
Self: The Power of Simplicity

David Ungar and Randall B. Smith

David Ungar
CIS, Room 209
Stanford University
Stanford, CA 94305
(415) 725-3713
Unga@Sonoma.Stanford.edu

To thine own self be true.
-William Shakespeare

Abstract
Self is a new object-oriented language for explor-
atory programming based on a small number of
simple and concrete ideas: prototypes, slots, and
behavior. Prototypes combine inheritance and instan-
tiation to provide a framework that is simpler and
more flexible than most object-oriented languages.
Slots unite variables and procedures into a single con-
struct. This permits the inheritance hierarchy to take
over the function of lexical scoping in conventional
languages. Finally, because Self does not distinguish
state from behavior, it narrows the gaps between
ordinary objects, procedures, and closures. Self”s
simplicity and expressiveness offer new insights into
object-oriented computation.

Introduction
Object-oriented programming languages are gaining
acceptance, partly because they offer a useful perspec-
tive for designing computer programs. However,
they do not all offer exactly the same perspective;
there are many different ideas about the nature of
object-oriented computation. In this paper we pre-
sent Self, a programming language with a new
perspective on objects and message passing. Like the
Smalltalk-80* language [GoR83], Self is designed to

*Smalltalk-gO is a trademark of ParcPlace Systems. In this
paper, the term “Smalltalk” will be used to refer to the
SmaUtalk-gO programming language.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1987 ACM 0-89791-247-O/87/0010-0227 $1.50

Randall B. Smith
Xerox Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto, CA 94304
(415) 494-4947
RSmith.PA@Xerox.com

support exploratory programming Me831, and there-
fore includes runtime typing (i.e. no type
declarations) and automatic storage reclamation. But
unlike Smalltalk, Self includes neither classes nor
variables. Instead, Self has adopted a prototype
metaphor for object creation EBor79, Bor81 Bor86,
Lie86, LTP86]. Furthermore, while Smalltalk and
most other object-oriented languages support vari-
able access as well as message passing, Self objects
access their state information by sending messages to
L ‘self,” the receiver of the current message.
Naturally this results in many messages sent to
“SeIf,” and the language is named in honor of these
messages. One of strengths of object-oriented pro-
gramming lies in the uniform access to different
kinds of stored and computed data, and the ideas in
Self result in even more uniformity, which results in
greater expressive power. We believe that these
ideas offer a new and useful view of object-oriented
computation.

Several principals have guided the design of Self:

Messages-at-the-bottom. Self features message
passing as the fundamental operation, providing
access to stored state solely via messages. There are
no variables, merely slots containing objects that
return themselves. Since Self objects access state
solely by sending messages, message passing is more
fundamental to Self than to languages with variables.

Occam’s razor. Throughout the design, we have
aimed for conceptual economy:

. As described above, Self’s design omits
classes and variables. Any object can per-
form the role of an instance or serve as a
repository of shared information.

l There is no distinction between accessing a
variable and sending a message.

October 443,1987 OOPStA ‘87 Proceedings 227

class-based systems Self: no classes

I inheritance relationships
I

instance of
subclass of I inherits from

1 creation metaphor 1 build according to plan 1 clone an object

initialization
on-f-a-kind
infinite regress

executing a “plan”
need extra object for class
class of class of class of . . .

cloning an example
no extra object needed
none required

As in Smalhalk, the language kernel has no
control structures. Instead, closures and
polymorphism support arbitrary control
structures within the language.

Unlike Smalltalk, Self objects, procedures,
and closures are all woven from the same
yarn by representing procedures and closures
as prototypes of activation records. This
technique allows activation records to be
created the same way as other objects, by
cloning prototypes. In addition to sharing
the same model of creation, procedures and
closures also store their variables and main-
tain their environment information the same
way as ordinary objects, as described below.

Concreteness. Our tastes have led us to a metaphor
whose elements are as concrete as possible [Smi87].
So, in the matter of classes versus prototypes, we
have chosen to try prototypes. This makes a basic dif-
ference in the way that new objects are created. In a
class-based language an object would be created by
instuntiuting a plan in its class. In a prototypebased
language like Self, an object would be created by
cloning (copying) a prototype. In Self, any object
can be cloned.

The remainder of the paper describes Self in more
detail, and concludes with an example. We use
Smalltalk as our yardstick, as it is the most widely
known language in which everything is an object.
Familiarity with Smalltalk will therefore be helpful
to the reader.

Prototypes: Blending Classes and
Instances

In Smalltalk, unlike C++, Simula, Loops, or ADA,
everything is an object and every object contains a
pointer to its class, an object that describes its
format and holds its behavior. (See Figure 1.) In
Self too, everything is an object. But, instead of a
class pointer, a Self object contains named slots

which may store either state or behavior. If an
object receives a message and it has no matching slot,
the search continues via its parent pointer. This is
how Self implements inheritance. Inheritance in Self
allows objects to share behavior, which in turn
allows the programmer to alter the behavior of many
objects with a single change. For instance as shown
in Figure 1, a point* object would have slots for its
non-shared characteristics: x and y. Its parent would
be an object that held the behavior shared among all
points: +, -, etc.

