.

types [11], extending the rules of Damas and Milner [6]
to account for the use of predicates. Note that uses of
the symbols 7, p, and ¢ in these rules is particularly
important in restricting their application to particular
classes of types or type schemes.

4 Type Inference

This section provides a formal presentation of a type in-
ference algorithm for our system. The most important

feature is the introduction of inserters in Section 4.1 to
account for non-trivial equalities between row expres-
sions during unification.

4.1 Unification and insertion

Unification is a standard tool in type inference, and is
used, for example, to ensure that the formal and actual
parameters of a function have the same type. Formally,
a substitution® § is a unifier of constructors C, C' € C*
if SC' = SC’, and is a most general unifier of C' and C’
if every unifier of these two constructors can be written
in the form RS, for some substitution R.

The rules in Figure 3 provide an algorithm for cal-

(id) c¥c
(bind) e ()
bind ag TV(C
C[Créa]oz
cle vpLup
(apply)
cp" Yo

(1: T)é?”/ Irg(fr’)

e T|7”]}[£7”/

(row)

Figure 3: Kind-preserving unification.

culating unifiers, writing CX ¢’ for the assertion that
U is a unifier of the constructors ', C’ € C*. The
first three rules are standard [25], and are even suit-
able for unifying two row expressions that list exactly
the same components with exactly the same ordering in
each. But the fourth rule, (row), is needed to deal with
the more general problems of row unification.

To understand how this rule works, consider the task
of unifying two rows {{ : |7} and {{' : 7' | 7’|}, where LI
are distinct labels, and r,r" are distinct row variables.
Our goal is to find a substitution S such that:

5715 = S{l:r|r}

SqU ']
10 s S}

Clearly, the row on the left includes an (! : S7) field,
while the last row on the right includes an (I : S7/)
field. If these two types are to be equal, then we must

3For the purposes of this paper, we restrict our attention to kind-
preserving substitutions; that is, to substitutions that map variables
a € C" to constructors of the corresponding kind, .

choose the substitution S so that it will ‘insert’ the miss-
ing fields into the two rows 7’ and r, respectively. In
this particular case, assuming that r, v ¢ TV(r,7'),
then we can choose:

S=[U 7" e QL 7| "}

where r'' is a new type variable.

More generally, we will say that a substitution S is
an inserter of ({: 7) into r € C™¥ if ({: ST) € Sr. S
is a most general inserter of (I : 7) into r if every such
inserter can be written in the form RS, for some substi-
tution R. The rules in Figure 4 define an algorithm for

I
calculating inserters, writing (! : 7)€r for the assertion
that 7 is an inserter of ({: 7) into r € C™¥. Note that

[{Il:7'|r']}/r]
=

(inVar) (I: r, r¢ TV(r), r’ new

lzr)ér 140

({: T)éﬂl/ cT|rh

(inTail)
X

(inHead) ———
({: T)g{]l sl

Figure 4: Kind-preserving insertion.

the last rule here, (inHead), makes use of the unifica-
tion algorithm in Figure 3, so the two algorithms are
mutually recursive. The important properties of the
two algorithms—both soundness and completeness—
are captured in the following result:

Theorem 1 The unification (insertion) algorithm de-
fined by the rules in Figure 3 (Figure 4) caleulates most-
general unifiers (inserters) whenever they exist. The al-
gorithm fails precisely when no unifier (inserter) exists.

4.2 A type inference algorithm

Given the unification algorithm described in the pre-
vious section, we can use the type inference algorithm
for qualified types [11] as a type inference algorithm for
the type system presented in this paper. For complete-
ness, we include a definition of the algorithm using the
rules in Figure 5. Following Rémy [23], these rules can
be understood as an attribute grammar; in each typ-
ing judgement P | TA F" E : 7, the type assignment
A and the term F are inherited attributes, while the
predicate assignment P, type 7, and substitution 7" are
synthesized. The (let)" rule uses an auxiliary function

(z :Yo;.P=>T7)EA [new
[Bi/a PIAF @ [Bifa]r

(var)¥

P|TAF E:1 Q| T'TAW F .1/
T —a

U(T'PUQ)|UT'TAY EF : U«

o new

P|T(Ag,z:0)F E:7 anew
P|TAW M. E:Ta —r1

P|TAF E:1 o==Gen(TA, P = 1)
P T (TAz,z:0)F F 7
P|T'TAF (let = Ein F) : 7/

(let)™

Figure 5: Type inference algorithm W.

to calculate the generalization of a qualified type p with
respect to a type assignment A. This is defined as:

Gen(A, p) =Va,.p, where {a;} = TV(p)\TV(A).

