
A Polymorphic Type System for Extensible Records and VariantsBenedict R. Gaster and Mark P. JonesTechnical report NOTTCS-TR-96-3, November 1996Department of Computer Science, University of Nottingham,University Park, Nottingham NG7 2RD, England.fbrg,mpjg@cs.nott.ac.ukAbstractRecords and variants provide
exible ways to constructdatatypes, but the restrictions imposed by practicaltype systems can prevent them from being used in
ex-ible ways. These limitations are often the result of con-cerns about e�ciency or type inference, or of the di�-culty in providing accurate types for key operations.This paper describes a new type system that reme-dies these problems: it supports extensible records andvariants, with a full complement of polymorphic opera-tions on each; and it o�ers an e�ective type inference al-gorithm and a simple compilation method. It is a prac-tical system that can be understood and implementedas a natural extension of languages like Standard MLand Haskell. In an area that has already received agreat deal of attention from the research community,the type system described here is the �rst to combineall of these features in a practical framework.One important aspect of this work is the emphasisthat it places on the use of rows in the construction ofrecord and variant types. As a result, with only smallextensions of the core type system, we are able to intro-duce new, powerful operations on records using featuressuch as row polymorphism and �rst-class labels.1 IntroductionProducts and sums play fundamental roles in the con-struction of datatypes: products describe grouping ofdata items, while sums express choices between alter-natives. For example, we might represent a date as aproduct, with three integer components specifying theday, month, and year:Date = Int � Int � Int :For a simple example of a sum, consider the type ofinput events to a window system, with one alternativeindicating that a character has been entered on the key-

board, and another indicating a mouse click at a par-ticular point on the screen:Event = Char + Point :These de�nitions are adequate, but they are not par-ticularly easy to work with in practice. For example, itis easy to confuse datatype components when they areaccessed by their position within a product or sum, andprograms written in this way can be hard to maintain.To avoid these problems, many programming lan-guages allow the components of products, and the al-ternatives of sums, to be identi�ed using names drawnfrom some given set of labels. Labelled products aremore commonly known as records or structs, while la-belled sums are perhaps better known as variants orunions. For example, the Date and Event datatypesdescribed above might be de�ned more attractively as:Date = Rec fjday :Int ; month:Int ; year :Int jgEvent = Var fjkey :Char ; mouse:Point jg:This notation captures a common feature in the con-struction of record and variant types, using rows of theform fjl1:�1; : : : ; ln :�n jg to describe mappings that as-sociate a type �i with each of the (distinct) labels li .Record types are obtained by preceding rows with thesymbol Rec. Variant types are constructed using Var .For example, if r = fjl1:�1; : : : ; ln :�n jg and e1,: : : ,en havetypes �1,: : : ,�n , respectively, then we can form a record(l1 = e1; : : : ; ln = en) of type Rec r , or distinct vari-ants, hl1 = e1i; : : : ; hln = en i, each of type Var r . Thus,(day = 25;month = 12; year = 1996) and hkey = 0a 0irepresent values of type Date and Event , respectively.1.1 Polymorphism and extensibilityUnfortunately, practical languages are often less
exi-ble in the operations that they provide to manipulaterecords and variants. For example, many languages|fromC to Standard ML (SML)|will only allow the pro-grammer to select the l component, r :l , from a record r

if the type of r is uniquely determined at compile-time1.These languages do not support polymorphic operationson records|such as a general selector function (:l) thatwill extract a value from any record that has an l �eld.A further weakness in many of these languages is thatthey provide no real support for extensibility; there areno general operators for adding a �eld, removing a �eld,renaming a �eld, or replacing a �eld (possibly with avalue of a di�erent type) in a record value.There have been many previous attempts to designtype systems for records and variants that support poly-morphism and extensibility. Such work is important,not just in its own right, but also in its application tothe study of object-oriented or database programminglanguages where these facilities seem particularly use-ful. We will summarize the key features of some of theseearlier systems here before describing our own proposal.Subtyping: Subtyping is one of the most widely usedtechniques for building type systems for records andvariants [3, 5, 4, 21]. We can de�ne a subtyping relationby specifying that a row r1 is a subrow of r2, writtenr1 � r2, if r1 contains all the �elds of r2, and possiblymore. The intuition here is that, for example, a recordof type Rec r1 could be used in any context where avalue of type Rec r2 is expected, and conversely, that avariant of type Var r2 can be substituted in any contextwhere a value of type Var r1 is required. In particular,the selection operator (:l) can be treated as a functionof type: 8�:8r � fjl :�jg:Rec r ! �:This operation is implemented, at least conceptually,by coercing from Rec r to a known type|the singletonRec fjl :�jg|and then extracting the required �eld. Oneweakness of this approach is that information about theother �elds in the record is lost, so it is harder to de-scribe operations like record extension. For example,observing that bounded quanti�cation is not by itselfsu�cient, Cardelli and Mitchell [5] used an overridingoperator on types to overcome this problem.Row extension: Motivated by studies of object-oriented programming, Wand [26] introduced the con-cept of row variables to allow incremental constructionof record and variant types. For example, a record oftype Rec fjl : � j r jg has all of the �elds of a record oftype Rec r , together with a �eld l of type � . Wanddid not discuss compilation, but his approach supportsboth polymorphism and extensibility. For example, the1In implementations using boxed representations for values, onlythe set of labels in r is needed; the actual component types are notrequired.