Comparing Prototypes and Classes

One of .Sers most interesting aspects is the way it
combines inheritance, prototypes, and object creation,
eliminating the need for classes.

Simpler relationships. Prototypes can simplify the
relationships between objects. To visualiz.e the way
objects behave in a class-based language, one must
grasp two relationships: the “is a” relationship, that
indicates that an object is an instance of some class,
and the “kind of * relationship, that indicates that an
object’s class is a subclass of some other object’s
class. In a system with prototypes instead of classes
such as Self, there is only one relationship, “inherits
from”, that describes how objects share behavior and
State. This structural simplification makes it easier
to understand the language and easier to formulate an
inheritance hierarchy.

A working system will provide-the chance to discov-
er whether class-like objects would be so useful that
programmers will create them without encourage-
ment from the language. The absence of the
class-instance distinction may make it too hard to
understand which objects exist solely to provide
shared information for other objects. Perhaps Self

* Throughout this paper we appeal to point objects in exam-
ples. A Smalltalk pint represents a point in
two-dimensional Cartesian coordinates. It contains two
instance variables, an x and a y coordinate.

228 OOPSLA ‘87 Proceedings October 4-8,1987

Smalltalk instances and classes Self objects

L

(class)

(name)

(superclass)

(inst vars)

(methods)

(class)

(name)

(superclass)

(inst vars)

(methods)

Object Object

nil nil

1 print 1 prir?!b;&ts (
A

L-A-J

(class)

j

w 3

(Y) 5

. . .
FTJ Point

k I
Iclass, x, Y 1
I i

Each Smalltalk point contains a class pointer, x
and y coordinates. The class Point supplies both
format and behavior information for points. Addi-
tional format and behavior information is
inherited from Object via Point’s superclass link.
Each of the two classes in turn must appeal to
other classes (not shown) for their format and
behavior.

A

print how to
* print objects

I

parent I

x: t

Y: t

+

parent
X 3
Y 5

parent \

X 7
Y 9

Each Self point intrinsically describes its own for-
mat, but appeals to another object for any behavior
that is shared among points. In this example, the
points appeal to an object containing shared behavior
for points. That object in turn appeals to another
(on top) for behavior that is shared by all objects.
The “root” object fully describes its own format
and behavior, so it has no parent.

Figure 1. A comparison of Smalltalk instances and classes with Self objects: At the bottom of each
figure are two point objects that have been created by a user program.

Odober 4-8,1937 OOPSIA ‘87 Proceedings 229

programmers will create entirely new organizational
structures. In any case, Self’s flexibility poses a chal-
lenge to the programming environment; it will have
to include navigational and descriptive aids.

Creation by copying. Creating new objects from
prototypes is accomplished by a simple operation,
copying, with a simple biological metaphor,
cloning. Creating new objects from classes is accom-
plished by instantiation, which includes the
interpretation of format information in a class. (See
Figure 2.) Instantiation is similar to building a
house from a plan. Copying appeals to us as a sim-
pler metaphor than instantiation.

Examples of preexisting modules. Prototypes are
more concrete than classes because they are exumples
of objects rather than descriptions of format and ini-
tialization. These examples may help users to reuse
modules by making them easier to understand. A
prototype-based systems allows the user to examine
a typical representative rather than requiring him to
make sense out of its description.

Support for one-of-a-kind objects. Self provides
a framework that can easily include oneof-a-kind
objects with their own behavior. Since each object
has named slots, and slots can hold state or behavior,
any object can have unique slots or behavior. (See
Figure 3.) Class-based systems are designed for situa-
tions where there are many objects with the same
behavior. There is no linguistic support for an object
to possess its own unique behavior, and it is awk-
ward to create a class that is guaranteed to have only
one instance. Self suffers from neither of these disad-
vantages. Any object can be customized with its
own behavior. A unique object can hold the unique
behavior, and a separate “instance” is not need&

Elimination of me®ress. No object in a
class-based system can be self sufficienS another
object (its class) is needed to express its structure
and behavior. This leads to a conceptually infinite
meta-regress: a point is an instance of class Point,
which is an instance of metaclass Point, which is an
instance of metametaclass Point, ad infinitum. On
the other hand, in prototype-based systems an object
can include its own behavior; no other object is
needed to breathe life into it. Prototypes eliminate
meta regress.
The discussion of prototypes in this paper naturally
applies to them as realized in Self. Prototype-based
systems without inheritance would have a problem:
each object would include all of its own behav-
ior-just like the real world-and these systems
would surrender one of the most pleasant differences

between computers and the real word, the ability to
make sweeping changes by changing shared behavior.
Once inheritance is introduced into the language, the
natural tendency is to make the prototype the same
object that contains the behavior for that kind of
object. For instance, the behavior of all points could
be changed by changing the behavior of the prototypi-
cal point. Unfortunately, such a system must supply
two ways to create objects: one to make an object
that is the offspring of a prototype, and another to
cop,y an object that is not a prototype. The ultimate
result is that prototypes would become special and
not prototypical at all. Self avoids these pitfalls by
combining prototypes and inheritance.

