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To thine own self be true. 
-William Shakespeare 

Abstract 
Self is a new object-oriented language for explor- 
atory programming based on a small number of 
simple and concrete ideas: prototypes, slots, and 
behavior. Prototypes combine inheritance and instan- 
tiation to provide a framework that is simpler and 
more flexible than most object-oriented languages. 
Slots unite variables and procedures into a single con- 
struct. This permits the inheritance hierarchy to take 
over the function of lexical scoping in conventional 
languages. Finally, because Self does not distinguish 
state from behavior, it narrows the gaps between 
ordinary objects, procedures, and closures. Self”s 
simplicity and expressiveness offer new insights into 
object-oriented computation. 

Introduction 
Object-oriented programming languages are gaining 
acceptance, partly because they offer a useful perspec- 
tive for designing computer programs. However, 
they do not all offer exactly the same perspective; 
there are many different ideas about the nature of 
object-oriented computation. In this paper we pre- 
sent Self, a programming language with a new 
perspective on objects and message passing. Like the 
Smalltalk-80* language [GoR83], Self is designed to 

*Smalltalk-gO is a trademark of ParcPlace Systems. In this 
paper, the term “Smalltalk” will be used to refer to the 
SmaUtalk-gO programming language. 
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support exploratory programming Me831, and there- 
fore includes runtime typing (i.e. no type 
declarations) and automatic storage reclamation. But 
unlike Smalltalk, Self includes neither classes nor 
variables. Instead, Self has adopted a prototype 
metaphor for object creation EBor79, Bor81 Bor86, 
Lie86, LTP86]. Furthermore, while Smalltalk and 
most other object-oriented languages support vari- 
able access as well as message passing, Self objects 
access their state information by sending messages to 
L ‘self,” the receiver of the current message. 
Naturally this results in many messages sent to 
“SeIf,” and the language is named in honor of these 
messages. One of strengths of object-oriented pro- 
gramming lies in the uniform access to different 
kinds of stored and computed data, and the ideas in 
Self result in even more uniformity, which results in 
greater expressive power. We believe that these 
ideas offer a new and useful view of object-oriented 
computation. 

Several principals have guided the design of Self: 

Messages-at-the-bottom. Self features message 
passing as the fundamental operation, providing 
access to stored state solely via messages. There are 
no variables, merely slots containing objects that 
return themselves. Since Self objects access state 
solely by sending messages, message passing is more 
fundamental to Self than to languages with variables. 

Occam’s razor. Throughout the design, we have 
aimed for conceptual economy: 

. As described above, Self’s design omits 
classes and variables. Any object can per- 
form the role of an instance or serve as a 
repository of shared information. 

l There is no distinction between accessing a 
variable and sending a message. 
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class-based systems Self: no classes 

I inheritance relationships 
I 

instance of 
subclass of I inherits from 

1 creation metaphor 1 build according to plan 1 clone an object 

initialization 
on-f-a-kind 
infinite regress 

executing a “plan” 
need extra object for class 
class of class of class of . . . 

cloning an example 
no extra object needed 
none required 

As in Smalhalk, the language kernel has no 
control structures. Instead, closures and 
polymorphism support arbitrary control 
structures within the language. 

Unlike Smalltalk, Self objects, procedures, 
and closures are all woven from the same 
yarn by representing procedures and closures 
as prototypes of activation records. This 
technique allows activation records to be 
created the same way as other objects, by 
cloning prototypes. In addition to sharing 
the same model of creation, procedures and 
closures also store their variables and main- 
tain their environment information the same 
way as ordinary objects, as described below. 

Concreteness. Our tastes have led us to a metaphor 
whose elements are as concrete as possible [Smi87]. 
So, in the matter of classes versus prototypes, we 
have chosen to try prototypes. This makes a basic dif- 
ference in the way that new objects are created. In a 
class-based language an object would be created by 
instuntiuting a plan in its class. In a prototypebased 
language like Self, an object would be created by 
cloning (copying) a prototype. In Self, any object 
can be cloned. 

The remainder of the paper describes Self in more 
detail, and concludes with an example. We use 
Smalltalk as our yardstick, as it is the most widely 
known language in which everything is an object. 
Familiarity with Smalltalk will therefore be helpful 
to the reader. 

Prototypes: Blending Classes and 
Instances 

In Smalltalk, unlike C++, Simula, Loops, or ADA, 
everything is an object and every object contains a 
pointer to its class, an object that describes its 
format and holds its behavior. (See Figure 1.) In 
Self too, everything is an object. But, instead of a 
class pointer, a Self object contains named slots 

which may store either state or behavior. If an 
object receives a message and it has no matching slot, 
the search continues via its parent pointer. This is 
how Self implements inheritance. Inheritance in Self 
allows objects to share behavior, which in turn 
allows the programmer to alter the behavior of many 
objects with a single change. For instance as shown 
in Figure 1, a point* object would have slots for its 
non-shared characteristics: x and y. Its parent would 
be an object that held the behavior shared among all 
points: +, -, etc. 

