
Chapter 7 
Control 

Part 2 
7.2 State Space Control 
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7.2 State Space Control 

• Looks deeper at system behavior by 
exposing the states 

• Tries to control the entire state vector 
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7.2.1 Introduction 
(State Space Model) 

• Recall the linear TI case: 
 
 
 
 

• x is n X 1 
• u is r X 1 
• y is m X 1 
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7.2.1.1 Controllability 
• Completely controllable if there is a u(t) that 

drives the system: 
– From any x(t1) 
– To any x(t2) 
– In finite time Dt = t2-t1. 

• Totally controllable if Dt can be made as 
small as desired. 

• Some use the word reachability for this 
concept. 
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7.2.1.1 Controllability 
(Controllability Condition) 

• Totally controllable iff this n X nm matrix: 
 
 

• … is of full rank. 
• If F(t) and G(t) depend on time, Q can only 

lose rank at isolated points in time.  
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7.2.1.2 Observability 
• Completely observable if x(t1) is fully 

determined by knowledge of 
– u(t) and 
– y(t)  
– on an interval [t1, t2] where t2 > t1 : 
– In finite time ∆t = t2-t1. 

• Totally observable if ∆t = t2-t1 can be made 
as small as desired. 
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7.2.1.2 Observability 
(Observability Condition) 

• Totally observable iff this mn X n matrix: 
 
 
 
 

• … is of full rank. 
• If F(t) and G(t) depend on time, P can only 

lose rank at isolated points in time.  
 
 

 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 13 



Outline 
• 7.2 State Space Control 

– 7.2.1 Introduction 
– 7.2.2 State Space Feedback Control 
– 7.2.3 Example: Robot Trajectory Following 
– 7.2.4 Perception Based Control 
– 7.2.5 Steering Trajectory Generation 
– Summary 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 14 



Feedback Control in State Space 
• Two options: state and output feedback. 
• Only the second seems relevant (since only y 

is accessible by definition) 
• However: 

– Full state feedback is theoretically relevant 
– Sometimes you can measure all states 
– Often, you can reconstruct the states. 
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7.2.2.1 State Feedback 
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7.2.2.1 State Feedback 
• Upon substitution,  
• the new linear system is: 

 
 

• Can show: 
– Controllability is unaltered if 

W is full rank 
– Observability can be altered 

or even lost (i.e if H=MK). 
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7.2.2.2 Eigenvalue Assignment 
• Equivalent to pole placement.  
• Consider time invariant case. Stability 

depends on eigenvalues of new dynamics 
matrix F-GK: 
 

• If original system is controllable, these e-
values can be placed arbitrarily by suitable 
choice of the gain matrix K. 
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7.2.2.3 Output Feedback 
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7.2.2.3 Output Feedback 
• Upon substitution,  
• the new linear system is: 

 
 

• Can show: 
– Controllability is unaltered if W and [Ir + KM]-1 

are of full rank 
– Observability is preserved. 
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7.2.2.4 Eigenvalue Assignment 
• If original system … 

– is completely controllable 
–and H is full rank 

• m of these e-values can be placed 
arbitrarily by suitable choice of the gain 
matrix K. 
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7.2.2.5 Observers 
• Clearly, output feedback is inferior. 

 
• Can we: 

– reconstruct the state from the measurements? 
– Use the reconstructed state as state feedback. 

 

• Surprisingly, yes. 
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7.2.2.5 Observers 

• Almost every mobile robot looks like this. 
• The observer is the state estimation system. 

– Hence, the Kalman filter. 
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7.2.2.5 Observers 
• The predicted output is: 

 
• The observer dynamics have one extra input – the 

output prediction error: 
 

• Subtract this from real system dynamics 
(assuming matrices match) 
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ŷ Hox̂ Mou+=
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td
d x x̂–( ) F x x̂–( ) Ko y ŷ–( )–=

Same form 
as a 
controller! 