Our solution is to put the shared behavior for a fami-
ly of objects in a separate object that is the parent of
all of them, even the prototype. That way the proto-
type is absolutely identical to every other member of
the family. The object containing the shared behavior
plays a role akin to a class, except that it contains no
formatting information; it merely holds some shared
behavior. So to add some behavior to all points in
Self, one would add that behavior to the parent of
the Points.

Blending state and behavior

In Self, there is no direct way to access a variable;
instead objects send messages to access data residing
in named slots. So, to access its “x” value, a point
sends itself the “x” message. The message finds the
“ ” X slot, and evaluates the object found therein.
Since the slot contains a number, the result of the
evaluation is just the number itself. In order to
change contents of the “x” slot to, say 17, instead of
performing an assignment like “x+17,” the point
must send itself the “x:” message with 17 as the
argument. The point object (or one of its ancestors)
must contain a slot named “x:” containing the assign-
ment primitive. Of course, all these messages sent to
“self” would make for verbose programs, so our syn-
tax allows the “self? ’ to be elided. The result is
that accessing state via messages in Self becomes as
easy to write as accessing variables directly in
Smalltalk; “x” accesses the slot by the same name,
and “x: 17” stores seventeen in the slot.

Accessing state via messages makes inheritance more
powerful. Suppose we wish to create a new kind of
point, whose x coordinate is a random number instead
of a stored value. We copy the standard point,
remove the x: slot (so that x cannot be changed) and
replace the contents of the x slot with the code to
generate a random number. (See Figure 4.) If instead

230 OOPSLA ‘87 Proceedings October 48,1987

Creating a Smalltalk Object Creating a Self Object

(class)

(superclass) Fq+..

(inst vars) I

(methods)

(class)

(superclass) El+

(inst vars)

(methods)

(class)

(name)

(superdlass)

(inst vars)

(methods)

To create a new point in Smalltalk, the new
message is sent to the class Point. The new
method-found in Point’s class’s superclass-
uses information in its receiver (Point) to define
the size and format of the new object.

clone b how to
clone objects

I

parent I

x: t

Y: t
A

To create a new point in Self, the clone message is
sent to the prototypical point. The clone method
copies its receiver. Because the protopoint slot
resides in the root, any object can create a point.

Figure 2. Object creation in Smalltalk and in Self.

October 4-8,1987 OOPSLA ‘87 Proceedings 231

Smalltalk

(class) l l n

(name) Object

(superclass) nil

(inst vars) (none)

(methods) . . .
A

(class) . . . (class) . . .

(name) True (name) False

(superclass) - (superclass)

(inst vars) (none) (inst vars) (none)

(methods) + ifTrue: trueBlock (methods)
+ ifFalse: falseBlock ifFalse: falseBlock

BU
(class)

trueBlock value
(class)

falseBlock value

-
me false

self

true false

parent parent

ifTrue: iffalse: I ifTrue: ifFalse: I /
I I

/

Figure 3. In Self, it is easier to defme unique objects than in a class-based system like SmalItalk.
Consider the objects that represent the true and false boolean values. A system needs only one instance
of each object, but in Smalltalk, there must be a class for each. In Self, since any object can contain
behavior, it is straightforward to create specialized objects for true and false.

232 OOPSLA ‘87 Proceedings October 441987

Computing a value instead of storing it

I parent 1 nil I

I print 1 print objects 1
\

parent I I

I + 1 add points 1

random

generator

Shared state

parent ! nil
I

I print print objects

I parent I
\

I + add points
l

Figure 4. Two examples of flexibility in Self. On the left is a point whose x coordinate is computed by
a random number generator. Since all the code for point sends messages to get the x value, the random x
point can reuse all existing point code. On the right are two points that share the same x variable.

of modifying the x slot, we had replaced the x: slot
with a “halt” method, we would obtain a breakpoint
on write. Thus, Self can express the idioms associat-
ed with active variables and abmons. Accessing
state via messages also makes it easier to share state.
To create two points that share the same x coordi-
nate, the x and x: slots can be put in a separate object
that is the parents of each of the two points. (Also
see Figure 4 .)

In most object-oriented languages, accessing a vari-
able is a different operation than sending a message.
This dilutes the message passing model of computa-
tion with assignment and access. As a result,
message passing becomes less powerful. For instance,
the inclusion of variables makes it harder for a
specialization (subclass) to replace a variable with a
computed result, because there may be code in a super-
class that directly accesses the variable. Also,
class-based languages typically store the names and
orders of instance variables in an object’s class (as
shown in Figure 1). This further limits the power
of inheritance; the specification within a class unnec-
essarily restricts an instance’s format. Finally,
variable access requires scoping rules, yet a further
complication. For instance Smalltalk has five kinds
of variables: local variables (temporaries), instance
variables, class variables, pool variables, and global

variables, whose scopes roughly correspond to rungs
on the ladder of instantiation.