selection operator (:l) has type:8�:8r :Rec fjl : � jr jg ! �:However, the operations and types in Wand's systemare unchecked; for example, extending a row with an l�eld may either add a completely new �eld, or replacean existing �eld labelled with l . As a result, some pro-grams do not have principal types [27].Flags: R�emy has developed a
exible treatment forextensible records and variants in a natural extension ofML [23]. A key feature of his system is the use of
agsto encode both positive and negative information|thatis, to indicate which �elds must be present, and whichmust be absent. Again, a concept of row variables isused to deal with other �elds whose presence or absenceis not signi�cant in a particular situation. For example,the selection operator has type:8�:8r :Rec fjl : pre(�) jr jg ! �;where pre(�) is a
ag indicating the presence of a �eldof type �, and r is a row variable representing the restof the record. Intuitively, records in R�emy's systemare represented by tuples with a slot for each possiblelabel. The type system prevents access to unde�nedcomponents, but does not lead directly to a simple ande�cient implementation.Predicates: Harper and Pierce [8, 7] studied typesystems for extensible records using predicates on typesto capture information about presence or absence of�elds, and to restrict attention to checked operations.For example, writing r1#r2 for the assertion that therows r1 and r2 have disjoint sets of labels, the selectionoperator operator (:l) has type:8�:8r :(r#fjl : �jg)) Rec (r k fjl : �jg)! �;where r1 k r2 is the row obtained by merging r1 and r2,and is only de�ned if r1#r2. Harper and Pierce's workdoes not deal with variants, type inference, or compila-tion, and does not provide an operational interpretationof predicates. However, their approach to record typingwas one of the motivating examples in Jones' work onquali�ed types [11] where a general framework for typeinference and compilation was developed, including atype system for records as a special case. One of theachievements of the present paper is to re�ne and ex-tend that work to a practical system, avoiding problemssuch as the lack of most general uni�ers in Jones' fullsystem|the result of including record restriction in thetype language.2

Kinds: Ohori [18] described a type system that ex-tends SML with polymorphic operations on both recordsand variants. Signi�cantly, Ohori also presented a sim-ple and e�ective compilation method: input programsare translated into a target language that adds extra pa-rameters to specify �eld o�sets. In fact, the end resultis much the same as that suggested by Jones' work onquali�ed types, even though the two approaches weredeveloped independently. But Ohori's work di�ers sub-stantially from other systems in its use of a kind system;this allows variables ranging over record types to be an-notated with a speci�cation of the �elds that they areexpected to contain. For example, the selection opera-tor operator (:l) has type:8�:8rfjl :�jg:Rec r ! �:The main limitation of Ohori's type system is its lackof support for extensibility.1.2 This paperThe type system described in this paper combines manyof the ideas that have been used in previous work into apractical type system for implicitly typed languages likeSML [16] and Haskell [20]. In particular, it supportspolymorphism and extensibility, records and variants,type inference, and compilation. The type system isan application of quali�ed types, extended to deal witha general concept of rows. Positive information aboutthe �elds in a given row is captured in the type lan-guage using row extension, while negative informationis re
ected by the use of predicates.The most obvious bene�t of this approach is thatwe can adapt results and properties from the generalframework of quali�ed types|such as the type infer-ence algorithm and the compilation method|withouthaving to go back to �rst principles. The result is a con-siderable simpli�cation of both the overall presentationand of speci�c proofs. Another important advantage ofthis approach is that it guarantees compatibility withother applications of quali�ed types. For example, ourtype system can be used|and indeed, has already beenused in our prototype implementation|in conjunctionwith the type class mechanisms of Haskell.The remaining sections of this paper are as follows.Section 2 provides a general overview of our new typesystem, with a more detailed formal presentation in Sec-tion 3. This is followed by discussions of type inferencein Section 4 and compilation in Section 5. With somesmall extensions to the core system, Section 6 showshow our framework can be used to support some new,powerful operations on records and variants using rowpolymorphism and labels as �rst-class values. Finally,Section 7 concludes with pointers to further work.

2 OverviewBoth record and variant types are de�ned in terms ofrows, and these are constructed by extension, startingfrom the empty row, fjjg. It is convenient to introduceabbreviations for rows obtained in this way:fjl1:�1; : : : ; ln :�n jr jg = fjl1:�1 j : : :fjln :�n jr jg : : : jgfjl1:�1; : : : ; ln :�n jg = fjl1:�1; : : : ; ln :�n j fjjgjg:Note, however, that we treat rows, and hence record orvariant types, as equals if they include the same �elds,regardless of the order in which those �elds are listed.2.1 Basic operationsIntuitively, a record of type Rec fjl : � jr jg is like a pairwhose �rst component is a value of type �, and whosesecond component is a record of type Rec r . This mo-tivates our choice of basic operations on records, whichcorrespond directly to the two projections and the pair-ing constructor for products in category theory or logic.There is, however, one complication; we do not allow re-peated uses of any label within a particular row, so theexpression fjl : � j r jg is only valid if l does not appearin r . This is re
ected by pre�xing each of the types be-low with a predicate (rnl), pronounced \r lacks l", thatrestricts instantiation of r to rows without an l �eld:� Selection: to extract the value of a �eld l :2(:l) :: (rnl)) Rec fjl : � jr jg ! �:� Restriction: to remove a �eld labelled l :(� l) :: (rnl)) Rec fjl : � jr jg ! Rec r :� Extension: to add a �eld l to an existing record:(l = j) :: (rnl)) �! Rec r ! Rec fjl : � jr jg:We can use these basic operations to implement a num-ber of additional operators, including:� Update/replace: to update the value in a particu-lar �eld, possibly with a value of a di�erent type:(l := j) :: (rnl)) �! Rec fjl : � jr jg! Rec fjl : � jr jg(l := x jr) = (l = x jr � l)2To simplify the notation, we assume implicit universal quanti�-cation over free type variables. For example, the full type of theselection operator is 8r:8�:(rnl)) Rec fjl : � jrjg ! �.3