7.2.2.5 Observers 
• If the error dynamics are controllable, we 

can drive the state estimate to agree with 
the state in an arbitrarily short period of 
time. 
 
 
–  Assuming measurements and matrices are 

known perfectly. 
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Same form 
as a 
controller! 



7.2.2.6 Control of Nonlinear Systems 
• All mobile robots are nonlinear 

–Because the sensors and actuators are on 
the robot. 

• So…. Why study all this linear system 
stuff? 
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7.2.2.6 Control of Nonlinear Systems 
• All mobile robots are nonlinear 

–Because the sensors and actuators are on 
the robot. 

• So…. Why study all this linear system 
stuff? 
–Control the linearized (error) dynamics. 
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7.2.2.6 Control of Nonlinear Systems 
(Two DOF Design) 

• Aka Feedforward with feedback trim…. 
– Feed forward the reference trajectory open 

loop control. 
– Use feedback to reject disturbances etc. 
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7.2.3.1 Representing Trajectories 
• Assume velocity is fwd 

along body x only 
• States: 
• Inputs: 
• Nonlinear state space 

model in terms of time. 
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But notice 
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factored out. 
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7.2.3.1 Representing Trajectories 
• This means we can rewrite 

the dynamics in terms of 
distance 
 

• Nonlinear state space 
model in terms of distance. 
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Division by V is 
only a problem 
if you insist  on 
a curvature for 
every time. 
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7.2.3.2 Robot Trajectory Following 
• States: 
• Inputs: 
• Nonlinear state space model: 

 
 

• Suppose a trajectory generator has 
produced a reference: 
 

• Assume full state feedback. 
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7.2.3.2.1 Linearization and Controllability 
• Linearized Dynamics: 

 
 

• Convert coordinates to 
path tangent frame. 
 
 

• Of the form: 
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Very Simple System 
Linear 

Time Invariant for 
constant V 
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7.2.3.2.1 Linearization and Controllability 
• Controllable? 
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7.2.3.2.1 Linearization and Controllability 
• Controllable? 
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7.2.3.2.2 State Feedback Control Law 
• State Feedback 

 
• We know speed can 

control s and steering 
can control n and θ 
so: 
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7.2.3.2.2 State Feedback Control Law 
(Total Control Law) 
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7.2.3.2.3 Behavior 
(Open Loop Servo Execution) 

• While simple in principle, open loop execution 
does not reject disturbances. 

• Even a single initial error can grow forever if not 
compensated. 
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7.2.3.2.3 Behavior  
(Distance Based Open Loop Control) 

• Ignore speed by converting to distance as 
the independent variable. 

• Recall, this implies a particular path through 
space because: 
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7.2.3.2.3 Behavior 
(Heading Error Compensation) 

• Passes original command directly to output. 
• Bends the response path to be parallel to the 

desired. 
• BUT: Does not move paths together. 
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κ d s( ) κ smeasured( ) ∆κ+=
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7.2.3.2.3 Behavior 
(Full Pose Error Compensation) 

• Passes original command directly to output. 
• ∆x is coordinate of closest point in body coords. 
• Also adds two corrective amounts intended to 

remove present error. 
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7.2.3.2.4 Eigenvalue Placement 
• New closed loop 

dynamics matrix: 
 
 
• Characteristic poly: 
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Any coefficients are possible 
so….. 
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7.2.3.2.5 Gains 
• Both curvature gains can be related to a 

characteristic length. 
 

• Then                       removes heading error 
after moving a distance L. 

• And                       removes crosstrack error 
after travelling a distance L. 

• Also                   is the time constant of speed 
error response.  
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7.2.4 Perception Based Control 
(Visual Servoing) 

• Observed feature residuals can be generated by: 
– Perceived errors in pose estimates in a region of 

overlap (registration) or ... 
– Real errors in pose itself in a positioning task. 

• In the latter case, it is natural to close a servo loop 
and drive the system to move to reduce the error. 
This is visual servoing. 