CIOSURS

The Scheme community has obtained excellent
results with closures (or lambda-expressions) as a
basis for control structures [Ste76, ASS841. Experi-
ence with Smalltalk blocks supports this; closures
provide a powerful, yet easy-to-use metaphor for
users to exploit and define their own control struc-
tures. Furthermore this ability is crucial to any
language that supports user-defined abstract data
types. However, we believe that it is unwise to
design a language that makes separate provision for
both objects and closures, because they are so similar
(both store’ behavior and state). In Self, objects,
closures (blocks) and procedures (methods) have been
brought closer together by using slots and inheri-
tance to build closures and procedures:

Local variables. Closures and procedures require
storage for local variables, and in Self, their slots
fulfill this function. In Smalltalk, invoking a
method results in the creation of an activation record
whose initial ‘contents is described by the method.
For example, the number of temporary variables
listed in the method describes the number of fields

October 4-8,1987 OOPSLA ‘87 Proceedings 233

set aside in the activation record to hold variables.
This is similar to the way a class contains a struc-
turd description used to instantiate its instances.
But in Self, objects that play the role of subroutines
and closures (methods and blocks) are protorypes of
activation records; they are copied and invoked to run
the subroutine or block. So, local variables are allo-
cated by reserving slots for them in the prototype
activation record. One advantage is that the proto-
type’s slots may be initialized to any value-the may
even contain private methods and closures (blocks).

Environment link. In general, a closure must con-
tain a link to its enclosing closure or scope. This
link is used to resolve references to variables not in
the closure itself. In Self, instead of having separate
scope information, a closure’s parent link performs
this function. If a slot is not found in the current
scope, lookup proceeds to the next outer scope by fol-
lowing the parent link.

Some interesting mechanisms are needed to make the
parent links handle lexical scoping. First, the parent
link must get set to the appropriate object. This is
simple for an ordinary object; the parent link is set
to its prototype’s parent. For methods (procedures),
the object created by the compiler serves as a proto-
type activation, and when invoked, gets cloned. The
clone’s parent then gets set to the message’s receiv-
er. In this fashion, the method’s scope gets
embedded in the receiver%. For Self blocks, the par-
ent link must get set to the activation for the
enclosing method. This can be done either when the
method is activated and the activation record is creat-
ed, or when the block is created.

Second, in order to allow the slots containing local
variables to be accessed in the same way as everything
else, the implicit “self” operand must take on an
unusual meaning: start the message lookup with the
current activation record, but set the receiver of the
message to be the same as the current receiver. In a
way, this is the opposite of the “super” construct in
SmalltaIk, which starts the lookup with the receiv-
er’s superclass. (See Figure 5.)

Speculation: Where is Self headed?

In the designing of Self, we have been led to some
rather strange recurring themes. We present them
here for the reader to ponder.

Behaviorism. In most object languages (Actors
excepted), objects are passive; an object is what it is.
In Self, an object is what it does. Since variable
access is the same as message passing, ordinary pas-

sive objects can be regarding merely as methods that
always return themselves. For example, consider the
number 17. In Smalltalk, the number 17 represents a
particular (immutable) state. In Self, the number 17
is just an object that returns itself and behaves a
certain way with respect to arithmetic. The only
way to know an object is by its actions.

Computation viewed as refinement. In Smalltalk,
the number 17 is a number with some particular
state, and the state information is used by the arith-
metic primitives-addition for example. In Self, 17
can be viewed as a refinement of shared behavior for
numbers that responds to addition by returning 17
more than its argument. Since in Self, an activation
record’s parent gets set to the receiver of the mes-
sage, method activation can be viewed as the creation
of a short-lived refinement of the receiver. Likewise
block, or closure activation can be viewed as the cre-
ation of a refinement of the activation record for the
enclosing context scope.

In our examples, we render the shared behavior
object for points as an ordinary passive object.
Another twist would be to build class-like objects
out of methods. In Self, the shared behavior object
for points could be a method with code that simply
returned a clone of the prototypical point. This
method could then be installed in the “Point” slot
of the root object. One object would then be serving
two roles: its code would create new points, and its
slots (locals) would hold the shared behavior for
points. At this writing, we do not believe that this
is the best way to construct a system, but the use of
methods to hoId shared behavior for a group of
objects is an example of the flexibility afforded by
Self.

Parents viewed as shared parts. Finally, one can
view the parents of an object as shared parts of the
object. From this perspective, a Self point contains a
private part with x and y slots, a part shared with
other points containing +, -, etc. slots, and a part
shared with all other objects containing behavior
common to all objects. Viewing parents as shared
parts broadens the applicability of inheritance.

Syntax

In this section we outline the syntax for a textual
representation of Self objects. Where possible, we
have followed Smalltalk syntax to avoid confusion.
We have added slot list syntax for creating objects
inline. In general, Self objects (including methods
and blocks) are written enclosed in brackets, and

234 OOPSLA ‘87 Proceedings October 4-8,1987

include a list of slots and some code. Passive objects
and blocks are enclosed in square brackets, and
methods are enclosed in curly brackets. The code fol-
lows Smalltalk syntax, except for the implicit self
message destination. The slot list, though, departs
from Smalltalk. The first difference, is that the slot
list, if present, must be nestled in a pair of vertical
bars. Next, each item in the slot list must be sepa-
rated from the next by a period. (A trailing period
is optional.) Finally, there are several forms for
slots:

. A selector by itself denotes MO slots: a slot
initialized to nil, and a slot named with a
trailing colon initialized to the assignment
primitive (denoted by “). -For example, the
object

[lx. II

contains two slots: one called x containing
nil, and another one called x: containing -*.
This has the same effect as declaring a
Smalltalk variable.