� Renaming: to change the label attached to a par-ticular �eld:[l m] :: (rnl ; rnm)) Rec fjl : � jr jg! Rec fjm : � jr jgr [l m] = (m = r :l jr � l)The empty record, (), plays an important role as theonly proper value of type Rec fjjg. Again, it is convenientto introduce abbreviations for the construction of recordvalues by repeated extension:(l1=e1; : : : ; ln=en jr) = (l1=e1 j : : : (ln=en jr) : : :)(l1=e1; : : : ; ln=en) = (l1=e1; : : : ; ln=en j ())We can specify the basic operations on variants in a sim-ilar way. Again, they correspond closely to the standardoperations on sums in category theory or logic:� Injection: to tag a value with the label l :hl = i :: (rnl)) �! Var fjl : � jr jg:� Embedding: to embed a value in a variant typethat also allows for a new label, l :hl j i :: (rnl)) Var r ! Var fjl : � jr jg:� Decomposition: to act on the value in a variant,according to whether or not it is labelled with l :(l 2 ? :) :: (rnl)) Var fjl : � jr jg! (�! �)! (Var r ! �)! �:The empty variant, hi, is the only value of type Var fjjg.More sophisticated language constructs, for exam-ple, pattern matching facilities, or record update, areeasily described using the operations listed here. In ad-dition, we expect that practical implementations willuse, but not display predicates implied by the contextin which they appear. For example, all of the typesabove include a row fjl : � j r jg that is only valid if rnl ;so displaying this predicate is, in some sense, redun-dant. However, as we will see in the next section, thispredicate plays a central role in the implementation ofthe basic operations.2.2 Implementation detailsOur next task is to explain how the data structures andoperations described above can be implemented. Wewill focus on the treatment of records and, in particular,the implementation of selection, (.l), which is probably

the most frequently used basic operation. A naive ap-proach would be to represent a record by an associationlist, pairing labels with values. This would allow simpleimplementations for each of the basic operations, withthe type system providing a guarantee that the searchfor any given labelled �eld would not fail. A major dis-advantage is that it does not allow constant time accessto record components.To avoid these problems, we will assume instead thata record value is represented by a contiguous block ofmemory that contains a value for each individual �eld.To select a particular component r :l from a record r ,we need to know the o�set of the l �eld in the block ofmemory representing r . Languages without polymor-phic selection will usually only allow an expression ofthe form r :l if the o�set value, and hence the structureor even the full type of r , is known at compile-time.However, it is not actually necessary to know theposition of every �eld at compile-time; instead, we cantreat unknown o�sets as implicit parameters whose val-ues will be supplied at run-time when the full types ofthe records concerned are known. This is essentiallythe compilation method that was used by Ohori [18],and also suggested, independently, by Jones [11]. Ifwe forget about typing issues for a moment and as-sume that records are implemented as arrays or tu-ples, then the (:l) operator can be implemented by afunction �i :�r :r [i], using the extra parameter i to sup-ply the o�set of l in r . For example, the expression:(day = 25;month = 12; year = 1996):day can be imple-mented by compiling it to:(�i :�r :r [i]) 0 (25; 12; 1996)which evaluates to 25, as expected. Of course, there arerun-time overheads in calculating and passing o�set val-ues as extra parameters. However, an attractive featureof our system is that these costs are only incurred whenthe extra
exibility of polymorphic selection is required.Each predicate (rnl) in the type of a function signalsthe need for an extra run-time parameter to specify theo�set at which a �eld labelled l would be inserted intoa record of type Rec r . Obviously, the same o�set canalso be used to locate or remove the l �eld from a recordof type Rec fjl : � jr jg, or treated as ordinal numbers toaccess and tag values in a variant. So, this one extrapiece of information is all that we need to implementthe basic operations.Operations like record extension and restriction will,in general, be implemented by copying. Optimizationscan be used to combine multiple extensions or restric-tions of records, avoiding unnecessary allocation andinitialization of intermediate values. For example, acompiler can generate code that will allocate and ini-tialize the storage for a record (x = 1; y = 2; z = 3) in4

a single step, rather than a sequence of three individ-ual allocations and extensions as a naive interpretationmight suggest.The typechecker gathers and simpli�es the predi-cates generated by each use of an operator on records orvariants. For example, if today is a value of type Date,then an expression like today :month will generate a sin-gle constraint, fjday : Int ; year : Int jgnmonth. Predi-cates like this, involving rows whose structure is knownat compile-time, are easily discharged by calculating theappropriate o�set value. Obviously, a compiler can usethis information to produce e�cient code by inliningand specializing the selector function, (:month).Predicates that are not discharged within a sectionof code will, instead, be re
ected in the type assignedto it. For example, there is nothing in the followingde�nition to indicate the full type of d :newYear d = d :day = 1 ^ d :month = 1;so the inferred type will be:(rnday ; rnmonth))Rec fjday : Int ; month : Int jr jg ! Bool :We would not expect this de�nition to have been ac-cepted at all by a compiler for SML which requires theset of labels in a record to be uniquely determined by`program context'. But the meaning of this phrase isde�ned only loosely by an informal note in the de�-nition of SML [16]. Now, with the ideas used in thispaper, there is a way to make this precise: a de�ni-tion is only acceptable in SML if the inferred type doesnot contain any predicates. For programs written withthese restrictions, a language based on our type systemshould o�er the same levels of performance as SML.It is possible that our more general treatment ofrecord operations could result in compiled programsthat are littered with unwanted o�set parameters; ex-perience with our prototype implementations will helpto substantiate or dismiss these concerns. In any case,there are simple steps that can be taken to avoid suchproblems. For example, a compiler might reject anyde�nition with an inferred type containing predicates,unless an explicit type signature has been given to sig-nal the programmer's acceptance. This is closely relatedto the monomorphism restriction in Haskell [20] and toproposals for a value restriction in SML [29, 13].3 Formal presentationThis section provides a formal presentation of our typesystem, based on two particular ingredients:� The theory of quali�ed types [11], which providesa general framework for describing restricted poly-