The type inference algorithm is both sound and com-
plete with respect to the original typing rules.

Theorem 2 The algorithm described by the rules in
Figure 5 can be used to calculate a principal type for
a given term E under assumptions A. The algorithm
fails precisely when there is no typing for £ under A.

5 Compilation

Previously, we have described informally how programs
involving operations on records and variants can be
compiled and executed using a language that adds extra
parameters to supply appropriate offsets. This section
shows how this process can be formalized, including the
calculation of offset values.

5.1 Compilation by translation

In the general treatment of qualified types [L1], pro-
grams are compiled by translating them into a language
that adds extra parameters to supply evidence for pred-
icates appearing in the types of the values concerned.
The whole process can be described by extending the
typing rules to use judgements of the form:

PIAF EF~F 0

which include both the original source term E and a
possible translation, E'. A further change here is the
switch from predicate sets to predicate assignments; the
symbol P used above represents a set of pairs (v :)
in which no variable v appears twice. Each variable v
corresponds to an extra parameter that will be added
during compilation; v can be used whenever evidence
for the corresponding predicate 7 is required in E’.

In the current setting, predicates are expressions of
the form (r\{) whose evidence is the offset in r at which
a field labelled [would be inserted. The calculation of
evidence is described by the rules in Figure 6, which

PUulv:mithv:m

PHe:(r\l) €, <!
m =
PHm: (U :r|r\D) e+1, UI'<l

PH0:({N\)

Figure 6: Predicate entailment for rows with evidence.

are direct extensions of the earlier rules for predicate
entailment that were given in Figure 1. Intuitively, a
derivation of P b= e : 7 tells us that we can use e as
evidence for the predicate 7 in any environment where
the assumptions in P are valid. The second rule is the
most interesting and tells us how to find the position at
which a label [should be inserted in a row {I' : 7| r|:

o If [comes before !’ in the total ordering, <, on
labels, then the required offset will be the same as
the offset e of [in 7.

e But, if I’ comes before [, then we need to use an
offset of e + 1 to account for the insertion of I'.

In general, these rules calculate offsets that are either a
fixed natural number, or a fixed offset from one of the
variables in P. For simplicity, we have assumed a boxed
representation in which all record components occupy
the same amount of storage. It is actually quite easy to
allow for varying component sizes by replacing e + 1 in
the calculation above with e + size(7).

For reasons of space, we omit the complete descrip-
tion of translation from this paper, and restrict our-
selves instead to describing the two rules that account
for the use and introduction of offset parameters. The
first of these is a variation on function application:

PIAr E~FE 7=p PHe:m
P|AFE~FEe:p

This tells us that we need to supply suitable evidence
e in the translation of any program whose type is qual-
ified by a predicate . The second rule is analogous to
function abstraction, and allows us to move constraints
from the predicate assignment P into the inferred type:

PUl{v:mt|AFE~FE :p
PIAFE~M.E :7m=p

These two rules are direct extensions of (= F) and (=1)
in Figure 2, and combined with simple extensions of the
other rules there, we can construct a translation for any
term in the source calculus.

6 Extensions

The type system that we have described in the previous
sections offers a flexible, but fairly conventional set of
operations on records and variants. In this section we
consider two extensions to the original system. Section
6.1 describes a generalization of the record and variant
operations to include, amongst others, first-class exten-
sible case statements. Section 6.2 shows how the system
can be modified to allow labels to be treated as first-
class values.

6.1 Row polymorphism

Working with a general notion of rows has provided us
with an elegant way to deal with the common structure
in record and variant types. However, we have not seen
any compelling examples in the previous sections where
it was essential to consider rows separately from records
and variants; we could have just defined completely in-
dependent sets of record and variant types.