. A selector followed by a left arrow and an
expression also denotes two slots: a slot ini-
tialized to the value of the expression, and a
corresponding assignment slot. If the
expression is a Self object with code, the
object is treated as a block.

For example, the method

(
I tally *- 0 I
10 timesRepeat: [tally:

tally + Random*].
“my

returns the sum of 10 random numbers. It
contains a slot named “tally” initialized to
zero, and a slot named “tally:” containing
the assignment primitive. The effect is simi-
lar to an initialized variable.

. A selector followed by an equals sign (=)
and an expression denotes only one slot, ini-
tialized to the value of the expression. The

*Random is a slot in the root object containing a method
that returns a random number.

effect is identical to that of the left-arrow
form, except that the variable is read-only.

. A keyword (identifier with trailing colon)
followed by a left arrow (“O.“) defines an
assignment slot. Such a slot can be used to
change the value of a read-only slot else-
where. For example, points may be defined
to be immutable by omitting the assignment
slots from them, that is defining the proto-
typical point as “[I x = nil. y = nil I I.”
But a routine defined for points can change
its receiver’s x or y if it includes x: or y:
slots.

l Finally, one or more unary selectors (i.e.
identifiers) preceded by colons define one
slot per identifier, bound to the correspon-
ding argument of the message. For example:
‘ ‘compareBlock = [I :a :b I a c b]” defines a
block with two arguments, “a” and “b.”

The arguments for a method may also be
moved into the selector as in Smalltalk:

display: at: = (
1 :aForm :aPoint 1
Bitblt destination: self;

au aPoint;
source: aForm;
copybits)

display: aForm at: aPoint = (
Bitblt destination: self;

at: aPoint;
source: aForm;
copybits)

are equivalent.

An Example

The following example shows one way to build a
data structure that holds a set of objects. The set is
implemented with a open-addressed hash table. A
consequence of our notation is that the inheritance
hierarchy usually corresponds to the lexical nesting
to express (single) inheritance. Here the outermost
brackets denote the root object.

October 4-8,1987 OOPSLA ‘87 Proceedings 235

Activation in Self

shared behavior for all objects

. I
parent \

+
shared behavior for points -

x: t

Y:

parent

a point

@zl’

X 3 arg nil
prototype activation .

Y 5 code

v

Tclone x: x + arg x; y: y + arg y

A

I

I parent

parent another point x 7

activation record arg Y 9
code

Figure 5. The figure above shows what happens when the point (3, 5) gets sent the plus message with
argument (7, 9). Lookup for plus starts at (3, 5) and finds a matching slot in the object holding shared
behavior for points. Since the contents of the slot is a method object, it is cloned, the clone’s argu-
ment slot is set to the argument of the message, and its parent is set to the receiver. When the code
for plus executes, the lookup for x will find the receiver’s x slot by following the inheritance chain
from the current activation record. It will also find the contents of the args slot in the same way. It
is this technique of having the lookup for the implicit self receiver start at the current activation, that
allows local variables, instance variables and method lookup to be unified in Self.

236 OOPSiA ‘87 Proceedings October 4-8,1987

[I
nil = [1.
clone = (<primitive>).
SetTraits = [I

emptyset = [I
size = 0.
contents = #(nil) I].

size: *‘.
contents: ‘*.
clone = (

super clone
contents: contents clone).

includes: obj = (
indexFor: obj

ifPresent [true]
ifAbsenr [I :unnsed I false]).

add: obj = (
indexFor obj

ifPresent: []
ifAbsent: [

I :i I
contents at: i put: obj.
size:size+ 1.1).

indexFor: obj
ifPresent: presentBlock
ifAbsent: absentBl(

=(I

ha&Index.
testBlock = [I

ock

:i. cl

c: (contents at: i).
c isNil ifl’rue:

[absentBlock value: il.
c = obj iffrue:

[presen tBlock value]].

ha&Index: (obj hash bitAnd:
contents lastIndex).

hashIndex
to: contents lastIndex
do: testBlock.

The global dictionary, or root object.
An object with no slots.
A method that shallow-copies an object.
Holds the shared state and behavior for Sets.
The prototypical set

with no elements, and
contents is. an array containing nil.

Slots with the assignment primitive,
allowing methods to set the slots of sets.

A method to clone sets.
Clone the receiver, and set the clone’s

contents to be a clone of the contenrs array.
Does the set include obj?
Send the receiver

indetior: iPresent: ifAbsent.
“Unused” is an argument to the block.
Add obj to the receiver.
First, test if it’s already there.
It’s alreagy there, do nothing.
O.K., add it.
The block gets passed the index.
Put it into the array.
Increment size.
This method is privately-used behavior,.

