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Abstract—We introduce a new programming language concept called
typestate, which is a refinement of the concept of type, Whereas the type
" of a data object determines the set of operations ever permitted on the
object, typestate determines the subset of these operations which is per-
mitted in a particular context.

Typestate tracking is a program analys:s techmque which enhances
program reliability by detecting at compile-tine syntactically kegal but
semantically. undefined execution sequences. These include, for exam-
ple, reading 2 variable before it has been initialized, dereferencmg a
pointer after the dynamic object has been deallocated, etc. Typestate
tracking detecis errors that tannot be detected by type checking or by
conventional static scope rules. Additionally, typestate tracking makes
it possible for compilers to insert appropriate finalization of data at
exception peints and on program termination, ehmmatmg the need to

. support finalization' by means of -either garbage collection or. unsafe ‘

deallocation operations such as Pascal’s dispose operation.
-By enforcing typestate invariants at compile-time, it becomes. prac:
tical to implement a “secure language”-that is, one in which all suc-

cessfully compiled program modules have fully defined execution-time -

effects, and the only effects of program errors are incorrect output
values.

This paper defines typestate, gives examples of its appllcatmn, and
shows how typestaie checking may be embedded into a compiler, We
discuss the censequences of typestate checking for software rellabxllty
and software structure, and conclude with a discussion of our experi-
ence using a high-level language mcorporatmg typestate checking.

ware reliability, type checking, typestate.

I INTRODUCTION

TYPESTATE is a refinement of the concept of type in
programming languages. Typestate tracking is a com-
pile-time program analysis technique which enhances pro-
gram reliability by detecting type-correct applications of
operations which are nonsensical in their current context.

In this paper, the term “nonsensical” refers to syntacti- -

cally well-formed but semantlcaily undefined sequences of
program statements.

In the following, we argue that there is a qualltatlve dif-
ference between simply incorrect programs—those which
.perform computations ‘other than those intended, and
““nonsensical” programs—which cannot satisfy any mean-
ingful specification and which may produce unpredictable
effects if executed. We then show that tonventional error
detection techniques based on type checking and static
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scope checking avoid some but not all nonsense. In Sec-
- tion 1T, we informally present the typestate concept, give

examiples of its use, and discuss the benefits which-accrue
from compile-time tracking of typestate. In Section Il
we give a more formal definition of typestate, and present
an algorithm for verifying the typestate conmsistency of
programs. In Section IV, we discuss the interaction be-
tween typestate and other language design issues, such as
composite user-defined types, independent compilation,
and aliasing. We discuss our experience as designers and
users of NIL—a secure programming language incorpo-
rating complle—tlme typestate trackmg Section V presents
some conclusions and comparisons with related work.

A Type Checking

From the perspective of software rellablhty, one of the

-mast important properties of the concept of type is that it

supports the automatic detection of certain kinds of errors.

The type of a variable name determines the set of op— _
_erations which may be applied 'to that variable. For in-

stance, if X is of type, real it is allowed to appear in the

~ context
Index Terms—Program analysis, program verlﬁcatmn, security, soft-' -

314 + X
but not in the context - _
Y:i=X

where Y is a variable name of type boolean. A language
is strongly typed if each variable name has a type which
can be determined statically. In a strongly typed lan-
guage, it is possible to check each statement for rype-cor-
rectness, 1.e., to check that each operation is apphed to
operands of the correct type, and (o reject any program
which is not type-correct.

Type checking detects that sort of nonsense which is

independent of the context of an operation relatlve to other
operations. That is, if :

Y :=X:

.'1s legal (illegal) at one pomt in the program it is legal

(illegal) from the standpoint of type-correctness every-
where in the scope of the declarations of X and Y.

There are other kinds of nonsense, however, which are
nonsensical only in particular contexts. For example, as-
sume A and B are both of type integer. Then the following

" program segment:
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declare _
., Arinteger;
B: integer;
begin
A= 2;
¢ Bi=A+T

£ “makes sense, but this program:

declare
A integer;
B: integer;
begin .
Bi= A+ 1;
A:=2;

does not, since the value of A + 1 is undefined if A has
"not been assigned a value. Therefore, even though' A
names an integer object, and -+ is defined for integers, A
may be in a state in which the application of + is undé-
fined, ' :
The following is another example of a nonsepsical se-
quence of statements (using Pascal pointer notation): '

- type msgptr = T msg {poi'n'ter to a msg variable}
var P: msgptr . ; o ‘
Pt.data {the data pointed to by P} := “hello”; .

Since new has not been applied, P is 'ulnini'tialized, ie.,
the value of P is undefinéd and the assignment to PT.data
is nonsensical. If the assignment is allowed to execute, the -

" copying of the character string into a “random’ location-
in memory, possibly damaging other supposedly ‘‘cor-
_ rect” programs running in-the same system.

" Type-checking does not reject the above examples of
nonsense, because the operations being applied (+ and 1)
are valid operations on integers and msgptrs. What makes-
the above examples nonsensical is the order of the state-
ments—that is, + is applied to A -when A is in an inap-
‘propriate state (value not yet defined), and P is derefer-
_enced in an inappropriate state (storage’ not yet allocated).
As with type errors, in a theoretical treatment oné can
““define away” the errors by: means of language exten:
sions, e.g., by adding uninitialized values to the data do-
.main. However since we are interested in enhancing soft-
ware reliability by automating the detection of errors, we
do not pursue this approach. Our goal is to expose non-
sense rather than to assimilate nonsense to sense. By pro- -
viding a narrow criterion for sense, we increase the like-
likood that an incorrect program will contain a part which
is recognizable as nonsense. ' '

B. Static Scope

Another mechanism which can be used to enhance pro-
gram reliability is one based on static scope rules in block-
structured languages of the Algol family. Static scope rules
enable a compiler to detect references to variables which
are made outside the lifetime of these variables. For ex-
ample, in this program segment

result will be unpredictable, and will likely result in the .

~.declare " -
7 Arintéger;
- begin '
. A = 3
Print{2 *A);
end; )
Y = A

sthe final statement will be detected by the compiler as an

illegal reference to variable A, thereby avoiding a poten-
tial reference to deallocated storage. '

While static scope Tules enable. automatic deallocation
of local block variables, they provide no such mechanism
for heap variables. In Ada, for instance, dynamic variables
arc presumed to endure until the termination of the block
in which the access type is declared. More explicit control
of the lifetime of heap varaibles is possible only using an
unsafe deallocation operation, compromising program re-

liability. : -

Here is an example of a set of higher-level operations in
which static scope checking is inadequate: Suppose the

. operation' Remove extracts an element from a set, thereby -

initializing a pointer referring to that‘element, and Insert
performs the reverse procedure, finalizing the pointer aficr
moving the element into a set. Consider the following pro-
gram fragment: e

Remove {elem, setQ); - (1}

if Plelem) -- {2) P is a predicate

then . _
Insert (elem, set1); -- (3}
e .. 14)

else . _ .
Insert (elem, set2); -- (B)
... (B} '

end if;

Static scope rules do not provide a mechanism for detect-
ing that variable elem may be read at statements (2), (3).
and (5), but that reading it before (1), or at (4) or (6) i
nonsensical.