However, there are some applications in which the
ability to separate rows from records and variants offers
significant benefits. To illustrate this, consider again
the basic operations that were discussed in Section 2.
For example, if we generalize the rules in category the-
ory or logic for decomposing a sum to deal with n-ary
sums, then we obtain the following rule:

A1—>C An—>C’
A4 ...+ A4, —C

In terms of records and variants, this rule provides a
method for decomposing a variant—represented by the
sum Ay + ...+ A, in the conclusion—using a record
of functions—represented by the hypotheses A; — C'.
This suggests a general operation for variant elimina-
tion:

plusElim ::VYaNr.Rec (to o v) — Var r — a.

The to 7 r construct used here is defined as follows:

to 7 {} il

tor {l:7|r} = {l:7 —=7]to T r}.

This behaves like a particular kind of map operation on
rows, replacing each component type 7’ in r with a type
of the form 7/ — .

For an example of where such an operation may
prove useful; consider the type of integer lists that can
be obtained as a fixpoint of the following functor [14]:

data Ll = L (Var {nil : Rec {},

cons : Rec Jtl: I, hd : Int}]})

The sum of a list of integers can be calculated using a
general catamorphism:

cata (A(L v).plusElim (nil = X().0,
cons = Ar.r.hd + r.tl) v).

From this example, it is clear that plusElim 1s an alter-
native to the case construct of languages like Haskell
and SML. However, unlike these languages, it is not a
builtin part of the syntax; instead, it allows us to treat
case constructs as first-class, extensible values.

In a similar way, we can adapt the other rules for
constructing sums, and for decomposing or constructing
products, to functions involving records and variants.
The full set of operations are specified by the following
type signatures*:

plusElim VaVr.Rec (to a r) — Var r — «
plusIntro YaVr.Var (from o) — o — Var r
prodElim VYaVr.Var ({o o r) — Rec r — «
prodintro VYaVr.Rec (from o r) — o — Rec r

Given our earlier representations for records and vari-
ants, it is easy to implement each of these operations as
builtin primitives.

One technical difficulty that we face with this ap-
proach is in extending the treatment of unification to
deal with uses of the from and to constructs. This turns
out to be straightforward, except for potential complica-
tions caused by the presence of empty rows. For exam-
ple, in unifying two rows to ¢ r and to ¢’ r’, we cannot
simply unify ¢ with ¢/; if r, and hence 7/, is empty, then
there is no direct relationship between ¢t and #'. More
precisely, to obtain most general unifiers for from and
to constructs, we need to restrict ourselves to work with
non-empty rows. There are several alternatives to con-
sider here. For example, the obvious approach would
be to banish the empty row from our original type sys-
tem. A more satisfactory solution might be to adopt a

4The from « r construct used in the types of plusintro and
prodIntro is defined as an obvious dual to the to a r construct that
we used previously.

10

kind system that distinguishes between empty and non-
empty rows. We leave further investigation of this topic
to future work.

6.2 First-class labels

In previous sections of the paper, we have considered
the labels used to refer to fields as part of the basic
syntax of our language. As a result, we had to describe
selection from a record using a family of functions:

(L) (r\) = Rec {l: a| 1} — «,
with one function for each choice of label [. A more
attractive approach might be to allow primitive opera-
tions on records and variants to be parameterized over
labels. We can extend the type system described in pre-
vious sections to accomplish this, treating selection, for
example, as a single function of type:

(co) i (r\) = Rec {l: a|r}f — Label | — «,

This requires an extension of the kind system in Sec-
tion 3.1 with a new kind leb, and also a new type con-
stant Label of kind lab — *. Intuitively, each type of
the form Label [contains a unique label value. The
[parameter is important because 1t establishes a con-
nection between types and label values; a nullary Label
type would not have provided any way for us to ex-
press the necessary typing constraints. We can also dis-
pense with the family of extension constructors defined
in Section 3.2, replacing them with a single constructor
constant:

{=-| -} = lab — * — row — row.

Finally, we need to generalize the lacks predicate from
Section 3.3 to a two place relation r\! which takes both
a row r and a label { of kind lab. This can be defined
in much the same way as before, and has the same in-
terpretation as an offset value in the underlying imple-
mentation.

We can generalize the other basic operations on records
and variants in a similar way. For example, the expres-
sion Az.Ay.(y = 2,z = 3), which involves two uses of
extension, will be assigned the type:

{z : Int\y =
Label © — Label y — Rec {z : Int,y : Int}.