Search the hash table for obj. If found, return
the array index where it is. If not found, return
the index of where it should go. If there is no
room, enlarge the set.

A read/write slot (local variable)
TestBlock is a named block (closure) local to this

method. It takes an array index as its argument,
called i. It probes the army at that location, and
if the slot is empty returns the result of
executing the absentBlock. (AbsentBlock is an
argument to the enclosing method.) If the slot
contains the desired object, it returns the result
from the presentBlock. The explicit returns
return from the outer method, since this is a
block. Otherwise, the block just does a local
retum.

Put contents of i* slot in c.
If empty execute absentBlock with argument i.

If found, return value of presentBlock.
End of testBlock.
Code for indexFor:ifPresent:ifAbsent:.

Use open addressing; search from initial guess to end.

Odoher 4-0,1987 OOPSlA ‘87 Proceedings 237

contents firstIndex
to: hashIndex - 1
do: textBlock.

grow indexFor: ohj)

1 I.
AnEmptySet = (SetTraits emptyset clone).

If control falls through, then the receiver is full and
the object is not in it, so enlarge the set. (Grow
is not shown in this example.)

End of SetTraits.
Returns a new Set.

il. End of Root Object.

Work in Progress

The design of Self remains unfinished in several vital
areas: multiple inheritance, private (encapsulated)
slots, and activation details:

are considering ways to incorporate encapsulation
into Self.

Multiple inheritance would add more expressive-
ness, permitting a better factorization of behavior.
We are leaning towards an approach in which each
object could have multiple parents, and an enor-
would occur if two slots of the same name were ever
found in the course of a lookup. Conflicts could he
explicitly resolved by suppIying a new method that
delegated the message. We also would limit the
lookup of messages sent to “self’ to only those
paths including the sending method. That way the
destination of a message sent to “self” would he
unaffected by siblings in the inheritance graph.

Activation details are needed to tell a simple, con-
sistent story ahout methods and blocks.

status

Craig Chambers, Elgin Lee, and Martin Rinard have
built a prototype environment for Self including a
browser, inspector, debugger, and interpreter. This
system is intended to help us gain a deeper understan-
ding of the language and implementation challenges.
We have written and run small Self programs in this
environment.

The separation of format from behavior information
in Self’s object model would help make multiple
inheritance work. For example, many languages
with multiple inheritance falter when confronted
with inheriting two classes that contain an instance
variable with the same name. Extra mechanism is
required to specify if the instances should contain
only one instance variable that is shared by the two
parents, or if the instances should contain two
instance variables with the same name. An elegant
solution exists in Self. If it is desired to merge the
instance variables, the prototype merely contains a
slot with the appropriate name. If, on the other
hand, it is desired to keep them separate, the proto-
type has neither slot, but instead can have two
parents that each have the slot. The lookup rules
guarantee that the slots will be accessed by their
appropriate parents. (See Figure 6.)

Related Work and Acknowledgements

Encapsulation is lacking in the current design; any
object can alter the state of any other object. This
could be fixed with some technique for achieving the
effect of private slots. Smalltalk protects variables
but not methods, so Self’s current lack of encapsula-
tion may not be much worse that Smalltalk’s. We

We would like to express our d&p appreciation to
the past and present members of the System Concepts
Laboratory at Xerox PARC for blazing the trail
with Sma.lltalk [GoR83]. The way Self accesses state
via message passing owes much to conversations with
Peter Deutsch, and is reminiscent of an earlier unpub-
lished language of his, called “0”. Some Smalltalk
programmers have already adopted this style of vari-
able accessing [Roc86]. Trellis/Owl, an
independently designed object-oriented language
incorporating static typechecking and encapsulation
includes syntactic sugar for. element access and assign=
ment [SCB86]. However, the syntax resembles field
accessing and assignment. We stuck with mes-
sage-passing syntax in Self to emphasize behavioral
connotations. Strobe was a frame-based language for
AI that also mixed data and behavior in slots
[Smi83]. Loops, an extension of InterLisp with
objects, also included active variables [SBK86].

We would like to thank Lieberman for calling our
attention to prototypes in D&86]. Exemplars is the
name given to prototypes in a project that added a

Now search from start to initial guess.

238 OOPSLA ‘87 Proceedings October d-a,1987

Multiple Inheritance in Self

Rectanqle #ared t ehavior
parent

width ?

height ? bottom - top

area ? width * height

left: c

1 right: 1 c I

,

r&l a VLSIC I
rect parent

I tree Darent I +

Figure 6. Sell? object model is so flexible that it can support multiple inheritance with only small
changes. ln this example, a VLSI cell object has been created that inherits from both rectangles and
trees. The problem for other languages is that, although both rectangles and trees have variables
named left and right, they are used for different purposes and separate slots must be maintained. This
can be implemented in Self by creating two extra parent objects, identified here as “rectangle part”
and “treeNode part” which contain the slots specific to a given inheritance path. When the VLSI cell
is sent the width message, the lookup will find the rectangle width method, which will in turn send
the right message to self. A special multiIjle inheritance rule is that messages sent to self are looked
up only on paths that contain the sender; thus the lookup will fiid only the right slot in the rectangle
part-the right slot in the “treeNode part” poses no conflict. Self’s lack of constmints on an object’s
formats and parents make this possible.

odober 4-8,1987 OOPSLA ‘87 Proceedings 239

prototype-based object hierarchy to Smalltalk
[LTP86]. Like our design for Self, objects are created
by cloning exemplars, and multiple representations
are permitted. Unlike Self in its present state, this
system also includes classes as an abstract type hierar-
chy, and two forms of multiple inheritance. One
interesting contribution is the exemplar system’s sup-
port for or-inheritance. Self seems to be more
unorthodox than exemplars in two respects: it elimi-
nates variable accessing from the language, and it
unifies objects and closures.

