
Chapter 7 
Control 

Part 1 
7.1 Classical Control 
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Hierarchy 
 

• We are here now … 
 

• Responsible for controlling 
the motion of the vehicle 
with respect to the 
environment.  

• Requires feedback only of 
the motion state (position, 
heading, attitude, velocity) 
of the vehicle. 

• Path following fits here. 
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7.1.1 Introduction to Control 
• Controllers are a mapping: 

– from actuated variables (forces, power) 
– onto controlled variables (positions, velocities)  

 
 
 
 

• Feedback alters the dynamics of a system to.. 
– do what you want 
– do it in a useful (stable, convergent) way. 
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7.1.1 Introduction  
(General Controller) 

• Controllers may 
– Map between signals of interest and those accepted by hardware. 
– Measure what system is doing in order to alter dynamics and/or 

reject disturbances 
– Elaborate terse goals into the required details. 
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7.1.1 Introduction  
(General Controller) 

• yr is the reference signal 
• u is the input – the only way to really control the system 
• ud are the disturbances (friction, wind)  
• Actuator symbol describes limited amplitude 
• e is the error signal 
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7.1.1.2 Controller Elements 
• Regulators try to achieve a specified fixed output 

(set point). 
• Servos try to follow a reference signal. 
• Feedback measures system response and it helps 

reduce the negative impact of 
– Parameter changes 
– Modelling error 
– Unwanted inputs (disturbances) 

• Feedforward generates inputs that are 
independent of the present response. 
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7.1.1.3 Controller Hierarchy / Cascade 
• A hierarchical arrangement of controllers is 

typical. 
• Each layer generates reference signals for the 

layer below it. 
• Each may generate composite feedback for layer 

above. 
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7.1.1.3.1 Independent Control Level 
• Independent control level (SISO = single input, single 

output).  
– Control of actuators as independent entities.  
– Based on axis level feedback. 

• React simply to the current (and past) error signal. 
Prediction is limited to computing error derivatives. 

• Connected directly to actuators such as engine 
throttles, electric motors, and hydraulic valves. 
– calibration required of bias, scale etc. 
– basic kinematic transforms may occur. 

• The methods of classical control are adequate to 
implement this layer. 
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7.1.1.3.2 Coordinated Control Level 
• All elements of the state vector are controlled as a 

unit. Individual axis response must be: 
– consistent: so that their net effect is what is desired. 
– synchronized: so that they have the right values at the 

right times. 

• Based on composite feedback generated from 
several components. 

• Modern state space control methods used here. 
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7.1.1.3.2 Coordinated Control Level 
(Example WMR Coordinated Control) 

• Control WMR wheel speeds to achieve a 
particular V and w. 

• Convert wheel speed feedback to V and w. 
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7.1.1.3.3 Trajectory Control Level 
• Considers the entire trajectory over a period of 

time. 
• Normally relies on measurement and/or 

prediction of the motion of the robot with respect 
to the environment.  

• Examples: driving to a designated pose, following 
a specified path, or following a lead vehicle or 
road. 

• Much more common to use feedforward and 
optimal control methods in this layer. 

• Layers above here are in perceptive autonomy 
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7.1.1.4 Controller Requirements 
• Move a precise distance or to a precise location: 

– Position control 

• Follow a path 
– Crosstrack and alongtrack control may be different 

• Gross motion or move at a precise velocity 
– Velocity control 
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Recall: Single Axis Control Loops 
• Conduct no lookahead. 
• React simply to the current (and past) error signal. 
• Not coordinated with other servos that execute 

simultaneously. 
• Connected directly to actuators such as engine 

throttles, electric motors, and hydraulic valves. 
– calibration required of bias, scale etc. 
– basic kinematic transforms may occur. 
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7.1.2 Virtual Spring Damper 
• Mass is really governed by: 

 
• Not clear what u(t) will drive to a specific place yss 

for a constant input uss. 
• A real mass-spring-damper will go to a specific 

place.  
• Add measurements of position and speed and a 

computational spring and damper. 
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7.1.2 Virtual Spring Damper 
• Substitute this for u(t): 

 
 
 

• Now the mass behaves like there is a real spring 
and damper. 
– Goes to exactly the same place! 

• This introduction of computational elements to 
alter system dynamics is the basic idea of control 
theory. 
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7.1.2 Virtual Spring Damper 
• Open loop system dynamics 

 
 
• Closed loop system dynamics: 

 
 

• Same as a real spring damper. 
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7.1.2.1 Stability 
• Poles of the closed loop system are 

the same as the real MSD: 
 

• General solution involves terms of 
the form: 
 
 

• Real part governs amplitude 
• Imaginary part governs frequency 
• Therefore stable if real parts are < 0. 