Comparing Prototypes and Classes 

One of .Sers most interesting aspects is the way it 
combines inheritance, prototypes, and object creation, 
eliminating the need for classes. 

Simpler relationships. Prototypes can simplify the 
relationships between objects. To visualiz.e the way 
objects behave in a class-based language, one must 
grasp two relationships: the “is a” relationship, that 
indicates that an object is an instance of some class, 
and the “kind of * relationship, that indicates that an 
object’s class is a subclass of some other object’s 
class. In a system with prototypes instead of classes 
such as Self, there is only one relationship, “inherits 
from”, that describes how objects share behavior and 
State. This structural simplification makes it easier 
to understand the language and easier to formulate an 
inheritance hierarchy. 

A working system will provide-the chance to discov- 
er whether class-like objects would be so useful that 
programmers will create them without encourage- 
ment from the language. The absence of the 
class-instance distinction may make it too hard to 
understand which objects exist solely to provide 
shared information for other objects. Perhaps Self 

* Throughout this paper we appeal to point objects in exam- 
ples. A Smalltalk pint represents a point in 
two-dimensional Cartesian coordinates. It contains two 
instance variables, an x and a y coordinate. 
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Smalltalk instances and classes Self objects 
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Each Smalltalk point contains a class pointer, x 
and y coordinates. The class Point supplies both 
format and behavior information for points. Addi- 
tional format and behavior information is 
inherited from Object via Point’s superclass link. 
Each of the two classes in turn must appeal to 
other classes (not shown) for their format and 
behavior. 

A 

print how to 
* print objects 

I 

parent I 

x: t 

Y: t 

+ 

parent 
X 3 
Y 5 

parent \ 
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Each Self point intrinsically describes its own for- 
mat, but appeals to another object for any behavior 
that is shared among points. In this example, the 
points appeal to an object containing shared behavior 
for points. That object in turn appeals to another 
(on top) for behavior that is shared by all objects. 
The “root” object fully describes its own format 
and behavior, so it has no parent. 

Figure 1. A comparison of Smalltalk instances and classes with Self objects: At the bottom of each 
figure are two point objects that have been created by a user program. 
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programmers will create entirely new organizational 
structures. In any case, Self’s flexibility poses a chal- 
lenge to the programming environment; it will have 
to include navigational and descriptive aids. 

Creation by copying. Creating new objects from 
prototypes is accomplished by a simple operation, 
copying, with a simple biological metaphor, 
cloning. Creating new objects from classes is accom- 
plished by instantiation, which includes the 
interpretation of format information in a class. (See 
Figure 2.) Instantiation is similar to building a 
house from a plan. Copying appeals to us as a sim- 
pler metaphor than instantiation. 

Examples of preexisting modules. Prototypes are 
more concrete than classes because they are exumples 
of objects rather than descriptions of format and ini- 
tialization. These examples may help users to reuse 
modules by making them easier to understand. A 
prototype-based systems allows the user to examine 
a typical representative rather than requiring him to 
make sense out of its description. 

Support for one-of-a-kind objects. Self provides 
a framework that can easily include oneof-a-kind 
objects with their own behavior. Since each object 
has named slots, and slots can hold state or behavior, 
any object can have unique slots or behavior. (See 
Figure 3.) Class-based systems are designed for situa- 
tions where there are many objects with the same 
behavior. There is no linguistic support for an object 
to possess its own unique behavior, and it is awk- 
ward to create a class that is guaranteed to have only 
one instance. Self suffers from neither of these disad- 
vantages. Any object can be customized with its 
own behavior. A unique object can hold the unique 
behavior, and a separate “instance” is not need& 

Elimination of me&regress. No object in a 
class-based system can be self sufficienS another 
object (its class) is needed to express its structure 
and behavior. This leads to a conceptually infinite 
meta-regress: a point is an instance of class Point, 
which is an instance of metaclass Point, which is an 
instance of metametaclass Point, ad infinitum. On 
the other hand, in prototype-based systems an object 
can include its own behavior; no other object is 
needed to breathe life into it. Prototypes eliminate 
meta regress. 
The discussion of prototypes in this paper naturally 
applies to them as realized in Self. Prototype-based 
systems without inheritance would have a problem: 
each object would include all of its own behav- 
ior-just like the real world-and these systems 
would surrender one of the most pleasant differences 

between computers and the real word, the ability to 
make sweeping changes by changing shared behavior. 
Once inheritance is introduced into the language, the 
natural tendency is to make the prototype the same 
object that contains the behavior for that kind of 
object. For instance, the behavior of all points could 
be changed by changing the behavior of the prototypi- 
cal point. Unfortunately, such a system must supply 
two ways to create objects: one to make an object 
that is the offspring of a prototype, and another to 
cop,y an object that is not a prototype. The ultimate 
result is that prototypes would become special and 
not prototypical at all. Self avoids these pitfalls by 
combining prototypes and inheritance. 