C. The Imporrarice of Detecting Nonsensical Programs
" Nonsensical executions are the most insidious programs

" ming errors, because they can result in arbitrary amounts

of damage, and because they are the most difficult to de-
bug. In particular, the erroneous state caused by a non-
" sensical execution may persist undetected for a long time,
and then may manifest itself in the misbehavior of an “in-
nocent” program, far removed from the “guilty” program
which caused the error. .
The cost of protecting critical componénts of a systeim-

" e.g., an operating system kernel—{romi the effects of non-

sensical programs is high. For instante in the MVS op-
erating system, a call from an untrusted user program

the system kernel must be checked to ensure that all pu-

raméters are valid addresses. Other user processes-in tig
same address space must be locked out to prevent thent
from concurrently overwriting the parameter list while I
is' being checked. Changing from user to system domukn




is therefore ‘an expefisive operation, whose high cost is.
" economically justified only because fallure to check risks ™

the integrity of the entire system.

Although nonsensical execution sequences such as those

shown above are considered ill-defined in most procedural

Janguages, e.g., PL/I, Pascal, C, and Ada® none of these -

languages contain mechanisms which prevent such exe-

cution sequences from occurring. Therefore, none of these:

languages can assure the reliability of any program exe-

cuting in an env1ronment which might contain nensensical

-eXGCUUOIlS

A mechanism that automatlcally detects nonsensmal
programs at_.complle time is extremely valuable because

in addition to detecting errors, it ensures that the effect of
any program error is confiried to the erroneous module.
This paper will present typestate tracking as such a mech-
anism. ' :

-II. AN INFORMAL INTRODUCTION TO TYPESTATE
A. Definitions

Typestate captures the notion of an object’s being in an

appropriate (or inappropriate) state for the application of
a particular operation. Each type has an associated set of
typestates. An object of a given type is at each point in a
program in a smgle one of the typestates associated w1th
its type.

In cach typestate it is legal to apply some operatlons
of the type, but not others. Thus, for example, new may
be applied to a msgptr which is in the uninitialized type-

state (dénoted by 1) but not to a msgptr in the initialized

typestate (denoted by I). Dereferencing, on the other
hand, may not be applied to a msgptr in typestate L, but
may be applied to a msgptr in typestate T .

A partial order can be defined on the typestates of a
given type. Intuitively, a “higher’” typestate corresponds
to a larger amount of resources allocated to the object,
i.e., a higher degree of “initialization.” A “lower”
typestate can be obtained from a “higher” typestate by
discarding some information. o

The typestate 1 -is ubiquitous, i.e¢., is defined on ail.

types. L corresponds to the state of an object before any
operations are applied or following finalization. We orga-
nize the typestates of a given type as a lower semilattice,
that is, a partially ordered structure in which every pair of
typestates has a unique greatest lower bound. The
typestate L is the bottom element of the semilattice.
The application of an opération may or may not cause
the typestate of its operands to change. For exarhple, new
causes the typestate of a msgptr to change from L to I,
but dereferencing does not cause the typestate of a msgptr
to change. Thus, each operation of a type has an associ-

@Ada is a registered trademark of the U.S. Department of Defe’;lse {Ada
Jmm Program Office).

"Fhe Ada reference manual [1] uses the term erroneous executions 1o-

ilenote executions which are semanticaily undefined but which are not guar-
unteed to be avoided at compile-time or runtime by language implementa-
Liong, :

read =

Vflnal;ze assign

Fig. 1. Typestate transition graph for type integer: the §calar type integer
iltustrates the simplest nontrivial typestate traosition graph. There are
two typestates: L (intuitively “uninitialized™ ) and I ( ‘intuitively ini-

-tialized™). )

ated typestate transition for each of its operands The
typestate transition is defined by 1) a typestate precondi-
tion, which must hold in order for the operation to be ap-
plicable to that operand, and 2) one or more fypestate
postconditions reflecting the possible typestates of the
operand after the operation is applied.

Some Ianguages allow some operations to have more
than one possible outcome. Typically, one outcome is
called the normal outcome, while the others are called ex-
ceptional outcomes, signifying the inability to produce a
normal outcome because of exception conditions [2], such
as upavailability of resources to perform the operation, the
value of an operand being outside the domain of definition
of the operation, etc. There may exist a different typestate
postcondition for the operand for each of the outcomes.
For example, if there is no more available storage, new
may fail with the Depletlon exception, and the msgptr will

" then remain in typestate - L . The typestate transitions can
"be depicted using a graph whose nodeés are typestates'and.

whose transition arcs correspond to operation outcomes.
Fig. 1 shows the state machme graph for an object of type
mteger. :

To track typestate in a program at complle -time, we
make typestate a static invariant property of each variable
name at each point in the program text. That is, if a vari-
able name has a particular typestate at a particular point

A typestate graph defines a set of abstract properties, and these prop-
erties may be realized in different ways by different implementations. For
example, some implementations may preallocate storage for objects on en-
try to the program or the block, even if the objects are in the L typestite,

--Qther -implementations—may- defer -storage -akocation-until- initialization.-

('Iypxcally, large objects or small objects which are to be held in registers
are given resources cnly when initialized, whereas small objects which are
stored in mdin memory are usually preallocated so that several such small

_objects may be allocatéd at once.) The implemeritation of initialize and

finalize will vary according to the storage managemeni strategy chosen,
but the abstract semantics and the typestate diagram remain the same.




data object will have that typestate regardless of the path
taken to reach that point.in the program. Henceforth we

~ will speak of typestate as a property of variable names
4 rather than of data objects.
" The typestate within straight-line code can be tracked'

at compile-time by successively applying the typestate

“transitions resulting from the apphcatlon of program state-

ments.
To preserve the static invariance of typestatcs we de-

firie & rulé for resolving the typestate of variable names at

points where execution paths merge, such as the beginning
to an exception handler. The rule for determining type-
each variable name as the greatest lower bound of the

at §. Intuitively, the greatest lower bound corresponds to
the highest level of imitialization of the varlable that can
be guaranteed to hold at S.

For each pair of typestates s, and s, assocmted with a
given type such that s is higher than s, according to the
defined pamal order, we assume the existence of a type-
state coercion operatlon which lowers the typestate of a

an example of a typestate coercion. We assume that cach
such coercion has a single outcome, i.e., it never raises
an exception. This agsumption is easﬂy satlsﬁed smce
COETCiOns never acquire resources.

- A program execution is typestate-correct iff 1) bcfore
the application of each operation in the program, each op-
erand v; has a typestate matching its typestate precondi-
tion for the operation, and 2) on termination of a program,
all objects declared inthe program are returned to the L
typestate. A program text is typestate-consistent ifl it can
be transformed by the addition of typestaté-lowering coer-
cions into a program each of whose points can be statically
labelled with typestates so that any path allowed by the
control flow is typestate-correct. ' '

Whenever it is possible to resolve’ ahasmg statically, as
in languages which do not support pointer variables (e.g.,

- Fortran or Algol 60), or in the nonpointer domam of lan-

guages ‘which support pointers but do not allow them to

-refer to stack (static) variables (e.g., Pascal and Ada), it

is possible to track typestate by a static examination of a

- program text. Typestate tracking requires only that pro-

cedure call interfaces be augmented to specify, in addition
to the type of each parameter, the typestate transition pﬁr—

- formed by the call.

“The restriction against uncontrolled aliasing might ap—
pear to exclude many existing languages and applica-

___tions—in particular, those supporting the dynamic creation

in the program text, thenthe corresponding execution-time

of a loop, the end of a conditional statement, or the entry '
state at a merge statement S is to define the typestate of -

typestates of that same variable name on all paths merging

variable from s, to s,. The finalize operation in Fig. 1 is -

 update.data ‘read.data

assign.data
finalize.data

send ‘Teceive

finalize

Fig. 2. Typestates for a message with a-single character string field ““data.”

ables. However,” we have embedded typestate within a
laniguage, NIL, which supports not only dynamic alloca-
tion of objects, but also dynamic creation and intercon-
nection of processes. In a later section, we discuss our
‘experience with NIL, and how the typestate concept in-
'ﬂuenced the design of NIL.