• Must maintain feature correspondences during 
motion: 
– Embedded feature tracking problem. 
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7.2.4 Perception Based Control 
(Visual Servoing : Architecture : Errors) 

• Image-based control forms errors in image space. 
– Servoing done in image space 

• Position-based control forms errors from object 
poses: 
– Poses derived from image features 
– Servoing done in pose space.  
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7.2.4 Perception Based Control 
(Visual Servoing : Architecture : Camera Position) 

• Camera may be moving or stationary. 
• Required motions are reversed with respect to 

each other.  
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7.2.4.1 Error Coordinates 
(Image Based Visual Servoing) 

• Problem: drive the system (usually with a camera attached) to turn the 
present image into the desired image. 

• An excellent way to drive up to something with a poor pose estimate. 
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Pose 
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- 

+ 

7.2.4.1 Error Coordinates 
(Image Based Visual Servoing) 

• Explicitly calculate the pose of the object relative 
to the camera. 

• Compute the error in the pose. 
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7.2.4.2 Visual Servoing 
(Image Formation Model) 

• Observations / measurements z depend on the 
pose r of the camera w.r.t. the object. 
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z h ρ t( )( )=



7.2.4.2 Visual Servoing 
(Image Formation Model) 

• k adequate features in z with which to control the 
m dof of the system. 

• Usually: 
• A goal image space configuration zr:  

 
• Regulate the error: zr - z : 

 
• Typically track features at near video rate.  
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7.2.4.4 Controller Design 
(Basic Controller) 

• Observable features z depend in a predictable 
way on the camera projection model h(_) and the 
pose          of the target object wrt the camera: 
 
 

• z could also be interpreted simply as the pose 
relative to the target in a position-based 
approach. 
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ρ t( )

z h ρ t( )( )=



7.2.4.4 Controller Design 
(Basic Controller) 

• Taking the time derivative: 
 
 

• Also, by definition: 
 

• We might solve this with the LPI: 
 

• If ∆z is the feature error, then: 
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z h ρ t( )( )=

z
·

ρ∂
∂h

td
dρ 

Lfv t( )= =

Jacobian Lf is 
called the 
interaction 
matrix. 

∆z Lf∆ρ=

∆ρ Lf
+∆z=

Eqn A 

Pose error that 
explains the 
feature error to 
first order. 



7.2.4.4 Controller Design 
(Basic Controller) 

• Divide by a small Dt to get: 
 
 

• Suppose we would like the feature rate to be 
consistent with nulling the error in t (1/l) seconds. 
 
 

• Substituting above: 
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7.2.4.4 Controller Design 
(Basic Controller) 

• This is a proportional controller with gain: 
 

• Drives observed feature errors exponentially to 
zero.  

• Substituting the control into the dynamics gives 
the closed loop error dynamics: 
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Kp λ 1 τ⁄= =

Eqn A 



7.2.4.4 Controller Design 
(Behavior) 

• Case 1:                            perfect behavior 
 

• Case 2:                            error decreases 
 

• Case 3:                            error increases 
 

• Ideally: 
– Lf is not singular anywhere. 
– There are no non-optimum local minima. 
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Videos 
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7.2.5 Steering Trajectory Generation 
(Trajectory Generation) 

• Trajectory generation is necessary for any kind of 
precision control of mobile robots. 

• The problem occurs in various forms: 
– “Steering” (curvature generation) problem. 
– “Smooth stopping” (velocity profile) problem. 
– Both at once 

• Sometimes in terms of linear and angular velocity. 
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7.2.5 Steering Trajectory Generation 
(Definitions) 

• Let a trajectory be a specification of an entire 
motion. 
– Could be explicitly in terms of state: 

 
 

– Could be implicitly in terms of inputs: 
 

– Need both for 2 dof control 

• Both can be visualized as the trajectory followed 
by the tip of a vector over time. 
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x t( ) t0 t tf< <( ){ }
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7.2.5 Steering Trajectory Generation 
(Motivation) 

• Load cannot be approached sideways. 
• Visualize driving backward from goal. 
• Maneuver must initially turn away from the 

pallet. 
• Underactuation causes this. 
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7.2.5 Steering Trajectory Generation 
(Motivation : Precision Control) 

• Precision control is 
necessary: 
– when goals states 

must be achieved 
precisely 

– when paths must be 
followed precisely. 