morphism and overloading. In the current appli-cation, we use constraints to capture assumptionsabout the occurrences of labels within rows.� A higher-order version of the Hindley-Milner typesystem [9, 15, 6], originally introduced in the studyof constructor classes [12]. Amongst other things,this provides a simple way to introduce the newconstructs for rows, records, and variants withoutthe need for special, ad-hoc syntax.We split the presentation into sections: kinds (Sec-tion 3.1), types and constructors (Section 3.2), predi-cates (Section 3.3), and typing rules (Section 3.4).3.1 KindsOne of the most important aspects of the work de-scribed here is the use of a kind system to distinguishbetween di�erent kinds of type constructor. Formally,the set of kinds is speci�ed by the following grammar:� ::= � the kind of all typesj row the kind of all rowsj �1 ! �2 function kindsIntuitively, the kind �1 ! �2 represents constructorsthat take something of kind �1 and return something ofkind �2. The row kind is new to the system presentedhere and was not part of the type system used in thedevelopment of constructor classes.3.2 Types and constructorsFor each kind �, we have a collection of constructorsC � (including variables ��) of kind �:C � ::= �� constantsj �� variablesj C �0!� C �0 applications� ::= C � typesThe usual collection of types, represented here by thesymbol � , is just the constructors of kind �. For the pur-poses of this paper, we assume that the set of constantconstructors includes at least the following, writing �::�to indicate the kind � associated with each constant �:! :: � ! � ! � function spacefjjg :: row empty rowfjl : j jg :: � ! row ! row extension, for each lRec :: row ! � record constructionVar :: row ! � variant constructionFor example:� The result of applying the function space construc-tor! to two types � and � 0 is the type of functions5

from � to � 0, and is written as � ! � 0 in more con-ventional notation.� The result of applying the Rec constant to theempty row fjjg of kind row is the type Rec fjjg ofkind �.� The result of applying an extension constructorfjl : j jg to a type � and a row r is a row, usuallywritten as fjl :� jr jg, obtained by extending r with a�eld labelled l of type � . Note that we include anextension constructor for each di�erent label l . Toavoid problems later, we will also need to prohibitpartial application of extension constructors.The kind system is used to ensure that type expressionsare well-formed. While it is sometimes convenient to an-notate individual constructors with their kinds, there isno need in practice for a programmer to supply theseannotations. Instead, they can be calculated automati-cally using a simple kind inference process [12].We consider two rows to be equivalent if they includethe same �elds, regardless of the order in which they arelisted. This is described formally by the equation:fjl :�; l 0:� 0 jr jg= fjl 0:� 0; l :� jr jg;and extends in the obvious way to an equality on arbi-trary constructors.For the purposes of later sections, we de�ne a mem-bership relation, (l : �)2r , to describe when a particular�eld (l : �) appears in a row r :(l : �)2fjl : � jr jg (l : �)2r (l 6= l 0)(l : �)2fjl 0 : � 0 jr jgand a restriction operation, r � l , that returns the rowobtained from r by deleting the �eld labelled l :fjl : � jr jg� l = rfjl 0 : � jr jg � l = fjl 0 : � jr � l jg:It is easy to prove that these operations are well-de�nedwith respect to the equality on constructors, and tocon�rm intuitions about their interpretation by showingthat, if (l : �)2r , then r = fjl : � jr � l jg.3.3 PredicatesThe syntax for rows allows examples like fjl : �; l : � 0jgwhere a single label appears in more than one �eld.While this might be useful in some applications, it is notappropriate for work with records or variants where weallow at most one �eld with any given label. Clearly,some additional mechanisms are needed to enable usto specify that a type of the form Rec fjl : � j r jg, for

example, is only valid if the row r does not contain a�eld labelled with l .One way to achieve this is to use a more sophisticatedkind system, with sets of labels, L, as kinds instead ofthe single row kind. For example, rows with �eld labelsl1,: : : ln can be represented by the kind L = fl1; : : : ; lng;this is essentially the approach adopted by Ohori [18].Unfortunately, this becomes much more complicated ifwe try to extend it to deal with extensible rows. Inparticular, we would need to assign whole families ofkinds, indexed by label sets, L, to some of the construc-tor constants introduced in the previous section:fjl : j jg :: � ! L! (L [flg) l 62 LRec; Var :: L! �The alternative that we adopt in this paper is basedon the theory of quali�ed types [11], using predicates tocapture any side conditions that are required to ensurethat a given type expression is valid. In fact, only asingle form of predicate is needed for this purpose:� ::= C rownl predicatesIntuitively, the predicate rnl can be read as an asser-tion that the row r does not contain an l �eld. Moreprecisely, we explain the meaning of predicates usingthe entailment relation de�ned in Figure 1. A deriva-P [f�g `̀ � P `̀ rnl l 6= l 0P `̀ fjl 0 : � jr jgnl P `̀ fjjgnlFigure 1: Predicate entailment for rows.tion of P `̀ � from these rules can be understood asa proof that, if all of the predicates in the set P hold,then so does �. It is easy to prove that the relation `̀is well-de�ned with respect to equality of constructors.3.4 Typing rulesFollowingDamas andMilner [6], we distinguish betweenthe simple types, � , described above, and type schemes,�, described by the grammar below:� ::= � j 8�:� type schemes� ::= � j �) � quali�ed typesRestrictions on the instantiation of universal quanti-�ers, and hence on polymorphism, are described by en-coding the required constraints as a set of predicates,P , in a quali�ed type of the form P) � . The set offree type variables in a object X is written as TV (X).6