B. Benefits of Typestate Tracking
Although the concept of typestate, like the concept of

_type, has value independently of compilers, its most val-

uable aspect is that typestate tracking can be performed
at complle -time by static examination of a program text,
It should be noted that by “compiler,” we mean here any
algorithm which examines the static text of a program or
program module prior to execution, whether or not it
transforms this text info machine code. In this sense, we
can speak of “compile-time checking” of programs even
in interpreted environments. -

1) Example: We use the following program example 0
demonstrate some of the advantages of typestate tracking.
We assume that a data type NITYPE has been defined,
whose structure is that of a message with a single char-
acter-string component, called Data. The operations on
objects of type MTYPE are given by the state graph in
Fig. 2. (We discuss in a later section how the typestate
graph for a user-defined type such as MTYPE might be
derived within a programming language.)-To simplify the
diagram, we have not depicted the exceptional outcomes.
We assume inthe following example that all exceptional
operation outcomes result in the object’s remaining in the

of objects by storing their names as values of pointer var-

*It is occasionally necessary to exert some care in designing the imple-
mentation of downhill operations to guarantee that these are always excep-

. tion-free. For examplé, it is not possible for the implementation of a down-

hifl coercion to cail library routines in the usual way, because stack overflow
must not be permitted to occur,

same typestate it had before the operation was attempted,
For example, if the application of nmew results in the
StorageDepIetlon exception being raised, the MTYPE
object remains in typéstate 1. We further assume that
typestate < I > is higher than l;ypestate < 1>, which
is'in turn hlgher than typestate L.




Note The operatron send isd 'tructlve i, am

sage must be fully initialized before it may be sent, and

once the message data have been sent to a queue, the data
are no longer-available as a valug of the message object;

and the message object s now in typestate L. Were the

send operation not destructive, the data would exist both

"in the message object and in the queue after the send,

which would ‘have entailed either data coPymg or data
sharing.
Consider the followmg prograrn fragment

deciare_
M: MTYPE; 3
Q1: queue of MTYPE;
Q2: queue of MTYPE;
begin :
new WM; - Get anew message mstance

" if F{M:Data) > O -- check the value

then '
10 send M.-to Q1; -- send the message
11 - else - .
12 - sendMto 02 - send the. message
13 endif; :
14 on {StorageDepletion) -- control flows here if
-- StorageDepletion occurs white attemptlng
-- 1o execute any of lines 6, 7 or. 8

COND g pwn =

end

By applymg typestate trackmg to the above program
the following can be determined.

¢ The variable name M has typestate .L at the begln—
ning of the program, since it has been declared but not yet
operated upon.

* M has typestate < L > 1mmed1ately afl;er llne 6.

. M has typestate < I > immediately after liné 7. -

* M has typestate L atliné 13. Line 13 is a merge of

- the then and the else branches. of the conditional at line
8. Since on both paths; the typestate of M has been re:
duced to L as a resuit of the send, the computed type- -

state is also L.
* The typestate invariant for M at the exceptlon handler

on line 14 is L. The exception handler can be reached

from lines 6, 7, or 8. When an exception is raised from
line 6, M has typestate 1. When an exception is raised
from line 7, M has typestate < L >, since a Storage-
Depletion exception would mean it was impossible to sat-
isfy the storage requirements for the assignment. When an

exception is raised from line 8, the exception results from

the inability to satisfy the storage requirements of F, but
M is already in typestate < I >. The typestate of M

M.Data : = Readlnput( ); -- initialize its field -

we omltted the new M statement on lirie 6; the subseqUent

Lassrgnment on ling 7 would be a ‘compile-time typestate”

error. If left undetected, this statement could have severe
consequences at runtimé as explained earlier.

- By tracking typestate, errors not only are detected early,
but also can be traced to the particular statement which
introduced them, thus simplifying: program debugging.
Without typestate tracking, a problem resulting from

omitting line 6, such as everwriting an arbitrary storage.

location, could remain undetected for a long time, and
would be hard to trace back to the particular error which

“caused it.

It is important to note that typestate checking also de-

tects errors which are unlikely to be detected by testing, -

such as those which would occur only on very infrequently

“executed program paths, since the checks encompass all
‘paths.

3) Compiler-Guaranteed Finalization: In a language
which supports dynamic creation of objects whose lifetime

is not governed by block structure (usually called heap or :

dynamic objects), the issue of how to ensure finalization
of these objects arises [12], [13]. Finalization may be re-

quired both on normal completion of a progiam, and when -

a partially executed program unit is terminated because of

an exception. In-existing languages, one of the following

approaches to finalization of dynamic variables is taken:
¢ provide an explicit operation to finalize the object,

- e.g., dispose in Pascal, free in PL/I, and unchecked__

deallocation in Ada. Explicit finalization runs the risk of

" accidentally forgetting to finalize some data, of finalizing

the data too early, or of finalizing already finalized data—

any of which may cause harmful side effects-on other mod- |
- ules résiding in the same system [12]. Explicit finaliza-
tions within exception paths clutter the code module, and

make the main path harder to see.
* provide - implicit finalization (garbage collection)
within the execution environment. Tmplicit finalization re-

- quires additional runtime overhead (the cost of executing
“an algorithm to determine which-objects are reclaimable -

and which aré not), does not scale up to abstract types [12]
and cannot always be performed in a timely fashion.
In. a language supporting typestate, if any variable

names declared within a program unit have typestates -

hlgher than . L upon termination, the compiler can gen-
erate the necessary coercions to return those variables
names to typestate 1 . If an execution ¢an be abandoned

at any of several places due to an exception, then the -

typestates of each variable at the exception handler can be
determined by the compiler using the greatest lower bound
rule. The coinpiler can then insert appropriate coercion
operations to perform the necessary finalizations-prior to
}umpmg the exception handler.

'In our example above, the coercions which must be ap-

computed at the handler is L, the greatest lower bound
of the typestates at the three possrble predecessors

2} Compile-Time Error Detection: The primary con-
sequence of typestate checking is the compile-time detéc-
tion of nonsensical program sequences. For instance, had

- plied to M on the paths to the exception handler are de-
termined by typestate tracking as follows. The typestate
~for M at line 14 is known to be L. If the exception is

raised during the execution of line 7, ‘after the message
has been allocated but before its data field has been ini-

1
i
1




i path.

- tialized, M will have typestate < L > A typestate coei-":

~.cion <. 1L > — L (finalize M) will therefore be inserted:

* in the exception path from line 7 to the exception handler.

. If. the exception occurs during line 8, after the message

4 has been allocated and its data field has been initialized,

" “then the MTYPE coercions <I> — < 1>, and

< A > — L (finalize M.data; finalize M) will be in-

- serted. If the exception occurs on line 6, before the mes-

:sage has been allocated, no coercion will be required, be-
-cause the typestate will already be L .*

Because typestate tracking allows the compiler to 1) en-

- sure that a finalized object canmot be mistakenly consid-

ered accessible, and 2) generate finalization in exactly
those places where it is needed, a language designer may
provide the user with safe and efficient operations.

4) Enhanced Execution Efficiency: Because typestate

~errors are detected at compile-time, the compiler imple--
--menters can proceed on the assumption that code gener-

ation need only be performed for typestate-consistent pro-

_grams..In many cases, it will be possible to generate more
efficient code than.if typestate violations were possible,
“since the code will not have to be as defensive. Once the
- -possibility of nonsensical programs is eliminated, critical
-systems modules may coexist with undebugged user mod- -

ules without the nieed for expénsive firewalls. In practice,

user and system code will be able to share a single address

space, resulting in lowered communications overhead.