To our knowledge, this is the first work—in either im-
plicitly or explicitly typed record and variant calculi—
to consider a type system in which labels can be treated
as first-class values. This increases the expressiveness
of our system quite dramatically, and we already have
some interesting applications for these new features.

However, it remains to see how well this will work in
practice, and what its implications for language design
might be; we leave these topics to future work.

7 Conclusion

We have described a flexible, polymorphic type sys-
tem for extensible records and variants with an effec-
tive type inference algorithm and compilation method.
Prototype implementations have been written in SML
and Haskell, and a implementation of records has been
added to Hugs, an implementation of Haskell 1.3. Our
experience to date shows that these implementations
works well in practice. There are a number of areas for
further work:

Object systems. Another potential application for
rows would be in a type system for object-oriented pro-
gramming. For example, a constructor Obj of kind
row — * might be used to describe objects with a given
row of methods [17, 22, 1, 10, 21, 2].

More sophisticated basic operations. Our type sys-
tem does not support record append [28, 24] or the
database join that was one of the original motivations
for Ohori’s work [19]. One approach would be to adopt
the ideas of Harper and Pierce [7], choosing an appro-
priate form of evidence for the (ri#£rq) predicates de-
scribed in Section 1.1.

A new approach to datatypes. Languages like SML
and Haskell already provide facilities for defining new
datatypes and these overlap to some extent with the
mechanisms described in this paper. Unifying and com-
bining these different approaches would obviously be
useful, with a long term goal of developing a general
framework for extensible datatypes.

Acknowledgements

This work was supported in part by an EPSRC stu-
dentship 9530 6293. We would also like to thank our
colleagues, Colin Taylor and Graham Hutton, in the
functional programming group at Nottingham, for the
valuable contributions that they have made to the work
described in this paper.

References

[1] M. Abadi and L. Cardelli. A semantics of object
types. In In Proceedings of the 9th Symposium on
Logic in Computer Science, pages 332-341, July
1994.

[2] K. B. Bruce. A paradigmatic object-oriented pro-
gramming language: Design, static typing and

11

semantics. Journal of Functional Programming,

4(2):127-206, April 1994,

L. Cardelli. A semantics of multiple inheritance. In
G. Kahn, D. MacQueen, and G. Plotkin, editors,
Semantics of Data Types, volume 173 of Lecture
Notes in Computer Science, pages b1-67. Springer-
Verlag, 1984. Full version in Information and Com-

putation 76(2/3):138-164, 1988.

L. Cardelli. Extensible records in a pure calculus of
subtyping. Research report 81, DEC Systems Re-
search Center, Jan. 1992. Also in Carl A. Gunter
and John C. Mitchell, editors, Theoretical Aspects
of Object-Oriented Programmang: Types, Seman-
tics, and Language Design (MIT Press, 1994).

L. Cardelli and J. Mitchell. Operations on records.
Mathematical Structures in Computer Science, 1:3—
48, 1991. Also in Carl A. Gunter and John C.
Mitchell, editors, Theoretical Aspects of Object-
Oriented Programmang: Types, Semantics, and
Language Design (MIT Press, 1994); available as
DEC Systems Research Center Research Report
#48, August, 1989, and in the proceedings of
MFPS ’89, Springer LNCS volume 442.

L. Damas and R. Milner. Principal type schemes
for functional programs. In Proceedings of the 9th
ACM Symposium on Principles of Programming
Languages, pages 207-212, 1982.

R. Harper and B. Pierce. A record calculus based
on symmetric concatenation. In Proceedings of
the 18th Annual ACM Symposium on Principles of
Programmang Languages, Orlando FL, pages 131-
142. ACM, Jan. 1991. Extended version available
as Carnegie Mellon Technical Report CMU-CS-90-
157.

R. W. Harper and B. C. Pierce. Extensible records
without subsumption. Technical Report CMU-CS-
90-102, School of Computer Science, Carnegie Mel-
lon University, Feburary 1990.

J. R. Hindley. The principal type scheme of an
object in combinatory logic. Transactions of the
American Mathematical Society, 146:29-60, De-
cember 1969.

M. Hofmann and B. Pierce. A unifying type-
theoretic framework for objects. Journal of Func-
tional Programming, 1995. Previous versions ap-
peared in the Symposium on Theoretical Aspects
of Computer Science, 1994, (pages 251-262) and,
under the title “An Abstract View of Objects and
Subtyping (Preliminary Report),” as University of

[18]

[19]

[20]

Edinburgh, LFCS technical report ECS-LFCS-92-
226, 1992.