Our solution is to put the shared behavior for a fami- 
ly of objects in a separate object that is the parent of 
all of them, even the prototype. That way the proto- 
type is absolutely identical to every other member of 
the family. The object containing the shared behavior 
plays a role akin to a class, except that it contains no 
formatting information; it merely holds some shared 
behavior. So to add some behavior to all points in 
Self, one would add that behavior to the parent of 
the Points. 

Blending state and behavior 

In Self, there is no direct way to access a variable; 
instead objects send messages to access data residing 
in named slots. So, to access its “x” value, a point 
sends itself the “x” message. The message finds the 
“ ” X slot, and evaluates the object found therein. 
Since the slot contains a number, the result of the 
evaluation is just the number itself. In order to 
change contents of the “x” slot to, say 17, instead of 
performing an assignment like “x+17,” the point 
must send itself the “x:” message with 17 as the 
argument. The point object (or one of its ancestors) 
must contain a slot named “x:” containing the assign- 
ment primitive. Of course, all these messages sent to 
“self” would make for verbose programs, so our syn- 
tax allows the “self? ’ to be elided. The result is 
that accessing state via messages in Self becomes as 
easy to write as accessing variables directly in 
Smalltalk; “x” accesses the slot by the same name, 
and “x: 17” stores seventeen in the slot. 

Accessing state via messages makes inheritance more 
powerful. Suppose we wish to create a new kind of 
point, whose x coordinate is a random number instead 
of a stored value. We copy the standard point, 
remove the x: slot (so that x cannot be changed) and 
replace the contents of the x slot with the code to 
generate a random number. (See Figure 4.) If instead 
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Creating a Smalltalk Object Creating a Self Object 
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(methods) 
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(superclass) El+ 
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(methods) 
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(name) 

(superdlass) 

(inst vars) 

(methods) 

To create a new point in Smalltalk, the new 
message is sent to the class Point. The new 
method-found in Point’s class’s superclass- 
uses information in its receiver (Point) to define 
the size and format of the new object. 

clone b how to 
clone objects 

I 

parent I 

x: t 

Y: t 
A 

To create a new point in Self, the clone message is 
sent to the prototypical point. The clone method 
copies its receiver. Because the protopoint slot 
resides in the root, any object can create a point. 

Figure 2. Object creation in Smalltalk and in Self. 
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Smalltalk 

(class) l l n 

(name) Object 

(superclass) nil 

(inst vars) (none) 

(methods) . . . 
A 

(class) . . . (class) . . . 

(name) True (name) False 

(superclass) - (superclass) 

(inst vars) (none) (inst vars) (none) 

(methods) + ifTrue: trueBlock (methods) 
+ ifFalse: falseBlock ifFalse: falseBlock 

BU 
(class) 

trueBlock value 
(class) 

falseBlock value 

- 
me false 

self 

true false 

parent parent 

ifTrue: iffalse: I ifTrue: ifFalse: I / 
I I 

/ 

Figure 3. In Self, it is easier to defme unique objects than in a class-based system like SmalItalk. 
Consider the objects that represent the true and false boolean values. A system needs only one instance 
of each object, but in Smalltalk, there must be a class for each. In Self, since any object can contain 
behavior, it is straightforward to create specialized objects for true and false. 
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Computing a value instead of storing it 

I parent 1 nil I 

I print 1 print objects 1 
\ 

parent I I 

I + 1 add points 1 

random 

generator 

Shared state 

parent ! nil 
I 

I print print objects 

I parent I 
\ 

I + add points 
l 

Figure 4. Two examples of flexibility in Self. On the left is a point whose x coordinate is computed by 
a random number generator. Since all the code for point sends messages to get the x value, the random x 
point can reuse all existing point code. On the right are two points that share the same x variable. 

of modifying the x slot, we had replaced the x: slot 
with a “halt” method, we would obtain a breakpoint 
on write. Thus, Self can express the idioms associat- 
ed with active variables and abmons. Accessing 
state via messages also makes it easier to share state. 
To create two points that share the same x coordi- 
nate, the x and x: slots can be put in a separate object 
that is the parents of each of the two points. (Also 
see Figure 4 .) 