Since the compiler guarantees timely finalization, it is not -
‘necessary to track at runtime which resources have been”
~ allocated (as operating systems such as MVS do for files,
“locks; communication sessions, and other resources), in
. order to ensure that they are fréed when the process ter-

minates. Additionally, it is not necessary to run a garbage
collector to reclaim storage. Typestate tracking can there-
fore significantly reduce execution overhead.

.. 5) Compiler-Enforced Module - Isolation: Although
~typestate checking does not detect errors in the logic of

an algorithm, it qualitatively alters the debugging process.
Since unpredictable and implementation dependent side ef-
fects resultmg from programming errors can no longer oc-
cur, it is always possible to debug at the source level, and

-one nevet needs to examine “core dumps® except in the -

case of failure of the hardware or compiler itself. If a mod-

ule generates wrong answers in response 1o correct in- -

puts, one can be confident that the error can be found by
inspecting that module. Thus, typestate checking makes
it possible for a language to satisfy a requirement . urged
by Hoare [9] and others, that a language enforce the se-

- curity of programs. In nonsecure languages, the wrong

answers may be the result of a module’s state having been
overwritten by “wild stores” from another module having

“In a straightforward implementation of typestate coerciqns, the same
coeicion may be repeated in many paths—for example, the finalize M coer-

. cion appears both in both the path from line 7 and in the path from line 8. -

To reduce the inefficient use of space due to multiple replications of seldom-
executed program sequences, a compiler may apply downward hoisting op-
timizations in which the repeated operations are inserted into a common

a dangling poiniter: To ‘guess which. i’hé’dtﬂe probably stored
_the data, it may sometimes be nccessary fo examine the

low-level data representation.
Formal verification methods are . motlvated by the as-

- sumption that if a program has been verified, it will work

correctly in all possible environments. In practice, formal

- verification techniques, e.g., Hoare logic [8] presuppose
" either that there are no nonsensmal programs co-resident

with the program being verified, or that none of these pro-
grams are able to affect the program being formally veri-
fied. Without that presupposition, the semantics of even a
simple assignment statement such as X := 2 would have
a very complex formulation, since a nonsensical program
somewhere else in the system could conceivably overwrite
the constant 2! Typestate checking complements formal
verification by eliminating nonsensical programs, thereby
allowing the simipler proof rules to be applied only to
typestate-correct programs.

- If it is known that all modules of a system are typestate-
consistent, then it-is possible to prove some properties of
an individual module even though nothing is known about
the other modules except that they are typestate-consis-

_tent. This supports the objective of module-at-a-time pro-
‘gram verification {7]. '

6) The Effect of Typestate on Program Strucrure The

requirement of typestate -ivariance constrains the pro-

grammes, who is no longer free to code arbitrary control
flows, or even arbitraty “structured” control flows (e.g.,
an IF statement whose THEN clause initializeés an object,
but whose ELSE clause does not). While seme program-

. mers may view this constraint as overly restrictive, our
_experience has led us to believe that the loss of freedom

does no harm in practice, and often does a lot of good.

* Consider for example the following program, which can
be proved to be typestate-correct for every execution, but
which will be rejected at compile-time as typestate-incon-
sistent because -unique typestates cannot be assigned stat-

1cally to each program poin:

PROGRAM A

ifX =2
- then
new M;
M.data : = Readlnput( );
end if; '
F{..)
if X 2
then S
send M to Q1;
end if;

If we assume the same semantics of send used in our pre-

vious example (depicted in Fig. 2), the sender can no
longer access message M after it has been sent. The pro-
gram is not typestate-consistent, since the merging of the
X = 2 and X — = 2 paths yields a greatest lower bound




a typestate of - for NI makmg the later send 1llcgal On:
first glance it might ‘appear that typestate-checking hete -
-constrains the programmer too much to be pracucal How-

ever, it is easy to see that the program can be written

: equally well in the followmg way:

PROGRAM B

iFX =2

then
new M;
M.data : = Readlnput{ )
F{...;
send M to 01

else
F{...};

end if;

The two programs have the same semantics, and appear
equally easy to' write. However, we consider Program B
which is completely typestate-consistent to-be meore read-

able and more robust for the following reasons.:

¢ Program B makes it clear that every message which

is initialized will later be sent. By contrast, in Program

A, there is an association between the value of X and
whether M has been created. There is a section of Pro-
gram A in which the programmer must not change the
value of X without also changing the state of M. This

agsociation has to be remembered by the programmnier,..
since it is nowhere explicitly documented, it cannot. be

automaticalty enforced, and it is easy to violate if the pro-

. gram is subsequently modified. For example, if program
~ A is modified so that X is incremented, it suddenly be-

coines nonsensical.

¢ In Program B,.if any exception arises, the necessary

finalization is a function only of the point at which the
exception occurs. In Program A, the necessary finaliza-
tion depends both on the point in the program where the
exception is raised and, possibly, on the value of X, and
therefore cannot be determined statically.

7) Summary: Typestate tracking detects nonsensical
programs as well as other programming errors. It supports
module isolation by compile-time checks rather than run-
time checks. Additionally, it allows the compiler to-auto-
matically generate appropriate finalizations when pro-
grams terminate or when exceptions are raised. It allows
more efficient code to be generated. It has been our ex-
perience that the typestate rules constrain programmers
to produce better structured programs

III. A ForMAL PRESENTATION OF TYPESTATE
A. Definitions :
We begin with a strongly typed language £ containing

1) a set J of types (either fixed in advance, or extensible
by the programmer via a type definition mechanism), and
2) a set O of operations (likewise either extensible or not).

Bach operation op € ©, has a signature, T(op) = <fi, 1,

, ty>, specifying the types of its operands, and the _

“type of its result (if ‘any). That.is, -for each ‘operand or
‘result position i, there is an associated type f; € J. We

shall refer to the vector T(op) loosely as the type of the
operation op. In a language not all of whose operations
are pure functions, the distinction between operands and

- results disappears. Hereafter, we shall use the term op- -

erands to denote variables manipulated by an operation,

- whether the values are c¢hanged, read, -or both.
We assume each operation in O has one or more ouf-

comes: one normal outcome and zero or more exceptional
outcomes. :

A program in £ consists of a sequence of statements,
“Each statement consists of an operation application, i.e.,
'a statement is a pair <op, V>, where V

= < Uy, U,
,un >, and each v, is a variable name.
In a strongly typed language, each variable name v has

a unique type ¢ € 3 throughout its scope of definition,

which we shall designate as Typeof(v). By extension, if
V= <u, vy, , uy> and Bpeof(v) = t;, then
i‘jipeof(V) is defined to be <#, #,, -+ , &y >. A state-
ment <op, V> is type-correct prov1ded that i'jfpeof(V)
= T(op), that is, for each component v; in v, Bypeof(v;)
= t;, where t; is the ith component of the signature T (op).
To extend a typed language to include typestate, we de-
fine for each type ¢ an associated set 8(z) of typestates.

For each operation op € O, we define for each operand v;

of op, a typestate transition, <Pre,, ;,{Posty, ; x>

1) the typestate precondition for . v,
8(Typeof (vy)), defines the typestate that v; must have in
order. for op to be applicable, and

2) for each of the different outcomes Outcomek, k= 1
-+« , m of op: the typestate postcondition: Posa,‘oj,,,[,,c 1=
S(Typeaf(vy), specifies the typestate -that v; will have
whenever op terminates with outcome Outcome,.

