Objects and Aspects: Ownership
Types

Neel Krishnaswami

Department of Computer Science
Carnegie Mellon University
neelk@cs.cmu.edu

Overview

The Problem

An Introduction to Ownership Types

Evaluating How Ownership Resolves the Problem

Future Directions

Objects and Aspects: Ownership Types

The Problem

e A central idea of OO is to encapsulate state

e But there is no strong language support for this

Objects and Aspects: Ownership Types

Aliasing: Threat or Menace?

This is an example from the Java 1.1 JDK:

class Class {

List signers;

List getSigners() {

return this.signers;

}

Objects and Aspects: Ownership Types

Aliasing: Threat or Menace?

This is an example from the Java 1.1 JDK:

class Class {

List signers;

List getSigners() {

return this.signers; // clients can mutate signers field!

}

Objects and Aspects: Ownership Types

Aliasing: Threat or Menace?

class JavaClass {

List signers;

List getSigners() {

return this.signers; // clients can mutate signers field!

}

Aliasing has caused a failure of encapsulation — the ability to
modify an internal field of an object got exposed to a client,
because the client received a reference to the object in the
instance variable.

Objects and Aspects: Ownership Types

An Introduction to Ownership Types

The Problem

An Introduction to Ownership Types

Evaluating How Ownership Resolves the Problem

Future Directions

Objects and Aspects: Ownership Types

The Basic Idea Underlying Ownership

Ownership types represent an attempt to prevent aliasing-
based failures of encapsulation.

e Every object itself exists in a domain, which is a region
of the heap.

e Every object can additionaly create one or more new do-
mains.

e Each field of an object is annotated with the domain it
belongs to.

Objects and Aspects: Ownership Types

A Graphical View of Ownership

vault domain

‘S ssssssssssmns

*
L4
]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
.
*

.
))
[]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
]
L4
L 4

teller domain

‘s ssssssssssmns

bank object

*
L 4
]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
.
*

.
))
[]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
]
L4
L 4

agent domain

world domain

customer object

*
L4
]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
.
*

WEEEEEE NN E SN NS IS SIS SIS NSNS S S S SIS S S SN SN NN N NSNS S S S S SN SN EEEEEE SN,

L4
]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
[]
[]
]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
.
*

‘G EEEEEE S SN EE SN NN E SN E NSNS EEEEEEEEEEEE SN NSNS NS NN SN NSNS NN EEEEEEEEEEEEEEEEmS

Objects and Aspects: Ownership Types

Access Permissions

In order for domains to be useful, we need to define a set
of access permissions on domains. To “Access” a domain d
means to:

e Dereference an object field annotated with domain d

e Invoke a method on an object in d

e Receive a value from a method call that is in a domain
d.

Objects and Aspects: Ownership Types

What May Be Accessed?

An object o in a domain d can access:

e Other objects in the same domain d.

e Other objects in the domains that d is contained in.

e Objects in the domains e, f,g that it declares.

e Objects in domains d’ that d has permission to access.

Very important: this is not a transitive relation! If d — e and
e — f, then it does not follow that d — f.

Objects and Aspects: Ownership Types

Public Domains and Link Annotations

e Objects in domains d’ that d has permission to access.

This information comes from programmer annotations.

A programmer can mark a declared domain public, in which
case that domain may be accessed from any domain that can
access the declaring object.

A programmer can declare link specifications, which permit
an object to declare access links between the domains it cre-
ated and domains it can access.

Objects and Aspects: Ownership Types
11

A Code Example

class Customer {

domain agents;

¥

class Bank {
public domain tellers;
private domain vault;
link tellers -> vault;

Objects and Aspects: Ownership Types

12

A Graphical View of Ownership

vault domain

‘S ssssssssssmns

*
L4
]
[]
[]
[]
[]
L}
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
.
*

.
))
[]
[]
[]
[]
[]
L}
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
]
L4

L 4

SEEEEEENEESS .,

teller domain

*
[]
n
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
.
*

‘s ssssssssssmns

bank object

‘ssmmmm

. \.\ -,

¥ L)
S © = '
a Qluv;] m]
e o) . "
o O . .m :
O S [} [}
e) : = .
= £ C o "
@) o N o)) .
= %) : © i
> . .

o e msssssssmsssssman . .