In most object-oriented languages, accessing a vari- 
able is a different operation than sending a message. 
This dilutes the message passing model of computa- 
tion with assignment and access. As a result, 
message passing becomes less powerful. For instance, 
the inclusion of variables makes it harder for a 
specialization (subclass) to replace a variable with a 
computed result, because there may be code in a super- 
class that directly accesses the variable. Also, 
class-based languages typically store the names and 
orders of instance variables in an object’s class (as 
shown in Figure 1). This further limits the power 
of inheritance; the specification within a class unnec- 
essarily restricts an instance’s format. Finally, 
variable access requires scoping rules, yet a further 
complication. For instance Smalltalk has five kinds 
of variables: local variables (temporaries), instance 
variables, class variables, pool variables, and global 

variables, whose scopes roughly correspond to rungs 
on the ladder of instantiation. 

CIOSURS 

The Scheme community has obtained excellent 
results with closures (or lambda-expressions) as a 
basis for control structures [Ste76, ASS841. Experi- 
ence with Smalltalk blocks supports this; closures 
provide a powerful, yet easy-to-use metaphor for 
users to exploit and define their own control struc- 
tures. Furthermore this ability is crucial to any 
language that supports user-defined abstract data 
types. However, we believe that it is unwise to 
design a language that makes separate provision for 
both objects and closures, because they are so similar 
(both store’ behavior and state). In Self, objects, 
closures (blocks) and procedures (methods) have been 
brought closer together by using slots and inheri- 
tance to build closures and procedures: 

Local variables. Closures and procedures require 
storage for local variables, and in Self, their slots 
fulfill this function. In Smalltalk, invoking a 
method results in the creation of an activation record 
whose initial ‘contents is described by the method. 
For example, the number of temporary variables 
listed in the method describes the number of fields 
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set aside in the activation record to hold variables. 
This is similar to the way a class contains a struc- 
turd description used to instantiate its instances. 
But in Self, objects that play the role of subroutines 
and closures (methods and blocks) are protorypes of 
activation records; they are copied and invoked to run 
the subroutine or block. So, local variables are allo- 
cated by reserving slots for them in the prototype 
activation record. One advantage is that the proto- 
type’s slots may be initialized to any value-the may 
even contain private methods and closures (blocks). 

Environment link. In general, a closure must con- 
tain a link to its enclosing closure or scope. This 
link is used to resolve references to variables not in 
the closure itself. In Self, instead of having separate 
scope information, a closure’s parent link performs 
this function. If a slot is not found in the current 
scope, lookup proceeds to the next outer scope by fol- 
lowing the parent link. 

Some interesting mechanisms are needed to make the 
parent links handle lexical scoping. First, the parent 
link must get set to the appropriate object. This is 
simple for an ordinary object; the parent link is set 
to its prototype’s parent. For methods (procedures), 
the object created by the compiler serves as a proto- 
type activation, and when invoked, gets cloned. The 
clone’s parent then gets set to the message’s receiv- 
er. In this fashion, the method’s scope gets 
embedded in the receiver%. For Self blocks, the par- 
ent link must get set to the activation for the 
enclosing method. This can be done either when the 
method is activated and the activation record is creat- 
ed, or when the block is created. 

Second, in order to allow the slots containing local 
variables to be accessed in the same way as everything 
else, the implicit “self” operand must take on an 
unusual meaning: start the message lookup with the 
current activation record, but set the receiver of the 
message to be the same as the current receiver. In a 
way, this is the opposite of the “super” construct in 
SmalltaIk, which starts the lookup with the receiv- 
er’s superclass. (See Figure 5.) 

Speculation: Where is Self headed? 

In the designing of Self, we have been led to some 
rather strange recurring themes. We present them 
here for the reader to ponder. 

Behaviorism. In most object languages (Actors 
excepted), objects are passive; an object is what it is. 
In Self, an object is what it does. Since variable 
access is the same as message passing, ordinary pas- 

sive objects can be regarding merely as methods that 
always return themselves. For example, consider the 
number 17. In Smalltalk, the number 17 represents a 
particular (immutable) state. In Self, the number 17 
is just an object that returns itself and behaves a 
certain way with respect to arithmetic. The only 
way to know an object is by its actions. 