M. P. Jones. Qualified Types Theory and Practice.
Distinguished Dissertations in Computer Science.
Cambridge University Press, 1994.

M. P. Jones. A system of constructor classes: over-
loading and implicit higher-order polymorphism.
Journal of Punctional Programming, 5(1):1-35,
Jan. 1995. An earlier version appeared in Proc.

FPCA 1993.

X. Leroy. Polymorphism by name for references
and continuations. In Principles of Programming
Languages, pages 220-231. ACM press, 1993.

E. Meijer and G. Hutton. Bananas in space: FEx-
tending fold and unfold to exponential types. In
Proc. Tth International Conference on Functional
Programmaing and Computer Architecture. ACM
Press, San Diego, California, June 1995.

R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sci-

ences, 17:348-375, August 1978.

R. Milner, M. Tofte, and R. Harper. The definition
of Standard ML. The MIT Press, 1990.

J. C. Mitchell, F. Honsell, and K. Fisher. A lambda
calculus of objects and method specialization. In
1993 IEEE Sympostum on Logic in Computer Sci-
ence, June 1993.

A. Ohori. A polymorphic record calculus and its
compilation. ACM Transactions on Programming
Languages and Systems, 17(6):844-895, Nov. 1995.
Preliminary version in Proceedings of ACM Sym-
posium on Principles of Programming Languages,
1992, under the title, A compilation method for
ML-style polymorphic record calculi.

A. Ohori and P. Buneman. Type inference in a
database programming language. In Proceddings
of the ACM Conference on LISP and Functional
Programmang, pages 174-183. ACM, 1988.

J. Peterson and K. Hammond. Report on the Pro-
gramming Language Haskell, A Non-strict, Purely
Functional Language (Version 1.3). Technical Re-
port YALEU/DCS/RR-1106, Yale University, De-
partment of Computer Science, May 1996.

B. C. Pierce and D. N. Turner.
theoretic

Simple type-
object-oriented pro-
gramming. Journal of Functional Programming,
4(2):207-247, Apr. 1994. A preliminary version ap-
peared in Principles of Programming Languages,

foundations for

12

[22]

[23]

[24]

[25

[29

]

[t}

1993, and as University of Edinburgh technical re-
port ECS-LFCS-92-225, under the title “Object-
Oriented Programming Without Recursive Types”.

D. Rémy. Programmingobjects with ML-ART: An
extension to ML with abstract and record types. In
M. Hagiya and J. C. Mitchell, editors, Theoretical
Aspects of Computer Software, volume 789 of Lec-
ture Notes in Computer Science, pages 321-346.
Springer-Verlag, April 1994.

D. Rémy. Type inference for records in a nat-
ural extension of ML. 1In C. A. Gunter and
J. C. Mitchell, editors, Theoretical Aspects of
Object-Oriented Programming: Type, Semantics,
and Language Design, Foundations of Computing
Series. MIT Press, 1994. Early version appeared
in Sixteenth Annual Symposium on Principles of
Programming Languages. Austin, Texas, January

1989.

D. Rémy. Typing record concatenation for free.
In C. A. Gunter and J. C. Mitchell, editors, The-
oretical Aspects Of Object-Oriented Programming.
Types, Semantics and Language Design, Founda-
tions of Computing Series. MIT Press, 1994.

J. A. Robinson. A machine-oriented logic based
on the resolution principle. Journal of the Associ-
ation for Computing and Machinery, 12(1):23-41,
January 1965.

M. Wand. Complete type inference for simple ob-
jects. In Proceedings of the IEEE Symposium on
Logic in Computer Science, Ithaca, NY, June 1987.

M. Wand. Corrigendum: Complete type inference
for simple objects. In Proceedings of the IEEE Sym-
postum on Logic in Computer Science, 1988.

M. Wand. Type inference for record concatenation
and multiple inheritance. Information and Com-
putation, (93):1-15, 1991. Preliminary version ap-
peared in Proc. 4th IEEE Symposium on Logic in
Computer Science, 1989, 92-97.

A. Wright. Simple imperative polymorphism. Lisp
and Symbolic Computation, 8(4):343-356, Decem-
ber 1995.