The Alternate Reality Kit [Smi86] is a
direct-manipulation simulation environment based on
prototypes and active objects, and it has given us
much insight into the world of prototypes. Alan
Boming’s experience with prototypebased environ-
ments, especially ThingLab [Bor79, Bor81, Bor861
made him a wonderful sounding board when we were
struggling to grasp the implications of prototypes.

The DeltaTalk proposal [Boo861 included several
ideas for merging Smalltalk methods and blocks,
which helped us to understand the problems in this
area. Actors [HeA87] system has active objects, but
these are processes, unlike Self’s procedural model.
Actors also rejects classes, replaces inheritance with
delegation.

Oaklisp &aP86] is a version of Scheme with message
passing at the bottom. However, Oaklisp is
class-based, and maintains the inheritance hierarchy
separately from the lexical nesting; it does not seem
to integrate lambdas and objects.

We would like to thank Daniel Weise and Mark
Miller for listening patiently and tutoring us on
Scheme. Craig Chambers, Martin Rinard, and Elgin

Lee have helped distill and refine the language.
Finally, we would like to thank all the readers and
reviewers for many helpful comments and criticisms,
especially Dave Robson, who helped separate the
wheat from the chaff.

This work is partially supported by Xerox, and
partially by the National Science Foundation Presi-
dential Young Investigator Award DCK 8657631,
NCR, Texas Instruments, and Apple Computer.

Conclusions

Self offers a new paradigm for object-oriented lan-
guages that combines both simplicity and
expressiveness. Its simplicity arises from realizing
that classes and variables are not needed. Their elimi-
nation banishes the metaclass regress, dispels the
illusory distinction between instantiation and sub-
classing, and allows for the blurring of the
differences between objects, procedures, and cl&
sures. Reducing the number of basic concepts in a
language can make the language easier to explain,
understand, and use. However there is a tension
between making the language simpler and making the
organization of a system manifest. As the variety of
constructs decreases, so does the variety of linguistic
clues to a system’s structure.

Making Self simpler made it powerful. Self can
express idioms from traditional object-oriented lan-
guages such as classes and instances, but can go
beyond them to express oneof-a-kind objects, active
Values, inline objects and classes, and overriding
instance variables. We believe that contemplation of
Self provides insights into the nature of
object-oriented computation.

240 OOPSLA ‘87 Proceedings odober 441987

References

[ASS841

[Bor79]

[Bor81]

[BoO86]

[Bor86]

[GoR83]

[HeA87]

Lie.861

H. Abelson, G. J. Sussman and J. Suss-
man, Structure and Interpretation of
Computer Programs, MIT Press, 1984.

A. Borning, ‘ ‘ThingLab-A Constraint-
Oriented Simulation Laboratory,” Ph.D.
dissertation, Stanford University, March
1979.

A. H. Boming, “The Programming Lan-
guage Aspects of ThingLab, A Constraint-
Oriented Simulation Laboratory,” ACM
Transactions on Programming Languages
and Systems 3,4 (October 1981), 353-387.

A. Boming and T. O’Shea, “DeltaTalk:
An Empirically and Aesthetically Moti-
vated Simplification of the
Smalhalk-80rM Language,” unpublished,
1986.

A. Boming, “Classes versus Prototypes
in Object-Oriented Languages,” Proceed-
ings of the ACM / IEEE Fall Joint
Computer Conference, Dallas, TX,
November, 1986.36-40.

A. J. Goldberg and D. Robson,
Smalltalk-80TM: The Language and Its
Implementation, Addison-Wesley Pub-
lishing Company, Reading, MA, 1983.

C. Hewitt and G. Agha, “ACTORS: A
Conceptual Foundation For Concurrent
Object-Oriented Programming,” MIT AI
Lab, January 21,1987. Unpublished draft.

W. R. LaLonde, D. A. Thomas and J. R.
With, “An Exemplar Based Smalltalk,”
OOPSLA’86 Conference Proceedings,
Portland, OR, 1986, 322-330. Also pub-
lished as a special issue of SIGPLAN
Notices Vol. 21, No. 11, Nov. 86.

K. J. Lang and B. A. Pearlmutter,
“Oaklisp: An Object-Oriented Scheme
with First Class Types,” OOPSLA’86
Conference Proceedings, Portland, OR,
1986, 30-37. Also published as a special
issue of SIGPLAN Notices Notices, Vol.
21, No. 11, Nov. 86.