• That happens in 
cluttered 
environments, for 
example. 
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The robot must not only follow 
the intended curves but it must 
come to a stop neither too early 
(which would make achieving 
the next goal impossible) nor too 
late (which will cause a 
collision). 

Must stop 
precisely here. 



7.2.5 Steering Trajectory Generation 
(Motivation : Reduced Following Error) 

• Trajectory generation can 
compensate for the 
predictable causes of 
following error. 

• Using trajectory generation, 
you can decide what to ask 
for, in order to get what you 
want. 
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7.2.5 Steering Trajectory Generation 
(Motivation : Corrective Trajectories) 

• Control layers above 
the coordinated 
control layer…. 
– Have easier jobs to do 

with a trajectory 
generator to talk to. 
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The best recovery trajectory is one which 
reacquires the path at the correct heading 
and curvature. 



7.2.5.1 Problem Specification 
• Dynamics: 

 
• Physical constraints: 

– Turn radius bounded from below 
– Curvature is bounded by mechanisms and terrain 

friction.  

• Boundary conditions: 
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u t( ) umax t( )≤ u· t( ) u·max t( )≤

x t0( ) x0=

x tf( ) xf=



7.2.5.1 Problem Specification 
(Constraint : Dynamics) 

• For a system: 
 

• Problem: determine an entire control function 
u(t) which generates some desired state trajectory 
x(t). 
 
 

• It’s the problem of inverting a differential 
equation. 
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7.2.5.2 Formulation as a Rootfinding Problem 
(Existence) 

• Every u(t) generates some x(t)... 
 
 

• However, many arbitrary x(t)’s represent 
infeasible motions. 
– Mathematical reasons – underactuation 
– Physics reasons - friction 
– Power related reasons - horsepower 
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x t( ) x 0( ) f x u t, ,( ) td
0
t∫+=



7.2.5.2 Formulation as a Rootfinding Problem 
(Parameterization) 

• Function space of all u(t) is too large to search. 
• Parameterize inputs: 
• Easy to see by Taylor series that p spans all 

possible u(t) 
– Pick any uk(t) you like. 
– Write its Taylor series 
– Coefficients pk approximate uk (t) arbitrarily well. 
– But uk (t) was arbitrary too  so pk spans everything! 
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u t( ) ũ p t,( )→



7.2.5.2 Formulation as a Rootfinding Problem 
(Parameterization) 

• Now p determines u(t) which determines x(t), so 
dynamics become: 
 

• The boundary conditions become: 
 
 

• This is conventionally written as: 
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Integrals are suppressed 
notationally – but they 
are still there. 

x· t( ) f x p t,( ) u p t,( ) t,,[ ] f̃ p t,( )= =

g p t0 tf, ,( ) x t0( ) f̃ p t,( ) td
t0

tf

∫+ xb= =

c p t0 tf, ,( ) h p t0 tf, ,( ) xb– 0= =



7.2.5.2 Formulation as a Rootfinding Problem 
(Parameterization) 

• Wait a minute!: 
 
 

• That is a rootfinding problem! 
• Conclusion: 

– the problem of inverting a nonlinear vector differential 
equation  

– can be converted to a rootfinding problem  
– using parameterization. 
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c p t0 tf, ,( ) 0=



7.2.5.3 Steering Trajectory Generation 
• Switch to steering problem and ignore 

velocity. 
• Often it is convenient to change the 

independent variable from time to 
distance. 

• Let the initial distance s0 be zero and 
absorb the final distance into the 
parameter vector, thus: 
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q pT sf,[ ]
T

=
p became longer but 
t0 and tf have been 
eliminated. 