The term language is just core-ML, an implicitlytyped �-calculus, extended with constants and a letconstruct, and described by the following grammar:E ::= x j c j E F j �x :E j let x = E in FWe assume that the set of constants c includes the op-erations and values required for manipulating recordsand variants as described in Section 2, and that eachconstant c is assigned a closed type scheme, �c.The typing rules are presented in Figure 2. A judge-ment of the form P jA ` E : � represents an assertionthat, if the predicates in P hold, then the term E hastype �, using assumptions in A to provide types for freevariables. These are just the standard rules for quali�ed(const) P jA ` c : �c(var) (x : �) 2 AP jA ` x : �(!E) P jA ` E : � 0 ! � P jA ` F : � 0P jA ` EF : �(!I) P jAx ; x : � 0 ` E : �P jA ` �x :E : � 0 ! �()E) P jA ` E : �) � P `̀ �P jA ` E : �()I) P [f�g jA ` E : �P jA ` E : �) �(8E) P jA ` E : 8�:�P jA ` E : [�=�]�(8I) P jA ` E : � � 62 TV (A) [TV (P)P jA ` E : 8�:�(let) P jA ` E : � Q jAx ; x : � ` F : �P ;Q jA ` (let x = E in F) : �Figure 2: Typing rules.types [11], extending the rules of Damas and Milner [6]to account for the use of predicates. Note that uses ofthe symbols � , �, and � in these rules is particularlyimportant in restricting their application to particularclasses of types or type schemes.4 Type InferenceThis section provides a formal presentation of a type in-ference algorithm for our system. The most important

feature is the introduction of inserters in Section 4.1 toaccount for non-trivial equalities between row expres-sions during uni�cation.4.1 Uni�cation and insertionUni�cation is a standard tool in type inference, and isused, for example, to ensure that the formal and actualparameters of a function have the same type. Formally,a substitution3 S is a uni�er of constructors C ;C 0 2 C �if SC = SC 0, and is a most general uni�er of C and C 0if every uni�er of these two constructors can be writtenin the form RS , for some substitution R.The rules in Figure 3 provide an algorithm for cal-(id) C id�C(bind) �[C=�]� CC [C=�]� � 9=; � 62 TV (C)(apply) CU�C 0 UDU 0�UD 0CDU 0U� C 0D 0(row) (l : �) I2r 0 IrU�(Ir 0 � l)fjl : � jr jgUI� r 0Figure 3: Kind-preserving uni�cation.culating uni�ers, writing CU�C 0 for the assertion thatU is a uni�er of the constructors C ;C 0 2 C �. The�rst three rules are standard [25], and are even suit-able for unifying two row expressions that list exactlythe same components with exactly the same ordering ineach. But the fourth rule, (row), is needed to deal withthe more general problems of row uni�cation.To understand how this rule works, consider the taskof unifying two rows fjl : � jr jg and fjl 0 : � 0 jr 0jg, where l ,l 0are distinct labels, and r ,r 0 are distinct row variables.Our goal is to �nd a substitution S such that:fjl : S� jSr jg = Sfjl : � jr jg= Sfjl 0 : � 0 jr 0jg= fjl 0 : S� 0 jSr 0jg:Clearly, the row on the left includes an (l : S�) �eld,while the last row on the right includes an (l 0 : S� 0)�eld. If these two types are to be equal, then we must3For the purposes of this paper, we restrict our attention to kind-preserving substitutions; that is, to substitutions that map variables� 2 C� to constructors of the corresponding kind, �.7

choose the substitution S so that it will `insert' the miss-ing �elds into the two rows r 0 and r , respectively. Inthis particular case, assuming that r ; r 0 62 TV (�; � 0),then we can choose:S = [fjl 0 : � 0 jr 00jg=r ; fjl : � jr 00jg=r 0]where r 00 is a new type variable.More generally, we will say that a substitution S isan inserter of (l : �) into r 2 C row if (l : S�) 2 Sr . Sis a most general inserter of (l : �) into r if every suchinserter can be written in the form RS , for some substi-tution R. The rules in Figure 4 de�ne an algorithm forcalculating inserters, writing (l : �) I2r for the assertionthat I is an inserter of (l : �) into r 2 C row . Note that(inVar) (l : �)[fjl :�jr 0jg=r]2 r ; r 62TV (�); r 0 new(inTail) (l : �) I2r l 6= l 0(l : �) I2fjl 0 : � jr jg(inHead) �U�� 0(l : �)U2fjl : � jr jgFigure 4: Kind-preserving insertion.the last rule here, (inHead), makes use of the uni�ca-tion algorithm in Figure 3, so the two algorithms aremutually recursive. The important properties of thetwo algorithms|both soundness and completeness|are captured in the following result:Theorem 1 The uni�cation (insertion) algorithm de-�ned by the rules in Figure 3 (Figure 4) calculates most-general uni�ers (inserters) whenever they exist. The al-gorithm fails precisely when no uni�er (inserter) exists.4.2 A type inference algorithmGiven the uni�cation algorithm described in the pre-vious section, we can use the type inference algorithmfor quali�ed types [11] as a type inference algorithm forthe type system presented in this paper. For complete-ness, we include a de�nition of the algorithm using therules in Figure 5. Following R�emy [23], these rules canbe understood as an attribute grammar; in each typ-ing judgement P j TA Ẁ E : � , the type assignmentA and the term E are inherited attributes, while thepredicate assignment P , type � , and substitution T aresynthesized. The (let)W rule uses an auxiliary function