There exists a ubiquitous typestate denoted 1, corre-

.spondmg to the initial state of a variable name before any
operation has been applied. For evcry typet €3, L €

8(1).

by a relation <, and forms a lower semilattice, with L.

being the unique lowest typestate. Since the typestates
form a lower semilattice, every set of typestates has a

greatest lower bound. Intuitively, the greatest lower bound

.typestate corresponds to the highest degree of initializa-

tion that can be guaranteed to be satisfied by any typestate

. in the set. -

Between any two typestates 4 and B of a given type ¢,

_such that B< A, there is defined in £ exists a unique se-

quence of operations called the typestate coercion from A
to B, which when applied to an object in typestate 4, re-

- duces the object’s typestate to B, thereby releasing, or fin-

alizing, some of the resources associated with that object.

We require typestate coercions to have the following prop-
erties: 1) each coercion operation has a single operand of
type ¢, and 2) each coercion operand has only a single

outcome, i.¢., coercions cannot raise exceptions and thus

always complete successfully.
‘The typestate tracking algorithm is applied to a program

Pre,,; € .

The set of typestates for each type is partlally ordered




to other operation nodes which are possible successors ac-

., cording to the control flow of the program. There exists
"7 one such edge for each of the different outcomes of an
operation at a node. Each edge from a node is labeled with
its corresponding outcome name. Without loss of gener-
ality, we assume that the entire graph has a single entry.
node, and a single exit node, and is connected.

The -particular transformations to be performed to
achieve this canonical program representation depend
upon the actual source language. In practice, one or more
- of the following steps may be needed.

* Any overloaded operators must be resolved to a par-’

ticular operation: e.g., “+” may have to be converted to
“IntegerPlus” or “RealPlus,” based upon seme overload

+ resolution rule which selects a unique Operatlon whrch sat-

isfies the type-checking rules.

- * Any implicit flow-control must be resolved to explicit
flow-control: e.g. Ioopmg constructs, exception flows,
etc.

e All ahasmg must be resolved, e.g., by mamtammg
" two mappings: an environment (mapping variable names
to locations), and a store (mapping locations to values).
" For example, if identifiers A and B are aliases, i.e., both
- reference the same variable, then in the transformatron
- they will be represénted by a single variable name.

" Note: The language NIL is an example of a program:

ming language in which the above transformations are

straightforward. More details of the design of NIL are dis-

. cussed in Secuon IV. For the present, we merely assume
that these transformations have been made.

Typestate tracking adds typestate labels to each node
of the program graph. These labels associate each pro-
gram variable v; with its typestate s; at that node. We shall

-denote these typestate labels by tuples Sy, v, 8>

~-where s is the typestate of v;. A labeled program oraph is-

- atypestate- consistent program graph iff

* onthe entry and exit nodes of the graph, all variables
_have typestate. L.
® at-each node N, for each operand v; of the operation
- op(N)-at N, s; equals the typestate precondmon Pre(,‘D (N3.F -
¢ for each node N in the graph, if N\, N,, +
. the successors of thé node corresponding to outcomes
" Outcome,, Outcome,, * - - , Outcome,,, the typestate la-
- belings at Ny, N,, - N are related to the typestate
labelings at N as follows

* all variables which are not operands of op(N ) have

.the same typestate at Ny, N,, - , N, as they have at N.
* all variables v; which are operands of op(I¥) have a

. more than once as an.operand of the samé operation, then

- for any outcome the postconditions for all occurrences of

: this operand for this particular outcome must be the same.)
- A program is said to be a typestate-consistent program
~iff by adding typestate-coercion operations, it is possible
to generate a corresponding program graph with typestate

: represented dsa program graph whose riodes’ correspond: :
-~ to operations, and whose edges connect operation nodes’

s N, are’

labels wh1ch is typestate—cons1stent Otherwrse the pro-
grarn is sald to'be typestare ‘inconsistent.-

"B. An A[gorithm for Bypestate Tracking

The following algorithm takes a program graph without
typestate labels, and inserts typestate labels and coercions
to produce a typestate-consistent program graph if this is

. possible, of else determines that the program is typestate-

mconsistent. During execution of the algorithm, the edges
of the graph are also labeled with typestates.

We begin by factoring the program graph into 1) a di-
rected acyclic graph between the entry and the exit nodes,
and 2) a set of “back edges” representing “‘backwards
branches.” (For most structured programming languages,

‘these graphs will be “reducible,” in which case there will

be a unique such decomposition.)
"Pass I:
1) Label the entry node with typestate L for all vari-
ables. ‘
2y While possible, select an unprocessed node N all of
whose entry edges in the directed acyclic graph have been

Jlabeled (but which may have unlabeled back-edges). Let
. op(N) be the operation at node N.

3} Label node N as follows: For each vanabie name u,
compute the greafest lower bound, su;(v), of the type-

. states of v on each of the entry edges into N. Then, if v

is riot an operand of op(N) then its typestate at N is simply
equal to s,,(v). If v 1s an operand op(N), we distinguish
two cases; ,

® if Preg,m,, ; (the precondition typestate of that op-
erand required for applying op(N) is greater than the com-
puted sg,{V), the program is typestate-inconsistent;

e if the required precondition typestate is less than

or equal to the computed 5,,,(v), then for each entry edge

labeled by a typestate of v higher than the precondition
tyestate of v at N, insert a coercion operation on v to lower
its typestate to Preap(m i -

If a variable name appears in more than one operand

_position of the same operation, all occurrences must have
‘the same precondition typestate,

4) For each edge exiting from N to N, (correspondmg

1o Outcome, ), including back edges, label the edge in the

following way: for each variable name v, 1) if v is not an
operand of opy, its typestate in the label will be the same
as its typestate at node N; 2) if v is an operand of op(N),
say the ith operand, its typestate in the label will be equal
to the postcondition typestate associated with that out-
come, Post ; ¢ If a variable name appears as more than
one operand of the same operation, for each outcome all

‘ - occurrences will have the same postcondition,
~typestate at Ny equal to Post,,w) ; . (If a variable appears

The above iteration is guaranteed to terminate with each
node labeled; since the directed acyclic graph is fully con-
nected. It is now necessary to make a second pass through

‘all nodes to deal with backward branches.

Pass 2.
1) While there remain nodes not processed in Pass 2,
select a node N all of whose predecessors in the directed




L acyciic graph héve already been p};é)ées'éed durmg Paés‘ 2.
- (The entry node trivially satisfi¢s this ¢ondition).’

o,

LAy,

2) Examine all the back edges into node N: For cach

~ such edge, compare the typestate of cach variable name v _
on the edge (5,4,.()) to the typestate at N (sy(v)). If for

some variable name v, sy(v).< 5.4,.(v), then no change is

Jmade to s, (v), but a coercion to lower the typestate from
So406(V) t0 Sy (V) is inserted if needed. If for some variable -
TNAME U, S,406(V) < Sy (), then sy (v) must be lowered to the
greatest lower bound of sy(v) and s,4,.(v). If, as a result

of inserted coercions, an operand is now in a typestate
lower than its precondition for op(NV), the program is
typestate-inconsistent. '
3) After all nodes have been examined on Pass 2, the
typestate coercions -necessary in order to reduce the

- typestate of all varlablcs to 1 are inserted before the exit

node.
‘The above algorithm processes cach edgc exactly twice,
and hence is linear in the number of edges in the program

graph.