Computation viewed as refinement. In Smalltalk, 
the number 17 is a number with some particular 
state, and the state information is used by the arith- 
metic primitives-addition for example. In Self, 17 
can be viewed as a refinement of shared behavior for 
numbers that responds to addition by returning 17 
more than its argument. Since in Self, an activation 
record’s parent gets set to the receiver of the mes- 
sage, method activation can be viewed as the creation 
of a short-lived refinement of the receiver. Likewise 
block, or closure activation can be viewed as the cre- 
ation of a refinement of the activation record for the 
enclosing context scope. 

In our examples, we render the shared behavior 
object for points as an ordinary passive object. 
Another twist would be to build class-like objects 
out of methods. In Self, the shared behavior object 
for points could be a method with code that simply 
returned a clone of the prototypical point. This 
method could then be installed in the “Point” slot 
of the root object. One object would then be serving 
two roles: its code would create new points, and its 
slots (locals) would hold the shared behavior for 
points. At this writing, we do not believe that this 
is the best way to construct a system, but the use of 
methods to hoId shared behavior for a group of 
objects is an example of the flexibility afforded by 
Self. 

Parents viewed as shared parts. Finally, one can 
view the parents of an object as shared parts of the 
object. From this perspective, a Self point contains a 
private part with x and y slots, a part shared with 
other points containing +, -, etc. slots, and a part 
shared with all other objects containing behavior 
common to all objects. Viewing parents as shared 
parts broadens the applicability of inheritance. 

Syntax 

In this section we outline the syntax for a textual 
representation of Self objects. Where possible, we 
have followed Smalltalk syntax to avoid confusion. 
We have added slot list syntax for creating objects 
inline. In general, Self objects (including methods 
and blocks) are written enclosed in brackets, and 
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include a list of slots and some code. Passive objects 
and blocks are enclosed in square brackets, and 
methods are enclosed in curly brackets. The code fol- 
lows Smalltalk syntax, except for the implicit self 
message destination. The slot list, though, departs 
from Smalltalk. The first difference, is that the slot 
list, if present, must be nestled in a pair of vertical 
bars. Next, each item in the slot list must be sepa- 
rated from the next by a period. (A trailing period 
is optional.) Finally, there are several forms for 
slots: 

. A selector by itself denotes MO slots: a slot 
initialized to nil, and a slot named with a 
trailing colon initialized to the assignment 
primitive (denoted by “). -For example, the 
object 

[lx. II 

contains two slots: one called x containing 
nil, and another one called x: containing -*. 
This has the same effect as declaring a 
Smalltalk variable. 

. A selector followed by a left arrow and an 
expression also denotes two slots: a slot ini- 
tialized to the value of the expression, and a 
corresponding assignment slot. If the 
expression is a Self object with code, the 
object is treated as a block. 

For example, the method 

( 
I tally *- 0 I 
10 timesRepeat: [tally: 

tally + Random*]. 
“my 

returns the sum of 10 random numbers. It 
contains a slot named “tally” initialized to 
zero, and a slot named “tally:” containing 
the assignment primitive. The effect is simi- 
lar to an initialized variable. 

. A selector followed by an equals sign (=) 
and an expression denotes only one slot, ini- 
tialized to the value of the expression. The 

*Random is a slot in the root object containing a method 
that returns a random number. 

effect is identical to that of the left-arrow 
form, except that the variable is read-only. 

. A keyword (identifier with trailing colon) 
followed by a left arrow (“O.“) defines an 
assignment slot. Such a slot can be used to 
change the value of a read-only slot else- 
where. For example, points may be defined 
to be immutable by omitting the assignment 
slots from them, that is defining the proto- 
typical point as “[ I x = nil. y = nil I I.” 
But a routine defined for points can change 
its receiver’s x or y if it includes x: or y: 
slots. 

l Finally, one or more unary selectors (i.e. 
identifiers) preceded by colons define one 
slot per identifier, bound to the correspon- 
ding argument of the message. For example: 
‘ ‘compareBlock = [ I :a :b I a c b]” defines a 
block with two arguments, “a” and “b.” 

The arguments for a method may also be 
moved into the selector as in Smalltalk: 

display: at: = ( 
1 :aForm :aPoint 1 
Bitblt destination: self; 

au aPoint; 
source: aForm; 
copybits ) 

display: aForm at: aPoint = ( 
Bitblt destination: self; 

at: aPoint; 
source: aForm; 
copybits ) 

are equivalent. 

An Example 

The following example shows one way to build a 
data structure that holds a set of objects. The set is 
implemented with a open-addressed hash table. A 
consequence of our notation is that the inheritance 
hierarchy usually corresponds to the lexical nesting 
to express (single) inheritance. Here the outermost 
brackets denote the root object. 
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Activation in Self 

shared behavior for all objects 

. I 
parent \ 

+ 
shared behavior for points - 

x: t 

Y: 

parent 

a point 

@zl’ 

X 3 arg nil 
prototype activation . 