WEEEEEE NN E SN NS IS SIS SIS NSNS S S S SIS S S SN SN NN N NSNS S S S S SN SN EEEEEE SN,

‘G EEEEEE S SN EE SN NN E SN E NSNS EEEEEEEEEEEE SN NSNS NS NN SN NSNS NN EEEEEEEEEEEEEEEEmS

L4
]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
[]
[]
]
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
n
[]
[]
[]
[]
[]
[]
[]
[]
[]
n
[]
[]
n
[]
[]
n
[]
.
*

Objects and Aspects: Ownership Types

13

Link Soundness

This ownership system has a link soundness property. This
is a proof that the type system actually enforces the access
constraints — that is, if o can access o’ and o’ is in domain d,
then o has permission to access d.

Objects and Aspects: Ownership Types
14

An Introduction to Ownership Types

The Problem

An Introduction to Ownership Types

Evaluating How Ownership Resolves the Problem

Future Directions

Objects and Aspects: Ownership Types

15

JDK 1.1, revisited

class Class {
private domain internal;
internal List signers;

internal List getSigners() { return this.signers; }

void foo() {

internal List x = this.getSigners();
// do stuff using x

}

Clients cannot invoke getSigners, since the domain internal

IS private and they cannot access it. They can only invoke
foo.

Objects and Aspects: Ownership Types

16

Making getSigners Available

class Class {
private domain internal;

internal List signers;

world List getSigners() A
world List copy = new List();
for(int i = 0; i < this.signers.size(); i++) {
copy.add(this.signers.get(i));
+

return copy;

}

Objects and Aspects: Ownership Types

17

Generalizing To Iterators, 0/3

Now we will look at a more complex problem — iterator ob-
jects. AN iterator is an object with access to the internal
state of the collection it iterates over, but which does not
expose this to the outside world.

Objects and Aspects: Ownership Types

18

Iterators, cont. 1/3

class Cons<T> assumes owner -> T.owner {
Cons (T head, owner Cons<T> tail) {
this.head = head;
this.tail = tail;

T head;

owner Cons<T> tail;

owner IS a kKeyword to name the owning domain of an object.

Objects and Aspects: Ownership Types

Iterators, cont. 2/3

class Sequence<T> assumes owner -> T.owner {
private domain internal;
link internal -> T.owner;
internal Cons<T> front;

void add(T o) { this.front = new Cons<T>(o, this.front); }

public domain iters;
link iters -> T.owner,

iters —-> internal;

iters Iterator<T> getIter() {

return new Sequencelterator<T, owned>(this.front);

}

Objects and Aspects: Ownership Types

20

Iterators, cont. 2/3

interface Iterator<T> {
boolean hasNext();
T next();

+

class Sequencelterator<T, domain list> implements Iterator<T>
assumes list -> T.owner

{

Sequencelterator<T, domain list>(list Cons<T> head) { this.current = head; }
list Cons<T> current;

boolean hasNext() { return current != null; }

T next() {
T obj = this.current.head;
this.current = this.current.tail;
return obj;

Objects and Aspects: Ownership Types

21

What Makes This Work

e YOU can parameterize classes with domains as well as

types. Programmers can write code that works in any
domain.

e Public domains can safely access private ones, because of
the lack of transitivity. Stateful data can now be part of
an object’s interface without breaking its encapsulation.

e You can hide “extra’” parameterization behind interfaces.
This lets the iterator implementation receive a domain
without revealing it to clients.

Objects and Aspects: Ownership Types

22

An Introduction to Ownership Types

The Problem

An Introduction to Ownership Types

Evaluating How Ownership Resolves the Problem

Future Directions

Objects and Aspects: Ownership Types

23

Weaknesses With Ownership

e Ownership transfers. How can objects move between
domains as the program evolves? (Uniqueness/linearity
helps somewhat, but is overkill.)

e Serialization. (This is probably hopeless in the general
case.)

e [heoretical complexity — the type system is quite com-
plex, and we've “baked in” a fairly complex set of access
rules. It would be nice to simplify this.

Objects and Aspects: Ownership Types

24

Future Work

Transplant to a mostly-functional setting.

Characterize what encapsulation really means via study-
ing type abstraction for stateful languages.

More access modes? Object creation, object update, and
object read are quite different conceptually.

What is the relation to other work? Regions, confinement
types, modal logic, etc.

Objects and Aspects: Ownership Types

25