– Friction would always stabilize a real 
system. 
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7.1.2.2 Pole Placement 
• Consider now changing the 

behavior of a real MSD system: 
 
 

• Add sensors, compute a control: 
 
 

• Substitute back: 
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7.1.2.3 Error Coordinates 
• Define the error signal: 

 
• Substitute for y in Eqn A: 

 
• For a constant reference input 

 
• Move yr to RHS: 
 
• But              so: 
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7.1.2.3 Error Coordinates 
(Control in Error Coordinates) 

• Last result suggests this control: 
 
 

• Substitute into Eqn A: 
 
 

• But            and             so this is:  
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7.1.3 Feedback Control 
(PD Controller) 

• Functions like a MSD 
• Steady state response is yr. 

– Goes where you tell it to go. 
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7.1.3 Feedback Control  
(PD Transfer function) 

• Based on that block diagram trick: 
 

• For a unit mass: 
 

• Close loop poles 
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7.1.3 Feedback Control  
(PD Loop Response (kp = 1)) 

• Critically damped when kp = 1, kd = 2. 
• Poles determine damping, oscillation, stability 
• Input determines where it goes but the poles decide 

how it gets there. 
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7.1.3.1 PD Root Locus 

• Plot poles as function of some gain. 
– “Dance of the poles” is a common behavior 
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7.1.3.2 Performance Metrics 
• 90% rise time 

– time required to achieve 90% of final value. 
– 1.7, 3.9, 18.2 for three responses above 
– time constant is the 63% rise time. 

• Percent overshoot: 
– Overshoot amplitude / final value 
– 45.7% for 1st above, 0 for others. 
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7.1.3.2 Performance Metrics 
• 2% settling time 

–time required to settle within 2% of final 
value. 

–typically 4 time constants 
• Steady state error: 

–Error after all transients have faded 
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7.1.3.3 Derivative Term Issues 
• Derivatives magnify noise. 

– Hence its best not to differentiate the position 
feedback. 

• Alternatives 
– Filter out high frequencies before 

differentiating. 
– Use measurements of velocity. Works because: 
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7.1.3.4 PID Control 
• In PD we have: 

– proportional (now) 
– derivative (future) 

• Is integral (past) of any use? 
• You betcha. The default answer in industry: 
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7.1.4.3 PID Control 
• Suppose we have friction in the system. If so: 

 
 

• So, steady state solution is: 
 

• It does not go to the right place. 
• However, the integral gain in the PID removes this 

error! 
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7.1.3.4 PID Control 

• The I term builds up for persistent errors. 
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PID Block Diagram (time domain) 
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7.1.3.5 Integral Term Issues 
• Growth of the integral term is called windup. 

– It can be disasterous. 

• Has the capacity to output maximum control 
effort for an extended period of time. 

• Moral: 
– Enforce a threshold on its magnitude. 
– Clear it when you can detect that the loop has been 

opened. 
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PID Loops (Summary) 
• Proportional Term 

– Corrects for the present value of the error. 
– Kp is often called servo “stiffness”. 

• Integral Term 
– Corrects for persistent (average) errors [also known  as 

dc offset]. 

• Derivative Term: 
– Corrects for predicted future errors 
– Predictive element 
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PID Loops 
• Can adjust process inputs based on the 

error, error history and error rate 
– which gives more accurate and stable control 

• Can be used to control any measurable 
variable which can be affected by 
manipulating some other process variable.   
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7.1.3.6 Cascade Control 

• Position loop around a velocity loop. 
• Maybe 2nd most common in industry. 
• May be forced on you by e.g. a motor. 
• Inner loop tries to remove velocity error quickly. 
• Because it’s a hierarchy of loops, it applies in abstract way 

to all robots. 
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7.1.3.6 Cascade Control 

• Inner loop: 
 

• Outer loop (using inner as the system) 
 

• For kvi =0  
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7.1.3.6 Cascade Control 
(Cascade Control Response) 

• Repeated pole at -1 when 
• This configuration responds like a PD. 
• Still takes 5 seconds to get there. Hmmm. 
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Online Tuning of PID Loops 
• 1) Set Ki and Kd to zero.  
• 2) Increase Kp until the output oscillates. 
• 3) Increase Ki until oscillation stops.  
• 4) Increase Kd until the loop is acceptably quick to 

reach its reference.  
• A fast PID loop usually overshoots slightly to reach 

the setpoint more quickly.  
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Offline Tuning 
• Use system identification techniques to 

determine the coefficients of the differential 
equations in the system model. 