Y 5 code 

v 

Tclone x: x + arg x; y: y + arg y 

A 

I 

I parent 

parent another point x 7 

activation record arg Y 9 
code 

Figure 5. The figure above shows what happens when the point (3, 5) gets sent the plus message with 
argument (7, 9). Lookup for plus starts at (3, 5) and finds a matching slot in the object holding shared 
behavior for points. Since the contents of the slot is a method object, it is cloned, the clone’s argu- 
ment slot is set to the argument of the message, and its parent is set to the receiver. When the code 
for plus executes, the lookup for x will find the receiver’s x slot by following the inheritance chain 
from the current activation record. It will also find the contents of the args slot in the same way. It 
is this technique of having the lookup for the implicit self receiver start at the current activation, that 
allows local variables, instance variables and method lookup to be unified in Self. 
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[I 
nil = [ 1. 
clone = ( <primitive> ). 
SetTraits = [ I 

emptyset = [ I 
size = 0. 
contents = #(nil) I]. 

size: *‘. 
contents: ‘*. 
clone = ( 

super clone 
contents: contents clone ). 

includes: obj = ( 
indexFor: obj 

ifPresent [true] 
ifAbsenr [ I :unnsed I false] ). 

add: obj = ( 
indexFor obj 

ifPresent: [ ] 
ifAbsent: [ 

I :i I 
contents at: i put: obj. 
size:size+ 1.1 ). 

indexFor: obj 
ifPresent: presentBlock 
ifAbsent: absentBl( 

=(I 

ha&Index. 
testBlock = [ I 

ock 

:i. cl 

c: (contents at: i). 
c isNil ifl’rue: 

[ absentBlock value: il. 
c = obj iffrue: 

[ presen tBlock value]]. 

ha&Index: (obj hash bitAnd: 
contents lastIndex). 

hashIndex 
to: contents lastIndex 
do: testBlock. 

The global dictionary, or root object. 
An object with no slots. 
A method that shallow-copies an object. 
Holds the shared state and behavior for Sets. 
The prototypical set 

with no elements, and 
contents is. an array containing nil. 

Slots with the assignment primitive, 
allowing methods to set the slots of sets. 

A method to clone sets. 
Clone the receiver, and set the clone’s 

contents to be a clone of the contenrs array. 
Does the set include obj? 
Send the receiver 

indetior: iPresent: ifAbsent. 
“Unused” is an argument to the block. 
Add obj to the receiver. 
First, test if it’s already there. 
It’s alreagy there, do nothing. 
O.K., add it. 
The block gets passed the index. 
Put it into the array. 
Increment size. 
This method is privately-used behavior,. 

Search the hash table for obj. If found, return 
the array index where it is. If not found, return 
the index of where it should go. If there is no 
room, enlarge the set. 

A read/write slot (local variable) 
TestBlock is a named block (closure) local to this 

method. It takes an array index as its argument, 
called i. It probes the army at that location, and 
if the slot is empty returns the result of 
executing the absentBlock. (AbsentBlock is an 
argument to the enclosing method.) If the slot 
contains the desired object, it returns the result 
from the presentBlock. The explicit returns 
return from the outer method, since this is a 
block. Otherwise, the block just does a local 
retum. 

Put contents of i* slot in c. 
If empty execute absentBlock with argument i. 

If found, return value of presentBlock. 
End of testBlock. 
Code for indexFor:ifPresent:ifAbsent:. 

Use open addressing; search from initial guess to end. 
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contents firstIndex 
to: hashIndex - 1 
do: textBlock. 

grow indexFor: ohj ) 

1 I. 
AnEmptySet = (SetTraits emptyset clone ). 

If control falls through, then the receiver is full and 
the object is not in it, so enlarge the set. (Grow 
is not shown in this example.) 

End of SetTraits. 
Returns a new Set. 

il. End of Root Object. 

Work in Progress 

The design of Self remains unfinished in several vital 
areas: multiple inheritance, private (encapsulated) 
slots, and activation details: 

are considering ways to incorporate encapsulation 
into Self. 

Multiple inheritance would add more expressive- 
ness, permitting a better factorization of behavior. 
We are leaning towards an approach in which each 
object could have multiple parents, and an enor- 
would occur if two slots of the same name were ever 
found in the course of a lookup. Conflicts could he 
explicitly resolved by suppIying a new method that 
delegated the message. We also would limit the 
lookup of messages sent to “self’ to only those 
paths including the sending method. That way the 
destination of a message sent to “self” would he 
unaffected by siblings in the inheritance graph. 