C. A Modified Algorithm.which Handles Overloading

In practice, it may be necessary to employ a variation-

of the above algorithm which takes into account over-

doaded operations mtended to be disambiguated durmg

typestate checking.
Many languages have operators such as -+ which are

overloaded and cannot be disambiguated until typecheck-
ing occurs. A similar possibility for overload resolution

occurs with respect to typestate checking. The most com®™

mon example of such overloading is the assignment oper-’

ator, as in “A := B”. When A has typestat¢ L, assign-
ment means initialize whereas when A has typestate I,
assignment means update. The two operations are-dis-
tinct, having different typestate preconditions, although
they have the same postcondition. Similarly, operations on
structured objects are technically overloaded, since the

typestate precondition for an operation may be indepen--

dent of some of the components of the structure. For ex-

ample, in the record with components a” ‘and “b” of

[ 1]

type integer above, an assignment to component “a” can
be made whether component ““b”” has typestate I or L.
(See Fig. 5.)

If the typestate computed on the second pass is strictly
lower than the typestate computed on the first pass, op-
erations applied to that variable will no longer satisfy their

typestate preconditions. When there is no ovérloading, it
is obvious that the corresponding program is typestate in-
consistent and must be rejected. However, if this occurs

when there is overloadmg, the effect of a typestate rela-
beling will be to try an alternative resolution of the over—
loaded operation. Provided that all overloadings of a given

rithm still needs only two passes, since Pass 2 merely

propagates typestate labels generated during Pass 1.
Even more complicated overdoadings are possible, i.e.,

we can allow different overloadings to have different

operator differ only in the precondition, the revised algo-...
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Fig. 3. Typestate checking for a loop-free program graph. The program -
graph is on the left, and the typestate labeling produced by typestate
cheeking is on the right. The typestate labels contain the typestates of

- variables A, B, and C, réspectively.

'postconditlons A sufficient condition that the above al» '

gorithm terrhinates is. that the overloadings are mono-
tonic—i.e., that if two overloadings A and B of an oper-
ation exist such that A’s operand’s prccondltlons are cach
lower than or equal to B’s operand’s precondmons then
A’s postconditions will be lower than or equat to B’s post

" conditions. Each successive pass may lower the typestates -

of some variables, but because the set of the typestates has
a bottom clement, the algorithm must terminate.

D. Examples
A simple example of the apphcatlon of the above algo—

rithm i is glven by tracking typestate in the followmg pro-
gram:

declare
A: integer;
B: integer;
.C: integer;
~ begin
A= Readlnput()
|f A >0
then o
B:= A+ 3;
- Print (B);
Ciz2
else
_ C:
" end if;
Print {C);
end

4;

Fig. 3 illustrates- the program graph before and. after
typestate checking. In this example, type integer is pre-
sumed. to have two typestates L and T asin Fig. 1. Here,
we are ignoring overloading, and will simply assume that

the assignment statement means initialization only. The

operation ﬁnallze is the coercmn from typestate I to

typestate L. .
. Notice that the typestates of A B and C, respectively,




other arc coming from the ELsk pathare < T, 1, I>.

‘i -solves to L —the greatest lower bound. A finalize opera-
? tion (coercion) for B is inserted so that in the modified

ilarly at the end of the program, variables A and C are
finalized.

statement had been B rather than C, the program would
be rejected as typestate-inconsistent, because the precon-
- dition for applymg Pnnt is that the operand be I, and B
is L.

In the above example, the entire. program graph con-
tained no backward branches, and therefore all typestate
resolution was completed after a single pass. Suppose in-
stead that a similar program fragment were embedded in
a loop:

= Readinput();
B := Readlnput(};
Print B; _
while {A < 1000} repeat
CifA>0
then -
B:=A+ 3;
Print B;
Finalize B:
C:=4;
else
C.=6;
" Finalize B;
end if;
Print C;
end while;

..

Here we show only a fragment of a complete program.
In this example, we are assuming,that assignment is ov-
~ erloaded. The typestates at the top of the loop evaluate on
the first pass to < I, I, L >. The typestates after the
END iF evaluate to < T, L, I >, The discrepancy in the
typestate of variable C is resolved by inserting a finaliza-
tion of C in the branch back to the top of the WHILE loop.
A one-pass algorithm could have inserted this finalization,
since the top of the loop is guaranteed to be correctly la-
beled before the bottom of the loop. The discrepancy in
the typestate of B, however, accounts for the need of a

<I,I,L>to<X, L, 1>, andthis change must
be propagated through the statements of the loop. Because

‘on the arc into the Pnnt statement Wthh came from the . -
'THEN path are < I, T, I >, but the typestates on the

Variable B’s typestate at the Print statement therefore re-

graph both paths yield the typestate < T, L, T >. Sim-

Notice further that 1f the operand. of the second Print _

second pass. As a result of evaluating the greatest lower = Ponenti =1,

bound, the label on the wHiLE loop test is reduced from '

Print €

Fig. 4. Typestate checking of a program-graph containing a loop. The two
diagrams show the typestate annotations of the nodes of the program
graph at the end. of Pass 1 and Pass 2, respectively. .

IV. TYPESTATE AND LANGUAGE DESIGN

Typestate interacts with other features of programming
languages. In this section we discuss particular. features
of languages and how their design is affected by the
typestate concept. We draw heavily on our actual experi-
ence in designing NIL. We conclude the section by dis-
cussing our experience as demgners and users of NiL.?

A. TBypestates of User~Deﬁned Types i
In languages which support ﬁser—deﬁn'ed types_by pro-

viding type constructors, the typestate transitions for user-

defined types can be defined by associating a fypestate
construction rule with each of the language’s type con- .
structors. The typestate construction rule defines the
typestates of a comstructed object as a function of the
typestates of each of the objects from which it is con-
structed. Typestate construction rules may be defined for

‘any type constructor, including recursive types.

For example, one type constructor found in many lan-
guages is the record. Each record type defines a structure
consisting Of an n-tuple of components where each com-
, B, is associated with some type #. '

Assuming that the operations on a record type are:

* new, which creates an empty n:tuple of ummtlahzed
componeits (As discussed previously, the implementat'ion

the assignment operator is overloaded, the statement B :
A + 3;, which was believed on Pass 1 to be an update
" operation on B, is now discovered on Pass 2 to be an in-

- formed during the two passes of the checking algorithm
- applied to this program. ‘

itialize 0perat1on on B. Fig. 4 illustrates the labelings per-

may choose to pre-allocate storage even before new is ap-
plied), :

3Other individuals whe have pa_nieipated in therdesig.n,‘ implementat'ion,
and prototyping of the .original NIL system include: Mike Conner, Nagui
Halim, Jim McInerny, Dan Milch, Francis.Parr, and John Pershing.
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. ﬁnallze, wh1ch destroys an erglpty n—tuple

as well as the following derived operations: -if type L of :

the ith component supports an operation op, then the rec-
ord type supports an operation op.i. denoting the appli-

“cation of op to the ith component of the record.

The typestates for the derived record type are:

¢ 1 (the state prlor to applying new or after applying -
&4 finalize)

[ ] <S1’s2’--.

The ordering relationships and coercions for records are
derived as follows:

* The typestate L is lower than any typestate <s,, 52,
=+, 5.>. The coercion sequence from any typestate
<$1, $2, ", §,> to L consists of two steps: 1) for
each ¢ such that L < s, apply the operation to coerce
component i.from typestate s; to .. The resulting type-
state will thenbe < L, L, -+ - L >.2)apply the op-
eration finalize to the fecord. :

® Typestate r = <ry, 1y, ", 1> <5 = <§, &,
-+, §,> iff for each i, r; < s;. Of course, r < 5 iff r
X.sand r # 5. The coercion operation consists in-apply-
ing for each i the coercion operation to lower component
i from typestate s; to typestate ;. '

The projection onto a particuiar type of the typestate

transition for each of the operations which has an operand -

of that type can be depicted as a directed graph, as men-
tioned earlier.
Fig. 5 illustrates the typestate graph for a record with

two components with field names “a” and “b”’, both of

type integer,

Fig. 6 illustrates the typestate graph for a variant. It.can’
be determined from the typestate graph that it is forbidden -
to access any field of an initialized variant (typestate 1) .

without first performing the inspect operation. Other ex-
amples of typestate graphs appear in [14].