H. Lieberman, “Using Prototypical
Objects to Implement Shared Behavior in
Object-Oriented Systems,” OOPSLA’86
Conference Proceedings, Portland, OR,
1986, 214-223. Also published as a spe-
cial issue of SIGPLAN Notices Notices,
Vol. 21, No. 11, Nov. 86.

[RAM841

[SBK86]

[SCB86]

[She831

[Smi83]

[Smi86]

[Smi87]

[Ste76]

J. A. Rees, N. I. Adams and J. R. Mee-
han, The T Manual (Fourth Edition),
Computer Science Dept., Yale Universi-
ty, New Haven, CT, 1984.

R. Rochat, “In Search of Good Smalltalk
Programming Style,” Technical Report
No. CR-86-19, Computer Research Labo-
ratory, Tektronix Laboratories,
Beaverton, OR, 1986.

M. Stefik, D. Bobrow and K. Kahn,
“Integrating Access-Oriented Program-
ming into a Multiprogramming
Environment,” IEEE Software Magazine
3,1 (January 1986), 10-18.

C. Schaffert, T. Cooper, B. Bullis, M.
Kilian and C. Wilpolt, “An Introduction
to Trellis/Owl,*’ OOPSLA’86 Conference
Proceedings, Portland, OR, 1986, 9-16.
Also published as a special issue of SIG-
PLAN Notices, Vol. 21, No. 11, Nov.
86.

B. She& “Environments for Exploratory
Programming,” Datamation, February,
1983.

R. G. Smith, “Strobe: Support for Su-uc-
tured Object Knowledge Representation,”
Proceedings of the 1983 International
Joint Conference On Artificial InteIli-
gence, 1983,855-858.

R. B. Smith, “The Alternate Reality Kit:
An Animated Environment for Creating *
Interactive Simulations,” Proceedings of
1986 IEEE Computer Society Workshop
on Visual Languages, Dallas, TX, June,
1986,99-106.

R. B. Smith, “Experiences with the
Alternate Reality Kit: An Example of
the Tension Between Literalism and Mag-
’ ” To appear in Proceedings of the
%I+GI’87 Conference, Toronto, Canada,
April, 1987:

G. L. Steele Jr., “Lambda, the Ultimate
Imperative,” AI Memo 353.1976.

October 4-a, 1987 OOPSLA ‘87 Proceedings 241

Appendix: Formal Syntax

We herein include a preliminary formal syntax for
Self, developed by Craig Chambers from a grammar
written by the author for Smalltalk. Terminals are
printed in boldface, commas separate productions,
and double vertical bars indicate alternation.

object = blockobject II methodobject,

blockobject = [de&Part primitiveSpec body] ,
methodobject = { declsPart primitiveSpec body } ,

de&Part = II I decls optionalPeriod I,
de& = II decl II de&. decl ,
decl = argsDec1 II slotDec1 II assignDec1 II initDec1 II

constDec1 II methodDec1,

argsDec1 = argDec1 II argsDec1 argDec1,
argDec1 = : IdentifierToken ,
slotDec1 = IdentifierToken,
assignDec1 = KeywordToken *’ ,
initDec1 = IdentifierToken ‘. constant,
constDec1 = IdentifierToken = constant,
method&cl = slotName = object,

slotName = selectorsDec1 II binarySelector II
binaryPattern II keywordPattern,

selectorsDec1 = selectorDec1 II selectorsDec1
selectorDee ,

selectorDec1 = KeywordToken ,
binaryPattern = binarySelector IdentifierToken ,
keywordPattern = KeywordToken IdentifierToken II

keywordPattern KeywordToken
IdentifierToken ,

primitiveSpec = II c primitive: NumberToken >,

body = statements optionalPeriod
optionalReturnStatement ,

optionalPeriod = II. ,
optionalRetumStatement = II expression,
statements = II expression II statements. expression,
expression = keywordsend II expression cascadepart,
cascadepart = ; sendPart,

sendPart = keywordSendPart II binarySendPart II
unarySendPart ,

keywordsend = binarySend II implicitSelf
keywordSendPart II binarysend
keywordSendPart ,

keywordSendPart = KeywordToken binarySend II
keywordSendPart KeywordToken binarysend,

binarySend = unarySend II implicitSelf unarySendPart
II binarySend binarySendPart ,

binarySendPart = binarySelector unarysend ,
unarysend = primary II implicitself unarySendPart II

unarysend unarySendPart
unarySendPart = IdentifierToken ,

primary = (expression) II explicitself II
explicitSuper II constant ,

implicitself = ,
explicitSelf = self,
explicitSuper = super,
constant = object II scalarConstant II # arrayConstant,
scalarConstant = NumberToken It S hingToken I I #

IdentifierToken II CharacterToken II nil II
true II false ,

arrayConstant = (arrayElements) ,
arrayElement = IdentifierToken II NumberToken II

StringToken II CharacterToken II
an-ayconstant ,

binarySelector = BinarySelectorToken II c II > II = ,

242 OOPSIA ‘87 Proceedings October q-8,1987