• Then there are formulas for the optimal 
gains. 

• Can also just play around in simulation in 
this case. 
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Performance Issues 
• PIDs etc. respond violently to a step 

input. 
–This creates momentum which causes 

overshoot. 
–This mean gains must be kept low to 

maintain stability. 
–That means sluggish response. 
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7.1.4.2 Limitations of Feedback-Only 
Controls 

• Delayed response to errors 
–  must wait for errors to occur before 

removing them. 
–Yet, sometimes they can be predicted 

• Coupled Response 
– Ideally manipulate the response to the reference 

differently from errors. 
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7.1.4.1 Model Referenced Control 
• Is there a better way? Yes. 

– Generate a feasible trajectory to the goal. 
– Use that as the reference. 

• Don’t trust the PID to generate the trajectory.  
• Tell the controller… 

– Not only where to go but… 
– how to get there. 
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7.1.4.1 Model Referenced Control 

• Makes it possible to: 
– Raise the gains 
– Improve response 

• MUST measure errors wrt new reference 
trajectory. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 61 

ry  

System + 
- 

 
Feedback 

y

∑
actuator 

yeReference 
Model 

u



Common Velocity Reference Trajectory 

• Integrate or differentiate as necessary to get the 
other signals. 

• Two views: 
– A reference model generates the trajectory. 
– A less infeasible trajectory is generated however. 
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Model Referenced Control Response  

• Twice as fast to the goal. 
• Much higher gain. 
• Turns out…. STILL not optimal. 
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7.1.4.2 Limitations of Feedback 
• Delayed response to errors. 

– Literally waits for them to happen and then 
responds. 

– Even though components due to changes in 
reference signal are totally predictable. 

• Coupled response 
– Response to reference and errors uses same 

mechanism – error feedback. 
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7.1.4.3 Feedforward Control 
(Open Loop Bang-Bang Control) 

• Open loop is bad right? Only sorta. 
• Position for constant force input. 

 
• Time required to travel to position yr is: 

 
 

• However, it will arrive at high speed and 
overshoot. 
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7.1.4.3 Feedforward Control 
(Open Loop Bang-Bang Control) 

• Need to reverse force at the halfway point. 
 

• Now, we have defined this control law: 
 
 

• Any control that switches between extremes 
like this is called a bang-bang controller. 
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7.1.4.3 Feedforward Control 
(Bang-Bang Response) 

• Gets there in 2 seconds flat. That is the 
minimum possible. 

• No overshoot. 
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The end of feedback? 
• Feedback: 

–Underperforms 
–Does not remove errors quickly (gains too 

low) 
–Is potentially unstable 
–Requires expensive finicky sensors. 

• Thy name is a swear word. 
• Thou art abolished.  

Mobile Robotics - Prof Alonzo Kelly, CMU RI 68 



The Rebirth of Feedback 
• Feedback does remove errors.  
• Feedforward is not even aware of them. 
• Can we combine them? Yes. 
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7.1.4.4 Feedforward with Feedback Trim 
• For the bang-bang control, the reference 

trajectory is: 
 

• Use this for computing errors. 
• The adjoined control is: 

 
 

• Use this for computing the force. 
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7.1.4.4 Feedforward with Feedback Trim 
(Response of Composite Controller) 

• Even for a massive 10% friction disturbance. 
• Gets to the right place.  
• Gets there in (almost) record time. 

– Friction adds slight delay 
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7.1.4.5 Trajectory Generation Problem 
• Solve this problem: 

 
 
 

• For an input trajectory u(t) and terminal 
time tf.  
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7.1.4.6 Feedback versus Feedforward 
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Feedback Feedforward 

Removes Unpredictable Errors and Disturbances (+) YES 
 

(-) NO 

Removes Predictable Errors and Disturbances (-) NO (+) YES 

Removes Errors and Disturbances Before They 
Happen 

(-) NO (+) YES 

Requires Model of System (+) NO (-) YES 

Affects Stability of System (-) YES (+) NO 
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Summary 
• There are many forms of mobile robot 

controls  
• They can be arranged in a rough hierarchy. 
• There is a kind of generic PID loop that 

covers alot of cases. 
• Feedback and feedforward both have their 

merits.  
– Doing both at once is a good idea. 
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