B. Typestate Checking and Independénr Compilation

In Section III, we descnbed typestate checking as ap-
plying to entire programs. However, it is also possible to
independently check individual modules of a large pro-

gram for typestate cotsistency in such a way that if each

module proves to be typestate-consistent, then the com-
p}ete program, when lmked and executed, w111 be type-
state correct.

We illustrate mdependent typestate chiecking with re-
spect to a common construct for 1ntermodule interaction—
calls.

By mdependent typestate checking of modules We mean -

that the text of the calling program is not required to be
available when compiling the called program, and con-

versely that the text of the called program is not requlred_ ,

to be available when compiling the caller.

procadure calls or entry calls as in e.g., Ada or NIL. We

assume that the language £ has a construct for calling an

ehtry (procedure) in another module and passing param-

5> eSU) XS X s XS
- (t,)—the sect of n-tuples of component typestates.

The . fotlowing. discussion apphes equally. well to-either - -

read.b
S\ apdate.b

Fig. 5. Typestates of a constructed type a record w1th two fields, a and b, -
cach of scaldr type.

read.a

read.b
update.a
update. b

R "inspect
irispect - {BLUE outcams)
{RED outcome) 4

forget: . forget

" detich setvariant

detach ~ setvariant

i detach
read.b {RED outcome) . detach

{BLUE outcome)

. {finalfze.c assign.c

.new BLUE

Flg 6. Typestates of a variant: an object with two alternatives, RED with.

fiélds a and b, and BLUE with field c, alf of scalar typc

eters, s_i_lch' as _ Ny
call E(P1, P2, .. .Pn);
where E identifies the entry and Pi are the actual param-
eters of the call. We assume that £ also has constructs for
accepting and subsequently returning calls on a partlcular
entry, such as _ :
accept (FF’1, FR2,
.. . —body of call
return (FP1, FP2; .. .

where ‘F,Pi are the formal pérémEters of the call, and

. FPn) on E;

FPn) [eicept.ion (Ename)];

-Ename is the name of the exception.outcome,-if any. The. .

acceptance of the call binds the formal parameters to the
actual parameters. The accepting process may operate

* upon the formal parameters until it issues the return op-
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eration, at Wthh pomt the parameters are passed back {0
‘the caller'and the caller resumes either normaily, or pos-
sibly with an exception outcome if so specified by | the re-
turn operation.

Note: The syntax shown is for rendezvous calls similar

(o those in Ada:. The sare analysis applies to ordinary

_ ;-‘;;prgcedure_ calls if one dssumes. that each procedure body

‘begins by implicitly issuing the accept operation to re-
' ceive its parameters.

' To achieve independent typestate checkmg in the pres-
“ence of calls, we introduce the concept of interface defi-
nitions—separate modules which specify the assumptions
shared by the calhng and called modules. The information
which we require in an interface definition is precisely the
information required for a primitive operation of £:
namely, the type of each parameter to the call (operands),
the set of outcomes of the call (i.e., normal and exception
_outcomes), and for each parameter, its typestate transition
for the call, i.e.;
state postcondition for each of the outcomes of the call.

The interface definition may additionally specify type-
state restrictions. A typestate restriction removes edges
from the typestate graph. For cxample, we may wish to
forbid the called program from updating or from finalizing
an object which is passed to it. We allow typestate restric-
tions provided that between any two typestates in the set
of typestates reachable from the typestate precondition of
the call, the edges representing the coercions to the great—
est lower bound have not been removed.

The modes in, out, inout, defined on procedure 1nter—
‘faces in languages such as Ada and Pascal can in fact be
viewed as special cases of the above formalism. For ex-
ample, in means that both the pre- and postcoiidition
typestates are I, and that all operations except reads are
disallowed. The demgnatlon out means that the precon-
dition typestate is L, and the normal outcome postcon-

.- dition typestate is T . "To b able to perform full typestate -

tracking, it would be necessary to extend the definition of

well. In NIL, interface definitions include the set of ex-
ceptions and the complete typestate transitions.

“supplied, one can compile the calling and the called mod-
ule in any order. During. compilation, the call is {reated
‘exactly. as a new primitive operation of the language

call, edch parameter is in the correct pI‘eCOIldltl()Il type-
state, and it is assumed that on return from the call, each
parameter is in the postcondition typestate assocrated w1th
the corresponding outcome of the call. ,

When compiling thé called program, the information

The entire formal parameter list is in the L typestate prior
- to the accept; after the accept, the formal parameters are

its typestate precondition, and its type- -

out to specify the typestates on exceptional outcomes as -

Provided an interface definition for the call has been -

* When compiling the caller, it is checked that prior to the -

checked and the information assumed now reverse roles.

- '-tlon After the retirn operatlon ‘the formal pararneter list

is once again in the L typestate, - _

Notice that when comipiling the calling program the
compiler is ensuring that the program is typestate-con-
sistent with respect to any typestate- -consistent called pro-
gram compiled against the same interface. Conversely,
when comipiling the called program, the compiler is en-
suring that the program is typestate consistent with re-
spect to any typestate consistent callinig program compiled
against the same interface. Coﬁsequently, there may exist
many different indepéndently compiled calling and called
programs which use the ideﬁtical interface. The decision
as to which calling program is to be bourd to which called
‘program may be madé arbitrarily late. Thus typeéstate

- checking supports compile-time secure dynamic binding,

which is very important for systems programs, which typ-
ically involve dynamic loading and linking of indepen-
dently written modules. '

It is possible for the typestate trackmg algorithm to per-
form overload resolution for procedure calls just as for

, prlmrtlve operatrons such as ass:gn.

C. Pointers and Aliasing .

Languages that allow untestricted pointer assignment
do not support tracking typestate at compile-time because
the mapping between variable hames and execution-time
objects is ot one-to-one. As a result, a typestate change

_resulting from applying -an operation to an object under

one name will not be reflected in the typestate of othier

*variable names referring to the same object.

Another language feature which may interfere with
typestate tracking is data sharing by multiple concurrent
processes: If a language allows concurrent processes to
share data; then unless other facts about synchronization
are known, typestate-changing operations in different
processes may be interleaved in arbitrary ways, making
compile-time tracking impossible.”

However, it is possible to provide the benefits of type-

_state tracking while still supporting important language

features such as concurrency and dynamics.

In NIL, concurrency is supported by means of a process
paradigm, In the process paradigm, there may be any
number of independently executing processes in the sys-

. tein, but cach data object is owned by exactly ore process

at a given time. Processes communicate by sending mes-
sages and making rendezvous calls over ports, rather than
by sharing variables. Objects may change ownership by

“being sent in messages between processes, but the seman-

tics of send is destructive, thereby preserving the single

"owner rule: Thus, typestate tracking can be applied to the

program text of each process.
Dynamics is achieved in NIL by rarsmg the level of the
language to a more abstract set of operations which do not

‘assumed to have typestates according to the precondition

‘postcondition typestate defined by the interface descrip-

“specified on the interface. The precondition for return.
requires that all formal parameters be in the appropriate

expose pointers. (Pointers are typically reintroduced by

‘the compiler in the encapsulated implementations of the

language primitives). In fact, NIL supports a higher de-

“gree of dynamics than other languages of its kind such as
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allocated dynamrcally, process and procedure bodles are

‘selected and instantiated dynamrcaliy under program con-
trol [17] In most othet lanignages, intermodule bindings

must be fixed- statically before execution, when all the

4modules are linked.