(var)W (x : 8�i :P) �) 2 A �i new[�i=�i]P jA Ẁ x : [�i=�i]�(!E)W P jTA Ẁ E : � Q jT 0TA Ẁ F : � 0T 0� U� � 0 ! � � newU (T 0P [Q) jUT 0TA Ẁ EF : U�(!I)W P jT (Ax ; x : �) Ẁ E : � � newP jTA Ẁ �x :E : T�! �(let)W P jTA Ẁ E : � � = Gen(TA;P) �)P 0 jT 0(TAx ; x : �) Ẁ F : � 0P 0 jT 0TA Ẁ (let x = E in F) : � 0Figure 5: Type inference algorithm W.to calculate the generalization of a quali�ed type � withrespect to a type assignment A. This is de�ned as:Gen(A; �) = 8�i :�; where f�ig = TV (�)nTV (A):The type inference algorithm is both sound and com-plete with respect to the original typing rules.Theorem 2 The algorithm described by the rules inFigure 5 can be used to calculate a principal type fora given term E under assumptions A. The algorithmfails precisely when there is no typing for E under A.5 CompilationPreviously, we have described informally how programsinvolving operations on records and variants can becompiled and executed using a language that adds extraparameters to supply appropriate o�sets. This sectionshows how this process can be formalized, including thecalculation of o�set values.5.1 Compilation by translationIn the general treatment of quali�ed types [11], pro-grams are compiled by translating them into a languagethat adds extra parameters to supply evidence for pred-icates appearing in the types of the values concerned.The whole process can be described by extending thetyping rules to use judgements of the form:P jA ` E ; E 0 : �8

which include both the original source term E and apossible translation, E 0. A further change here is theswitch from predicate sets to predicate assignments; thesymbol P used above represents a set of pairs (v : �)in which no variable v appears twice. Each variable vcorresponds to an extra parameter that will be addedduring compilation; v can be used whenever evidencefor the corresponding predicate � is required in E 0.In the current setting, predicates are expressions ofthe form (rnl) whose evidence is the o�set in r at whicha �eld labelled l would be inserted. The calculation ofevidence is described by the rules in Figure 6, whichP [fv : �g `̀ v : �P `̀ e : (rnl)P `̀ m : (fjl 0 : � jr jgnl) m = (e; l < l 0e + 1; l 0 < lP `̀ 0 : (fjjgnl)Figure 6: Predicate entailment for rows with evidence.are direct extensions of the earlier rules for predicateentailment that were given in Figure 1. Intuitively, aderivation of P `̀ e : � tells us that we can use e asevidence for the predicate � in any environment wherethe assumptions in P are valid. The second rule is themost interesting and tells us how to �nd the position atwhich a label l should be inserted in a row fjl 0 : � jr jg:� If l comes before l 0 in the total ordering, <, onlabels, then the required o�set will be the same asthe o�set e of l in r .� But, if l 0 comes before l , then we need to use ano�set of e + 1 to account for the insertion of l 0.In general, these rules calculate o�sets that are either a�xed natural number, or a �xed o�set from one of thevariables in P . For simplicity, we have assumed a boxedrepresentation in which all record components occupythe same amount of storage. It is actually quite easy toallow for varying component sizes by replacing e + 1 inthe calculation above with e + size(�).For reasons of space, we omit the complete descrip-tion of translation from this paper, and restrict our-selves instead to describing the two rules that accountfor the use and introduction of o�set parameters. The�rst of these is a variation on function application:P jA ` E ; E 0 : �) � P `̀ e : �P jA ` E ; E 0 e : �

This tells us that we need to supply suitable evidencee in the translation of any program whose type is qual-i�ed by a predicate �. The second rule is analogous tofunction abstraction, and allows us to move constraintsfrom the predicate assignment P into the inferred type:P [fv : �g jA ` E ; E 0 : �P jA ` E ; �v :E 0 : �) �These two rules are direct extensions of ()E) and ()I)in Figure 2, and combined with simple extensions of theother rules there, we can construct a translation for anyterm in the source calculus.6 ExtensionsThe type system that we have described in the previoussections o�ers a
exible, but fairly conventional set ofoperations on records and variants. In this section weconsider two extensions to the original system. Section6.1 describes a generalization of the record and variantoperations to include, amongst others, �rst-class exten-sible case statements. Section 6.2 shows how the systemcan be modi�ed to allow labels to be treated as �rst-class values.6.1 Row polymorphismWorking with a general notion of rows has provided uswith an elegant way to deal with the common structurein record and variant types. However, we have not seenany compelling examples in the previous sections whereit was essential to consider rows separately from recordsand variants; we could have just de�ned completely in-dependent sets of record and variant types.However, there are some applications in which theability to separate rows from records and variants o�erssigni�cant bene�ts. To illustrate this, consider againthe basic operations that were discussed in Section 2.For example, if we generalize the rules in category the-ory or logic for decomposing a sum to deal with n-arysums, then we obtain the following rule:A1 ! C : : : An ! CA1 + : : :+ An ! C :In terms of records and variants, this rule provides amethod for decomposing a variant|represented by thesum A1 + : : : + An in the conclusion|using a recordof functions|represented by the hypotheses Ai ! C .This suggests a general operation for variant elimina-tion:plusElim :: 8�:8r :Rec (to � r)! Var r ! �:9