7.2.5.3 Steering Trajectory Generation 
(Degrees of Freedom) 

• If u(p,sf) has n parameters, these 
can be used to satisfy n 
constraints. 

• For example, an arc trajectory 
really has two parameters – 
radius and length. 

• Imagine the circles moving 
outward until they hit the point. 

• Its not too hard to find the radius 
and distance which hit the point. 

• Terminal heading and curvature 
are beyond your control.  
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7.2.5.3 Steering Trajectory Generation 
(Clothoids) 

• Another historically 
popular curve is the 
clothoid. It’s a linear 
curvature polynomial: 
 
 

• This has 3 degrees of 
freedom but its still not 
enough for some 
problems.  
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κ s( ) a bs+=



7.2.5.3 Steering Trajectory Generation 
(Polynomial Spirals) 

• We can without loss of generality consider the 
initial pose to be at the origin. 

• If initial and final curvature matter, that leaves 
FIVE constraints: 
 

 
 

• A curve with 5 dof is a cubic spiral: 
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x sf( ) xf=
y s f( ) yf=
θ s f( ) θf=

κ 0( ) κ0=

κ s f( ) κf=

κ s( ) a bs cs 2 ds 3+ + += The parameter sf must be 
distinguished from the 
variable s. The 5th parameter sf 
does not appear.  



7.2.5.3 Steering Trajectory Generation 
(Polynomial Spirals) 

• All cases mentioned so 
far are special cases of 
polynomials. 

• This form of 
representation has 
several advantages: 
– Compact, just store 

coefficients 
– General, any function can 

be approximated. 
– Heading can be 

computed in closed form. 
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7.2.5.3 Steering Trajectory Generation 
(Polynomial Spirals) 

• These curves can achieve any terminal posture. 
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Video 
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7.2.5.4 Numerical Formulation 
(Terminal Posture Acquisition) 

• There are 5 constraints: 
 

• The initial curvature constraint is trivial to satisfy: 
 

• Denote the remaining 4 parameters by: 
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κ0 x, f yf θf κf, , ,( )

a κ0=

q b c d s f

T
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7.2.5.4 Numerical Formulation 
(Terminal Posture Acquisition) 

• Now there are 4 complicated constraints on the 4 
parameters: 
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2
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2 c
3
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3 d
4
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4+ + + θf= =

x q( ) κ 0s b
2
---s2 c

3
--- s3 d

4
--- s4+ + +cos sd

0

sf

∫ xf= =

y q( ) κ 0s b
2
--- s2 c

3
--- s3 d

4
---s4+ + +sin sd

0

sf

∫ yf= =



7.2.5.4 Numerical Formulation 
(Linearization) 

• Despite the integrals, these are just 4 nonlinear 
equations of the form: 
 

• Solve with a rootfinding technique like Newton’s 
method: 
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c q( ) g q( ) xb– 0= =

∆q cq
1– c q( )– cq– 1– g q( ) xb–[ ]= =



Demo 
• CuboidDemonstrator1.exe 
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Right click and open hyperink 



Video 
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Video 
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Outline 
• 7.2 State Space Control 

– 7.2.1 Introduction 
– 7.2.2 State Space Feedback Control 
– 7.2.3 Example: Robot Trajectory Following 
– 7.2.4 Perception Based Control 
– 7.2.4 Steering Trajectory Generation 
– Summary 
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Summary 
• State Space control is more powerful than 

classical. 
– Theorems provide conditions for arbitrary 

controllability. 

• Observer theory reveals duality of controls and 
estimation. 

• 2 dof control is a good way to follow trajectories. 
• Parameterization is a good way to generate them 

for open loop control. 
• Linearization is effective for nonlinear control. 
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Summary 
• Visual servoing implements a closed loop using 

vision as the feedback sensor. 
• A basic version tries to drive an image into 

coincidence with some reference image by: 
– forming errors in image space. 
– deriving corrective velocity commands from the 

errors. 
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