&3 An example of hiding pointers is in allocating records

or variants. A record is allocated by the statement
new R

where R is a varrable name’ whose deeiared type is Rtype,
rather than by the pomter assrgnmont

Rptr = new Rtype;

Dynamically growable structures are 1mplemented either
with relations, which-support insert, delete, and find op-
erations, or by using recirsive variant types as in the fol-
lowing NIL definition of Lisp S-expressions:

Sexpressionis variant
case (NIL)
case (ATOM)
Printname: Name;
case. {(PAIR} "
Car: Sexpression;
Cdr: Sexpression;
end Sexpressiqn

Relations are more abstract than arrays, hnked lists, and

other more traditional data structures used 0 1mp1ement_

aggregates, although the compiler may use traditional data

© structures to implement relations. They are safer than ar-
rays or linked: lists, because arrays- might have uninitial-

ized “holes,” and linked List pointers can be operated upon
in unsafe ways not detectable at compile-time.-

D. Experzence with Typestate in NIL

The concept of typestate was ﬁrst included in the pro-
gramming language NIL [14]-[16], which was originally
developed as a language for prototyping systems software.

NIL was designed to suppoit programming large long-.

lived systems. To support modulanty NIL provides a pro-
cessbased paradigm [17], in which loosely coupled mod-
ules communicate over point-to-point ports, rather than by
shating data. To support portability, NIL provides very

liigh-level, machine- mdependent primitive data type con-
-~ structors.

The following design deoxsrons of NIL made the incoi- -
poration of compile-time typestate tracking particularly .

euRy:
¢ Data are never shared between processes

¢. There are no directly manipulable pomters nor any

“other ways to generate aliases.
¢ NIL contains a recursively composable set of type

. regilocation snd prebinding can always be performed as optimizations .
. wilign the necessury information can bé staticatly determined.

construgtors, ‘which, allow the'straightforward generation
of typestate graphs, coerelons and the pre- and postcon-
ditions of derived operatrons for constructed types.

e NIL’s control flow is the standard *structured” con- -
trol flow augmented by exception handlirig. The creation

_of the program graph is therefore straightforward, as the ' _ﬁ
.only back-edges result from loops. ‘

* The iaterface type definitions for port types support-

ing the call operition contain exactly the information nec-

cssary to support typestate checkmg with mdependent

: compllauon

A compiler for NIL, incorporating typestate checking,

' was completed in 1982, after which time a significant

amount of NIL code (about 25 000 lines of code consti-
tuting several hundred modules) was developed for a pro-

- totype communication system.

In our experience, we have not encountered any situa-

tions where the most natural, readable; and robust expres-
. sion of an algorithm, was onc which was typestate-incon-

sistent. On thé contrary, the habit of balancing typestate

_ effects in alternative construets often: ‘helped. organize our

thoughts about an algonthm and enhanced the readability
of the result. Additionaily, at one time we examined sev-
eral hundred modules of a communications subsystem '
written in a PL/I-like language, manually checking for.

typestate-eriors. We discovered that all typestate-incon-
“sistent programs in our sample had bugs, which led us to

believe that the probability of violating typestate but

nevertheless producing safé code was low.

The use of interface definition modules which docu-
mented typestate transitions of all parameters gave us very _'
detailed documentation which enabled developers of dif-
ferent modules to work Independently, relying on the cori-

. piler to keep the code consistent with the interface; rather
_than relying on knowledge of internals of modules devel-

oped by others. By contrast, int other languages such as
Pascal and Ada, interfaces are less rigidly documented
and enforced: :
* the obligation o initialize out parameters is not en-
forced;
* 3 programmer has no means of specifying that a caller :

passes an object to a called program with the intention that
_the object bé retained by the called program and not re-

turned (that is, has a precondition of T and a post—conw
dition of L).

e there is no way to spemfy whether parameters are
initialized .or not in the event of different exceptlon out-
comes from the call.

The most dramatic result -of our experrence wrth NIL

. was the fact that modules that were debugged indepen-

dently. (unit-tested) did not subsequently fail when inte-

~ grated with other modules. This was not the. case for the
CNIL compiler. itself, which was written in PL/I, where de- -
“bugged parts of our compiler frequently “broke” -as-a re-

sult of changes to other modules. With NIL, we acqulred‘
a confidence in the locality of the programming errors.
which made a qualitative difference in our approach to de-

bugging.



: . V. SUMMARY
A. Related Work

Scope rules and strong typing have been cxtensively

used for enhancing program reliability. Using these rules,

- it is possible to 1) detect at compile-time references to
- objects or program units which will be inaceessible at run-

time {e.g., undeclared or not vi_siblé within the referencing
seope); 2) support dynamic allocation of variables on the
stack and ensure their finalization without supporting un-

safe explicit storage deallocation; and 3) ensure that op-.

erations are applied ounly to objects of the .appropfiate
types. However, as we pointed out above, block structur-
ing and static scope rules are insufficient to detect refer-

ences to uninitialized variables or to nonexistent heap

storage. _ . _
Dijkstra, in his essay “On the Scope of Variables” [5],

attempted to deal with uninitialized data, as well as to
_control the indiscriminate importation of variables from

outer to inner scopes. Dijkstra’s concept of a region con-

taining an “‘obligation to initialize” was inspirational to

the idea of typestate. Dijkstra did not treat inverse prob-
lem of finalization, nor did his mechanism generalize to
other operation sequences or other flow control con-
structs. : _

Other research has involved the-augmentation of type
rules with finite-state sequencing constraints. For exam-
ple, path expressions [3] and access right. expressmns [4],
[10] are concerned with specifying scheduling constraints
for operations on shared data objects. Neither of these
approaches is intended to be enforced by a compiler, al-

though either can be supported by a combination of com-

pile-time and runtime mechanisms.

. The typestate-tracking algorithms presented here are
related formally to information propagation algorithms

[6]. The objective of these algorithms is to Jabel a program
graph with “facts” subject to constraints. The constraints

determine the “maximal’ fact which can be placed on a
- successor node given the fact on the current node. Gra-
 ham and Wegman’s analysis of the complexity of graph

labehng algorithms can be applied to typestate, by replac- -

ing set inclusion with the relation < and intersection w1th

-greatest lower bound.

The use of lattice-structured sets of facts appears also
in a number of algorithms for constant propagation such

‘as [11] and [18].

- B. Conclusions

We have shown that the concepts of typestate and
typestate checking provide a significant enhancement to

-the compile-time processing capabilities of compilers for
strongly typed programming languages. In particular, we
+--have shown that compile-time typestate checking supports

* compiler-guaranteed security by the avoidance of all
nonsenswal execution sequences;
* compiler-guaranteed safe manipulation and ﬁnahza—

, tlon of dynamic objects;

o -“enhaﬁce_d- execution éﬁicieigcj;‘ Lypestaté-correct pro-

_grams can be considered ““authorized,” and be allowed to
run “fast paths” since they are known to.be secure; and

- . modular testing and verification.

The example.of NIL shows that typestate checking can
be embedded in a “realistic” powerful programming lan-
guage supporting a highly dynamic computation model as
well as concurrency.

Typestate checking can be viewed as an automatable
subset of program verification. While mechanical verifi-
cation that a program meéts all its specifications is not

~currently feasible, incorporating typesta‘éc checking into a

compiler at least allows verified programs not to be cor-
rupted by unverified ones. Although typestate checking is
limited to finite-state properties, we believe that this small
subset of verification nevertheless handles a most difficult
and bothersome class of errors, and is therefore a valuable
addition to software rehablhty
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