Activation details are needed to tell a simple, con- 
sistent story ahout methods and blocks. 

status 

Craig Chambers, Elgin Lee, and Martin Rinard have 
built a prototype environment for Self including a 
browser, inspector, debugger, and interpreter. This 
system is intended to help us gain a deeper understan- 
ding of the language and implementation challenges. 
We have written and run small Self programs in this 
environment. 

The separation of format from behavior information 
in Self’s object model would help make multiple 
inheritance work. For example, many languages 
with multiple inheritance falter when confronted 
with inheriting two classes that contain an instance 
variable with the same name. Extra mechanism is 
required to specify if the instances should contain 
only one instance variable that is shared by the two 
parents, or if the instances should contain two 
instance variables with the same name. An elegant 
solution exists in Self. If it is desired to merge the 
instance variables, the prototype merely contains a 
slot with the appropriate name. If, on the other 
hand, it is desired to keep them separate, the proto- 
type has neither slot, but instead can have two 
parents that each have the slot. The lookup rules 
guarantee that the slots will be accessed by their 
appropriate parents. (See Figure 6.) 

Related Work and Acknowledgements 

Encapsulation is lacking in the current design; any 
object can alter the state of any other object. This 
could be fixed with some technique for achieving the 
effect of private slots. Smalltalk protects variables 
but not methods, so Self’s current lack of encapsula- 
tion may not be much worse that Smalltalk’s. We 

We would like to express our d&p appreciation to 
the past and present members of the System Concepts 
Laboratory at Xerox PARC for blazing the trail 
with Sma.lltalk [GoR83]. The way Self accesses state 
via message passing owes much to conversations with 
Peter Deutsch, and is reminiscent of an earlier unpub- 
lished language of his, called “0”. Some Smalltalk 
programmers have already adopted this style of vari- 
able accessing [Roc86]. Trellis/Owl, an 
independently designed object-oriented language 
incorporating static typechecking and encapsulation 
includes syntactic sugar for. element access and assign= 
ment [SCB86]. However, the syntax resembles field 
accessing and assignment. We stuck with mes- 
sage-passing syntax in Self to emphasize behavioral 
connotations. Strobe was a frame-based language for 
AI that also mixed data and behavior in slots 
[Smi83]. Loops, an extension of InterLisp with 
objects, also included active variables [SBK86]. 

We would like to thank Lieberman for calling our 
attention to prototypes in D&86]. Exemplars is the 
name given to prototypes in a project that added a 

Now search from start to initial guess. 
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Multiple Inheritance in Self 

Rectanqle #ared t ehavior 
parent 

width ? 

height ? bottom - top 

area ? width * height 

left: c 

1 right: 1 c I 

, 

r&l a VLSIC I 
rect parent 

I tree Darent I + 

Figure 6. Sell? object model is so flexible that it can support multiple inheritance with only small 
changes. ln this example, a VLSI cell object has been created that inherits from both rectangles and 
trees. The problem for other languages is that, although both rectangles and trees have variables 
named left and right, they are used for different purposes and separate slots must be maintained. This 
can be implemented in Self by creating two extra parent objects, identified here as “rectangle part” 
and “treeNode part” which contain the slots specific to a given inheritance path. When the VLSI cell 
is sent the width message, the lookup will find the rectangle width method, which will in turn send 
the right message to self. A special multiIjle inheritance rule is that messages sent to self are looked 
up only on paths that contain the sender; thus the lookup will fiid only the right slot in the rectangle 
part-the right slot in the “treeNode part” poses no conflict. Self’s lack of constmints on an object’s 
formats and parents make this possible. 
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prototype-based object hierarchy to Smalltalk 
[LTP86]. Like our design for Self, objects are created 
by cloning exemplars, and multiple representations 
are permitted. Unlike Self in its present state, this 
system also includes classes as an abstract type hierar- 
chy, and two forms of multiple inheritance. One 
interesting contribution is the exemplar system’s sup- 
port for or-inheritance. Self seems to be more 
unorthodox than exemplars in two respects: it elimi- 
nates variable accessing from the language, and it 
unifies objects and closures. 

The Alternate Reality Kit [Smi86] is a 
direct-manipulation simulation environment based on 
prototypes and active objects, and it has given us 
much insight into the world of prototypes. Alan 
Boming’s experience with prototypebased environ- 
ments, especially ThingLab [Bor79, Bor81, Bor861 
made him a wonderful sounding board when we were 
struggling to grasp the implications of prototypes. 

The DeltaTalk proposal [Boo861 included several 
ideas for merging Smalltalk methods and blocks, 
which helped us to understand the problems in this 
area. Actors [HeA87] system has active objects, but 
these are processes, unlike Self’s procedural model. 
Actors also rejects classes, replaces inheritance with 
delegation. 