The to � r construct used here is de�ned as follows:to � fjjg = fjjgto � fjl : � 0 jr jg = fjl : � 0 ! � j to � r jg:This behaves like a particular kind of map operation onrows, replacing each component type � 0 in r with a typeof the form � 0 ! � .For an example of where such an operation mayprove useful, consider the type of integer lists that canbe obtained as a �xpoint of the following functor [14]:data L l = L (Var fjnil : Rec fjjg;cons : Rec fjtl : l ; hd : Int jgjg)The sum of a list of integers can be calculated using ageneral catamorphism:cata (�(L v):plusElim (nil = �():0;cons = �r :r :hd + r :tl) v):From this example, it is clear that plusElim is an alter-native to the case construct of languages like Haskelland SML. However, unlike these languages, it is not abuiltin part of the syntax; instead, it allows us to treatcase constructs as �rst-class, extensible values.In a similar way, we can adapt the other rules forconstructing sums, and for decomposing or constructingproducts, to functions involving records and variants.The full set of operations are speci�ed by the followingtype signatures4:plusElim :: 8�:8r :Rec (to � r)! Var r ! �plusIntro :: 8�:8r :Var (from � r)! �! Var rprodElim :: 8�:8r :Var (to � r)! Rec r ! �prodIntro :: 8�:8r :Rec (from � r)! �! Rec rGiven our earlier representations for records and vari-ants, it is easy to implement each of these operations asbuiltin primitives.One technical di�culty that we face with this ap-proach is in extending the treatment of uni�cation todeal with uses of the from and to constructs. This turnsout to be straightforward, except for potential complica-tions caused by the presence of empty rows. For exam-ple, in unifying two rows to t r and to t 0 r 0, we cannotsimply unify t with t 0; if r , and hence r 0, is empty, thenthere is no direct relationship between t and t 0. Moreprecisely, to obtain most general uni�ers for from andto constructs, we need to restrict ourselves to work withnon-empty rows. There are several alternatives to con-sider here. For example, the obvious approach wouldbe to banish the empty row from our original type sys-tem. A more satisfactory solution might be to adopt a4The from � r construct used in the types of plusIntro andprodIntro is de�ned as an obvious dual to the to � r construct thatwe used previously.

kind system that distinguishes between empty and non-empty rows. We leave further investigation of this topicto future work.6.2 First-class labelsIn previous sections of the paper, we have consideredthe labels used to refer to �elds as part of the basicsyntax of our language. As a result, we had to describeselection from a record using a family of functions:(:l) :: (rnl)) Rec fjl : � jr jg ! �;with one function for each choice of label l . A moreattractive approach might be to allow primitive opera-tions on records and variants to be parameterized overlabels. We can extend the type system described in pre-vious sections to accomplish this, treating selection, forexample, as a single function of type:(:) :: (rnl)) Rec fjl : � jr jg ! Label l ! �;This requires an extension of the kind system in Sec-tion 3.1 with a new kind lab, and also a new type con-stant Label of kind lab ! �. Intuitively, each type ofthe form Label l contains a unique label value. Thel parameter is important because it establishes a con-nection between types and label values; a nullary Labeltype would not have provided any way for us to ex-press the necessary typing constraints. We can also dis-pense with the family of extension constructors de�nedin Section 3.2, replacing them with a single constructorconstant: fj : j jg :: lab ! �! row ! row :Finally, we need to generalize the lacks predicate fromSection 3.3 to a two place relation rnl which takes botha row r and a label l of kind lab. This can be de�nedin much the same way as before, and has the same in-terpretation as an o�set value in the underlying imple-mentation.We can generalize the other basic operations on recordsand variants in a similar way. For example, the expres-sion �x :�y :(y = 2; x = 3), which involves two uses ofextension, will be assigned the type:fjx : Int jgny)Label x ! Label y ! Rec fjx : Int ; y : Int jg:To our knowledge, this is the �rst work|in either im-plicitly or explicitly typed record and variant calculi|to consider a type system in which labels can be treatedas �rst-class values. This increases the expressivenessof our system quite dramatically, and we already havesome interesting applications for these new features.10

However, it remains to see how well this will work inpractice, and what its implications for language designmight be; we leave these topics to future work.7 ConclusionWe have described a
exible, polymorphic type sys-tem for extensible records and variants with an e�ec-tive type inference algorithm and compilation method.Prototype implementations have been written in SMLand Haskell, and a implementation of records has beenadded to Hugs, an implementation of Haskell 1.3. Ourexperience to date shows that these implementationsworks well in practice. There are a number of areas forfurther work:Object systems. Another potential application forrows would be in a type system for object-oriented pro-gramming. For example, a constructor Obj of kindrow ! � might be used to describe objects with a givenrow of methods [17, 22, 1, 10, 21, 2].More sophisticated basic operations. Our type sys-tem does not support record append [28, 24] or thedatabase join that was one of the original motivationsfor Ohori's work [19]. One approach would be to adoptthe ideas of Harper and Pierce [7], choosing an appro-priate form of evidence for the (r1#r2) predicates de-scribed in Section 1.1.A new approach to datatypes. Languages like SMLand Haskell already provide facilities for de�ning newdatatypes and these overlap to some extent with themechanisms described in this paper. Unifying and com-bining these di�erent approaches would obviously beuseful, with a long term goal of developing a generalframework for extensible datatypes.AcknowledgementsThis work was supported in part by an EPSRC stu-dentship 9530 6293. We would also like to thank ourcolleagues, Colin Taylor and Graham Hutton, in thefunctional programming group at Nottingham, for thevaluable contributions that they have made to the workdescribed in this paper.References[1] M. Abadi and L. Cardelli. A semantics of objecttypes. In In Proceedings of the 9th Symposium onLogic in Computer Science, pages 332{341, July1994.[2] K. B. Bruce. A paradigmatic object-oriented pro-gramming language: Design, static typing and