Oaklisp &aP86] is a version of Scheme with message 
passing at the bottom. However, Oaklisp is 
class-based, and maintains the inheritance hierarchy 
separately from the lexical nesting; it does not seem 
to integrate lambdas and objects. 

We would like to thank Daniel Weise and Mark 
Miller for listening patiently and tutoring us on 
Scheme. Craig Chambers, Martin Rinard, and Elgin 

Lee have helped distill and refine the language. 
Finally, we would like to thank all the readers and 
reviewers for many helpful comments and criticisms, 
especially Dave Robson, who helped separate the 
wheat from the chaff. 

This work is partially supported by Xerox, and 
partially by the National Science Foundation Presi- 
dential Young Investigator Award DCK 8657631, 
NCR, Texas Instruments, and Apple Computer. 

Conclusions 

Self offers a new paradigm for object-oriented lan- 
guages that combines both simplicity and 
expressiveness. Its simplicity arises from realizing 
that classes and variables are not needed. Their elimi- 
nation banishes the metaclass regress, dispels the 
illusory distinction between instantiation and sub- 
classing, and allows for the blurring of the 
differences between objects, procedures, and cl& 
sures. Reducing the number of basic concepts in a 
language can make the language easier to explain, 
understand, and use. However there is a tension 
between making the language simpler and making the 
organization of a system manifest. As the variety of 
constructs decreases, so does the variety of linguistic 
clues to a system’s structure. 

Making Self simpler made it powerful. Self can 
express idioms from traditional object-oriented lan- 
guages such as classes and instances, but can go 
beyond them to express oneof-a-kind objects, active 
Values, inline objects and classes, and overriding 
instance variables. We believe that contemplation of 
Self provides insights into the nature of 
object-oriented computation. 
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Appendix: Formal Syntax 

We herein include a preliminary formal syntax for 
Self, developed by Craig Chambers from a grammar 
written by the author for Smalltalk. Terminals are 
printed in boldface, commas separate productions, 
and double vertical bars indicate alternation. 

object = blockobject II methodobject, 

blockobject = [ de&Part primitiveSpec body ] , 
methodobject = { declsPart primitiveSpec body } , 

de&Part = II I decls optionalPeriod I, 
de& = II decl II de&. decl , 
decl = argsDec1 II slotDec1 II assignDec1 II initDec1 II 

constDec1 II methodDec1, 

argsDec1 = argDec1 II argsDec1 argDec1, 
argDec1 = : IdentifierToken , 
slotDec1 = IdentifierToken, 
assignDec1 = KeywordToken *’ , 
initDec1 = IdentifierToken ‘. constant, 
constDec1 = IdentifierToken = constant, 
method&cl = slotName = object, 

slotName = selectorsDec1 II binarySelector II 
binaryPattern II keywordPattern, 

selectorsDec1 = selectorDec1 II selectorsDec1 
selectorDee , 

selectorDec1 = KeywordToken , 
binaryPattern = binarySelector IdentifierToken , 
keywordPattern = KeywordToken IdentifierToken II 

keywordPattern KeywordToken 
IdentifierToken , 

primitiveSpec = II c primitive: NumberToken >, 

body = statements optionalPeriod 
optionalReturnStatement , 

optionalPeriod = II. , 
optionalRetumStatement = II expression, 
statements = II expression II statements. expression, 
expression = keywordsend II expression cascadepart, 
cascadepart = ; sendPart, 

sendPart = keywordSendPart II binarySendPart II 
unarySendPart , 

keywordsend = binarySend II implicitSelf 
keywordSendPart II binarysend 
keywordSendPart , 

keywordSendPart = KeywordToken binarySend II 
keywordSendPart KeywordToken binarysend, 

binarySend = unarySend II implicitSelf unarySendPart 
II binarySend binarySendPart , 

binarySendPart = binarySelector unarysend , 
unarysend = primary II implicitself unarySendPart II 

unarysend unarySendPart 
unarySendPart = IdentifierToken , 

primary = ( expression ) II explicitself II 
explicitSuper II constant , 

implicitself = , 
explicitSelf = self, 
explicitSuper = super, 
constant = object II scalarConstant II # arrayConstant, 
scalarConstant = NumberToken It S hingToken I I # 

IdentifierToken II CharacterToken II nil II 
true II false , 

arrayConstant = (arrayElements ) , 
arrayElement = IdentifierToken II NumberToken II 

StringToken II CharacterToken II 
an-ayconstant , 

binarySelector = BinarySelectorToken II c II > II = , 
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