semantics. Journal of Functional Programming,4(2):127{206, April 1994.[3] L. Cardelli. A semantics of multiple inheritance. InG. Kahn, D. MacQueen, and G. Plotkin, editors,Semantics of Data Types, volume 173 of LectureNotes in Computer Science, pages 51{67. Springer-Verlag, 1984. Full version in Information and Com-putation 76(2/3):138{164, 1988.[4] L. Cardelli. Extensible records in a pure calculus ofsubtyping. Research report 81, DEC Systems Re-search Center, Jan. 1992. Also in Carl A. Gunterand John C. Mitchell, editors, Theoretical Aspectsof Object-Oriented Programming: Types, Seman-tics, and Language Design (MIT Press, 1994).[5] L. Cardelli and J. Mitchell. Operations on records.Mathematical Structures in Computer Science, 1:3{48, 1991. Also in Carl A. Gunter and John C.Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics, andLanguage Design (MIT Press, 1994); available asDEC Systems Research Center Research Report#48, August, 1989, and in the proceedings ofMFPS '89, Springer LNCS volume 442.[6] L. Damas and R. Milner. Principal type schemesfor functional programs. In Proceedings of the 9thACM Symposium on Principles of ProgrammingLanguages, pages 207{212, 1982.[7] R. Harper and B. Pierce. A record calculus basedon symmetric concatenation. In Proceedings ofthe 18th Annual ACM Symposium on Principles ofProgramming Languages, Orlando FL, pages 131{142. ACM, Jan. 1991. Extended version availableas Carnegie Mellon Technical Report CMU-CS-90-157.[8] R. W. Harper and B. C. Pierce. Extensible recordswithout subsumption. Technical Report CMU-CS-90-102, School of Computer Science, Carnegie Mel-lon University, Feburary 1990.[9] J. R. Hindley. The principal type scheme of anobject in combinatory logic. Transactions of theAmerican Mathematical Society, 146:29{60, De-cember 1969.[10] M. Hofmann and B. Pierce. A unifying type-theoretic framework for objects. Journal of Func-tional Programming, 1995. Previous versions ap-peared in the Symposium on Theoretical Aspectsof Computer Science, 1994, (pages 251{262) and,under the title \An Abstract View of Objects andSubtyping (Preliminary Report)," as University of11

Edinburgh, LFCS technical report ECS-LFCS-92-226, 1992.[11] M. P. Jones. Quali�ed Types Theory and Practice.Distinguished Dissertations in Computer Science.Cambridge University Press, 1994.[12] M. P. Jones. A system of constructor classes: over-loading and implicit higher-order polymorphism.Journal of Functional Programming, 5(1):1{35,Jan. 1995. An earlier version appeared in Proc.FPCA 1993.[13] X. Leroy. Polymorphism by name for referencesand continuations. In Principles of ProgrammingLanguages, pages 220{231. ACM press, 1993.[14] E. Meijer and G. Hutton. Bananas in space: Ex-tending fold and unfold to exponential types. InProc. 7th International Conference on FunctionalProgramming and Computer Architecture. ACMPress, San Diego, California, June 1995.[15] R. Milner. A theory of type polymorphism in pro-gramming. Journal of Computer and System Sci-ences, 17:348{375, August 1978.[16] R. Milner, M. Tofte, and R. Harper. The de�nitionof Standard ML. The MIT Press, 1990.[17] J. C. Mitchell, F. Honsell, and K. Fisher. A lambdacalculus of objects and method specialization. In1993 IEEE Symposium on Logic in Computer Sci-ence, June 1993.[18] A. Ohori. A polymorphic record calculus and itscompilation. ACM Transactions on ProgrammingLanguages and Systems, 17(6):844{895, Nov. 1995.Preliminary version in Proceedings of ACM Sym-posium on Principles of Programming Languages,1992, under the title, A compilation method forML-style polymorphic record calculi.[19] A. Ohori and P. Buneman. Type inference in adatabase programming language. In Proceddingsof the ACM Conference on LISP and FunctionalProgramming, pages 174{183. ACM, 1988.[20] J. Peterson and K. Hammond. Report on the Pro-gramming Language Haskell, A Non-strict, PurelyFunctional Language (Version 1.3). Technical Re-port YALEU/DCS/RR-1106, Yale University, De-partment of Computer Science, May 1996.[21] B. C. Pierce and D. N. Turner. Simple type-theoretic foundations for object-oriented pro-gramming. Journal of Functional Programming,4(2):207{247, Apr. 1994. A preliminary version ap-peared in Principles of Programming Languages,

1993, and as University of Edinburgh technical re-port ECS-LFCS-92-225, under the title \Object-Oriented ProgrammingWithout Recursive Types".[22] D. R�emy. Programming objects with ML-ART: Anextension to ML with abstract and record types. InM. Hagiya and J. C. Mitchell, editors, TheoreticalAspects of Computer Software, volume 789 of Lec-ture Notes in Computer Science, pages 321{346.Springer-Verlag, April 1994.[23] D. R�emy. Type inference for records in a nat-ural extension of ML. In C. A. Gunter andJ. C. Mitchell, editors, Theoretical Aspects ofObject-Oriented Programming: Type, Semantics,and Language Design, Foundations of ComputingSeries. MIT Press, 1994. Early version appearedin Sixteenth Annual Symposium on Principles ofProgramming Languages. Austin, Texas, January1989.[24] D. R�emy. Typing record concatenation for free.In C. A. Gunter and J. C. Mitchell, editors, The-oretical Aspects Of Object-Oriented Programming.Types, Semantics and Language Design, Founda-tions of Computing Series. MIT Press, 1994.[25] J. A. Robinson. A machine-oriented logic basedon the resolution principle. Journal of the Associ-ation for Computing and Machinery, 12(1):23{41,January 1965.[26] M. Wand. Complete type inference for simple ob-jects. In Proceedings of the IEEE Symposium onLogic in Computer Science, Ithaca, NY, June 1987.[27] M. Wand. Corrigendum: Complete type inferencefor simple objects. In Proceedings of the IEEE Sym-posium on Logic in Computer Science, 1988.[28] M. Wand. Type inference for record concatenationand multiple inheritance. Information and Com-putation, (93):1{15, 1991. Preliminary version ap-peared in Proc. 4th IEEE Symposium on Logic inComputer Science, 1989, 92{97.[29] A. Wright. Simple imperative polymorphism. Lispand Symbolic Computation, 8(4):343{356, Decem-ber 1995.
12

